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Abstract This presentation aims to discuss the needs for better and more soUd 
foundations of model-based development in embedded control systems. 
Three particular points are discussed: a comparison between model-
based development in control and in computer sciences, the need for 
a sampling theory of discrete event systems and the need for precise 
implementation methods based on preemptive scheduling. 
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1. INTRODUCTION 
Model-based development is widely recognised as a method of choice 

for efficiently and safely designing computing systems. After all, isn't it 
the way other branches of engineering have followed for achieving such 
a goal? Just think of how bridges and buildings are designed. Yet, 
though the need for model-based development is widely recognised, it is 
true that advances in this direction are quite slow and charges are put 
on both the youth of computer science and the intrinsic complexity of 
computing to account for this state of affairs. 

There is however a particular subdomain, the embedded control do
main, where things have progressed faster. For instance, automatic 
code generation from high level model have been in use at Airbus in 
the fly-by-wire department for more than twenty years [7]. Since the 
beginning of the nineties, the Simulink/Stateflow tool-box also allows 
automatic code generation (RealTime Workshop) and has achieved an 
impressive diversity of possible implementation platforms ranging from 
simple cyclic monoprocessor ones to multi-threaded ones, based on pre
emptive scheduling and to distributed ones based on specialised CAN 
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or TTA libraries. It is not unfair to say that embedded control is by 
now one (if not the only one) computing subdomain that has reached 
the highest possible level of model-based development. 

However, as it is often the case, this fast progress has been achieved 
rather empirically, without taking much care of foundations. Basically, 
it is the accomplishment of practitioners rather than of theoreticians and 
the latter have cast very little attention to it. The thesis we would like 
to support in this presentation is that times have come to strengthen the 
foundations of the method. Not only this effort can be expected to be 
fruitful for intellectual purposes but it is also likely that practitioners 
can benefit from it by getting better, with wider scope and simpler 
development tools. 

So the aim of this presentation is to discuss this issue: which are the 
foundation needs? Three points will be more precisely considered: 

1 What is the use of models in control and how this use differs from 
what is currently considered in computer science? 

2 Is there a well-admitted theory of computer implementation for 
control models, in particular concerning the sampling of discrete 
event systems? 

3 How can we guarantee behaviour equivalence between models and 
implementations in case of preemptive scheduling? 

2. MODEL-BASED DESIGN IN COMPUTER 
SCIENCE AND CONTROL 

Model-based design is advocated in both theories as a method of 
choice for efficiently and safely building systems. However these the
ories differ in the way of achieving this goal: 

In computer science, the proposed method (see for instance [1]) is 
based on successive refinements: a large specification is designed first, 
imprecise (non deterministic) in general, but sufficient for meeting the 
desired system properties. Then implementation details are brought in 
progressively, making the specification more and more precise, while 
keeping the properties, up to a point when it can be implemented. 
Clearly, this is an ideal scheme which is seldom fulfilled in practice, 
but which has a paradigmatic value. 

In control science, on the contrary, an exact model is built first, which 
allows a control system to be designed. Then the various uncertainties 
that may affect the system behaviour are progressively introduced and 
it is checked that the designed controller is robust enough to cope with 
these uncertainties. 
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Clearly, these two schemes are not, in practice, too far from each other. 
But, as control systems are mostly implemented by now on computers, 
some effort is needed if these two schemes have to match more closely. 
This can be valuable in the perspective of achieving an easier communi
cation between computer and control cultures. A way to reach this goal 
would be to see the initially precise control model as representing a large 
class of models, those models which fall within some given "distance" 
from this model. This distance would then represent the maximally ad
missible uncertainty around the model and further refinements would 
make this uncertainty smaller. This goal requires thus some notion of 
control system distance and approximation. 

3. SAMPLING DISCRETE EVENT AND 
HYBRID SYSTEMS 

Large modern control systems mix very closely continuous and dis
crete event systems. This is due for instance, to mode changes, alarms, 
fault tolerance and supervisory control. From a theoretical point of 
view, computer implementation techniques for these two kinds of activ
ity are quite different. Continuous control is dealt with through periodic 
sampling (time-triggered computations as defined by [5]) while discrete 
event systems use event-triggered implementations. However, in prac
tice, many mixed continuous control and discrete event control systems 
are implemented through periodic sampling. This is the case, for in
stance, in Airbus fly-by-wire systems [7] and many other safety-critical 
control systems. The problem is that there are no solid foundations 
to periodically sampling discrete event systems and practitioners rely 
on in-house "ad-hoc" methods. Building a consistent sampling theory 
for mixed continuous control and discrete event systems would help in 
strengthening these practices. 

A situation where such lack of theory is particularly critical concerns 
fault-tolerance: though the theory of distributed fault-tolerant systems 
[8; 5] advocates the use of clock synchronisation, still many critical real
time systems are based on the GALS (globally asynchronous, locally syn
chronous) and, more precisely, the "Quasi-Synchronous" [3] paradigm: 
in this framework, each computer is time-triggered but the clocks asso
ciated with each computer are not synchronised and communication is 
based on periodic sampling: each computer hats its own clock and pe
riodically samples its environment, i.e., the physical environment but, 
also, the activities of the other computers with which it communicates. 
When such an architecture is used in critical systems, there is a need for 
a thorough formalisation of fault tolerance in this framework. 



12 From Model-Driven Design to Resource Management for Distributed Embedded Systems 

4. FAITHFUL IMPLEMENTATIONS BASED 
ON PREEMPTIVE SCHEDULING 

A key question in model based development is the possible discrep
ancy between models and their computer implementations. As a matter 
of fact, if this discrepancy is too large, the benefits gained from the use 
of models can be spoiled. This is the general question investigated in 
section 2 where this question is considered in terms of distances and 
topologies. Yet there are particular situations where other approaches 
can be used. A typical example is found when implementations are based 
on multiple theads and preemptive scheduling. This kind of implemen
tation is mandatory in several cases, for instance: 

• in multi-periodic models for efficiency reasons; 

• in event-triggered systems when urgent events have to be handled. 

In such systems, inter-task communication is likely to be strongly non 
deterministic [2]. In some cases, for instance when discrete events are 
considered, critical races can take place and the "distance" between mod
els and implementations may become too large. There is thus a need for 
more precise implementation techniques, which do not spoil the benefits 
of model-based development such as those described in [4; 6]. 
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