
1-4244-0910-1/07/$20.00 ©2007 IEEE. 

A Prototype Multithreaded Associative SIMD Processor 

Kevin Schaffer and Robert A. Walker 
Department of Computer Science 

Kent State University 
Kent, Ohio 44242 

{kschaffe, walker}@cs.kent.edu 

Abstract 

The performance of SIMD processors is often limited 
by the time it takes to transfer data between the central-
ized control unit and the parallel processor array. This is 
especially true of hybrid SIMD models, such as associa-
tive computing, that make extensive use of global search 
operations. Pipelining instruction broadcast can help, but 
is not enough to solve the problem, especially for mas-
sively parallel processors with thousands of processing 
elements. In this paper, we describe a SIMD processor 
architecture that combines a fully pipelined broad-
cast/reduction network with hardware multithreading to 
reduce performance degradation as the number of proc-
essors is scaled up. 

1. Introduction 

Single Instruction Multiple Data (SIMD) computers 
are often used to solve computationally intensive prob-
lems that exhibit a high degree of fine-grain data parallel-
ism. The appeal of the SIMD model is its simplicity, from 
the perspective of both software and hardware. A SIMD 
computer maintains the same implicit synchronization as 
a sequential computer, making it easier to program 

At the hardware level, a SIMD computer is built up 
from relatively simple pieces, making it easy to adapt the 
SIMD model to new technologies, such as systems-on-a-
chip. Commercial single-chip SIMD processor arrays are 
available for a variety of applications [1, 2]. 

However, the performance of a SIMD processor is of-
ten limited by the broadcast/reduction bottleneck [3]. As 
the number of processing elements (PEs) increases, the 
wires connecting the control unit and the PEs become 
longer and signals take longer to propagate. Since each 
instruction must be broadcast, this delay increases the 
clock cycle time, limiting system performance. Similarly, 
most SIMD systems support AND, OR, or other reduction 
operations, which also act as a bottleneck. Pipelining the 
broadcast/reduction network helps to keep the clock cycle 

time short, but it introduces hazards that can severely 
limit system performance (as described later in Section 4). 

In this paper we will describe a prototype associative 
SIMD processor architecture that uses a combination of 
pipelining and multithreading to maintain high perform-
ance as the number of PEs increases. 

2. Associative Computing 

Developed within the Department of Computer Sci-
ence at Kent State University, the associative computing 
(ASC) model grew out of work on the STARAN and 
MPP SIMD computers at Goodyear Aerospace [4]. In a 
SIMD computer, there is a single control unit, also known 
as an instruction stream, and multiple processing elements 
(PEs) combined with local memory, known collectively 
as cells. The control unit fetches and decodes program 
instructions, and broadcasts control signals to the PEs. 
The PEs, under the direction of the control unit, execute 
these instructions using their own local data. SIMD com-
puters are particularly well suited for massively data par-
allel programming, where the same operation is applied to 
each element of a data set. 

An ASC processor is a SIMD computer that has addi-
tional hardware, in the form of a broadcast/reduction net-
work, to support specific high-speed global operations. 
An ASC computer must be able to: broadcast from the 
control unit to all PEs; search all PEs in parallel; detect 
the presence of PEs whose search was successful (called 
responders); pick one responder; reduce a value from the 
PEs to the control unit using either bitwise AND or OR; 
and find the maximum or minimum value across all PEs. 
The ASC computing model extends the data parallel 
SIMD programming by adding these associative opera-
tions. 

3. ASC Processor Prototypes 

Several students at Kent State have developed a proto-
type ASC Processor that implements the associative com-
puting model. 



The first version of the ASC Processor [5] had an 8-bit 
control unit, 4 8-bit PEs, and a broadcast/reduction net-
work capable of maximum/minimum search, responder 
detection, and multiple responder resolution. The instruc-
tion set was modeled after RISC processors such as MIPS 
and DLX with associative features similar to the STA-
RAN. The processor was designed in VHDL and targeted 
at an Altera FLEX 10K70 FPGA, however this design 
was never fully implemented. 

The ASC Processor was later redesigned [6] and made 
scalable, so that the number of PEs could be changed eas-
ily. To make the processor scalable, the broad-
cast/reduction network had to be redesigned, as the net-
work in the first processor could only handle four PEs. 
There were no major changes to the instruction set archi-
tecture, so this scalable ASC Processor could run most of 
the software written for the first one. The new scalable 
ASC Processor was then implemented in a larger Altera 
APEX 20K1000 FPGA, which could hold the control unit 
and up to 50 PEs. 

To further improve performance, the instruction execu-
tion of the scalable ASC Processor was pipelined [7]. The 
pipelined ASC Processor used a classic RISC pipeline 
with five stages: instruction fetch, instruction decode, 
execution, memory access, and write back, though that 
pipeline spanned the control unit and PE array. While this 
pipeline did improve performance over the original non-
pipelined implementation, it still suffered from the broad-
cast/reduction bottleneck because the broadcast and re-
duction operations were not pipelined. 

4. Pipelining 

We can overcome the broadcast/reduction bottleneck 
in the ASC Processor (or any other SIMD processor) by 
pipelining the broadcast and reduction networks. A pipe-
lined broadcast network is a k-ary tree with a register at 
each node. It can accept a new instruction each clock cy-
cle and it delivers an instruction to the PE array after a 
latency of logk n cycles, for a machine with n PEs. A pipe-
lined reduction network is similar except that data flows 
in the opposite direction and at each node a functional 
unit combines k values together before storing the result 
in a register. 

Since the distance that signals must propagate in a 
pipelined broadcast or reduction network is shorter, the 
network can operate at a much higher clock rate than a 
non-pipelined network. Unfortunately, the pipelined net-
works introduce additional hazards as described next. 

4.1. Pipeline Organization 

Instructions in a SIMD processor can be classified into 
three types: scalar instructions execute within the control 
unit; parallel instructions execute on the PE array and 

require the use of the broadcast network; and reduction 
instructions execute on the PE array and require the use of 
both the broadcast and reduction networks. The pipeline 
has separate paths for each instruction type, so that an 
instruction does not waste time in unused pipeline stages. 

Figure 1 shows the pipeline organization. After the 
scalar register read stage (SR) the pipeline splits, with 
scalar instructions taking the lower path, moving to the 
execute stage (EX), and parallel and reduction instruc-
tions taking the upper path, moving to the first broadcast 
stage (B1). The parallel pipeline then splits once again 
after the parallel register read stage (PR), with parallel 
instructions taking the upper path, moving to the execute 
stage (EX), and reduction instructions taking the lower 
path, moving to the first reduction stage (R1). 

The number of broadcast and reduction stages is vari-
able, depending on the number of PEs. To simplify the 
figures, two broadcast stages (B1-B2) and four reduction 
stages (R1-R4) are assumed. 

4.2. Hazards 

Broadcast hazards can occur when a parallel instruc-
tion uses the result of an earlier scalar instruction. With 
the split pipeline organization, classic data forwarding can 
eliminate stalls caused by broadcast hazards. As shown in 

Figure 2, the result of the scalar SUB instruction is not 
available until it enters the memory access stage (MA), 

while the parallel PADD instruction needs that result by 

the first broadcast stage (B1). In this case a stall can be 
avoided by forwarding the result from the scalar EX stage 
to the parallel B1 stage. 

Reduction hazards can occur when a scalar instruction 
uses the result of an earlier reduction instruction. As 

shown in Figure 2, the scalar SUB instruction consumes 

its operands in the execute stage (EX), but the reduction 

RMAX result is not available until the write back stage 
(WB). In this case, the scalar instruction has to stall for up 
to b + r clock cycles, where b is the latency of the broad-
cast network and r is the latency of the reduction network. 
In the figure, a stall is indicated by having the instruction 
repeat the instruction decode (ID) stage. 

Broadcast-reduction hazards can occur when a parallel 
instruction uses the result of an earlier reduction instruc-
tion. The effect of a broadcast-reduction hazard is a com-
bination of previous two types of hazards. The parallel 

Figure 1. Pipeline organization. 



PADD instruction’s operand must be available by the first 

broadcast stage (B1), but the reduction RMAX instruction’s 

result is not available until the write back stage (WB), as 
shown in Figure 2. In in the case of reduction hazards, the 
parallel instruction must again stall, this time for at most 
b + r clock cycles. 

5. Multithreading 

As illustrated in the bottom two examples in Figure 2, 
reduction instructions can stall the processor for several 
cycles. The compiler or programmer could schedule the 
instructions in order to diminish the number of stall cy-
cles, but the exact latency of reduction instructions de-
pends on the number of PEs, which is generally not 
known at compile time. Furthermore, for a large machine, 
the latency could be much higher than the degree of in-
struction-level parallelism (ILP) in the code. 

Hardware multithreading is a better solution to reduc-
ing the number of stalls. A multithreaded processor dy-
namically schedules instructions from multiple threads in 
order to avoid stalls caused by high latency operations. 
Multithreading exploits thread-level parallelism (TLP), 
which scales much better than ILP. 

Coarse-grain multithreading [8] allows a thread to run 
until it encounters an operation that would cause it to 
stall, at which point the processor switches to a different 
thread. During a thread switch, the pipeline is flushed and 
the machine state is updated before fetching instructions 
from the new thread. It takes many cycles to perform a 
thread switch, so this switch is performed only for high 
latency operations that occur infrequently, such as cache 
misses or remote memory accesses. At any given point in 
time, all the instructions in the pipeline are from the same 
thread, so the amount of additional hardware necessary to 
support coarse-gain multithreading is relatively small. 

Fine-grain multithreading [8], in contrast, switches 
threads on every clock cycle, so it can improve through-
put even in the face of shorter, more frequent stalls such 

as those from branch mispredictions and data hazards. So 
long as there is at least one thread that is not stalled in 
every cycle, a fine-grain multithreaded processor will 
never stall. Instructions from multiple threads coexist in 
the pipeline at the same time, so machine state must be 
replicated for each thread. This results in a higher hard-
ware cost than coarse-grain multithreading. 

Simultaneous multithreading (SMT) [9] differs from 
coarse-grain and fine-grain multithreading in that it can 
issue instructions from multiple threads in the same clock 
cycle. Even with aggressive out-of-order issue logic, it is 
difficult to find enough instructions in a single thread to 
fill all the issue slots in a wide-issue superscalar proces-
sor, but by looking at instructions in multiple threads, a 
SMT processor is better able to fill its issue slots each 
cycle. In addition to the machine state, pipeline resources 
such as instruction windows and reorder buffers must also 
be replicated. SMT has the highest hardware cost of all 
three approaches. 

Recall that the reason for using multithreading in the 
pipeline of a SIMD processor is to avoid stalls caused by 
reduction hazards. The latency of a reduction operation 
depends on the number of PEs and can vary from a few 
cycles for a small machine to tens of cycles for a larger 
one, so fine-grain multithreading or SMT is necessary to 
effectively eliminate stalls in the SIMD pipeline. The 
Multithreaded ASC Processor described in this paper uses 
fine-grain multithreading. 

6. Multithreaded ASC Processor Architec-

ture 

In order to measure the performance and hardware 
costs of a multithreaded associative SIMD, a prototype 
processor is currently under development, targeted for an 
Altera Cyclone II (EP2C35) FPGA. The Multithreaded 
ASC Processor consists of a control unit, which handles 
instruction fetch and decode and executes scalar instruc-
tions; an array of PEs, which execute parallel instructions; 
and a broadcast/reduction network to connect the two. In 
order to support multithreading, machine state, such as the 
PC and register files, must be replicated, and all the func-
tional units, including the broadcast/reduction network, 
must be pipelined. 

6.1. Instruction Set Architecture 

The Multithreaded ASC Processor uses an instruction 
set architecture similar to, but not compatible with, the 
ISA used in the previous ASC Processors described ear-
lier. The new ISA is a RISC load-store architecture simi-
lar to MIPS, but with extensions for SIMD data-parallel 
computing, associative computing, and multithreading. 

Parallel Instructions. Arithmetic, logic, and compari-
son operations are available in both scalar and parallel 

Figure 2. Examples of pipeline hazards 
(from top to bottom): broadcast, reduction, 
broadcast-reduction. 



instructions. The parallel instructions operate on a sepa-
rate parallel memory space with a separate set of registers. 

Broadcast/Reduction Instructions. Most parallel in-
structions allow one of the operands to be a scalar value 
that is broadcast to the PE array prior to performing the 
operation. There are also a number of reduction instruc-
tions that combine parallel data values from the PE array 
into a scalar value. 

Flags. Logical results from comparisons, which play 
an important role in associative computing, become a 
first-class data type with their own set of registers and 
instructions. 

Multithreading. The ISA provides instructions to al-
locate and release hardware threads and to communicate 
data between threads. 

6.2. Processing Element (PE) Organization 

Each processing element (PE) in the PE array consists 
of a local memory, a general-purpose register file, a flag 
register file, an arithmetic/logic unit (ALU), a multiplier, 
and a divider. 

Local Memory. Each PE has a small amount of local 
memory that acts as a programmer- or compiler-managed 
cache. The local memory is shared between threads at the 
hardware level, though it may be partitioned under soft-
ware control. The local memory is implemented as one or 
more block RAMs. The exact number of block RAMs 
used in each local memory is a configuration issue — a 
larger memory will reduce off-chip memory traffic, but 
reduce the number of PEs that can fit on a single FPGA. 

General-Purpose Register File. As a load-store archi-
tecture, all arithmetic instructions require their operands 
to be stored in the register file. Load and store instructions 
transfer data between the register file and the local mem-
ory. The register file is split between threads at the hard-
ware level, so that a thread can only access its own regis-
ters. Interthread communication instructions, however, 
can transfer data between registers in different threads. 

Implementing the register files efficiently in an FPGA 
is a significant challenge. The need to fit as many PEs on 
a chip as possible precludes the use of flip-flop arrays 
because they waste logic resources. A distributed (LUT-
based) RAM implementation is also ruled out due to the 
need for large register files, in order to support a large 
number of hardware threads. Block RAMs are the best 
way to implement the register files since they do not 
waste logic resources and support sufficient depths. How-
ever, the number of block RAMs available on an FPGA 
chip will likely set the limit on the number of PEs. 

Flag Register File. The flag register file is used in 
much the same way as the general-purpose register file, 
except that the values stored in the flag register file are 1-
bit flags. Just like the general-purpose registers, the flag 
registers are also split between threads. Implementing the 

flag register file efficiently is an even greater challenge 
than the general-purpose file because the amount of data 
is so much smaller, using an entire RAM block for a sin-
gle flag register file would be a waste. The solution is to 
share one RAM block between multiple PEs. 

ALU. The ALU supports a standard set of arithmetic, 
logic, and comparison operations. Logic operations are 
supported for both integers (bitwise logic) and flags. 
Comparisons operate on integers and produce flag results. 
The ALU has an initiation rate of one operation per cycle 
and a latency of one cycle. Forwarding paths are provided 
so that the results of an ALU operation can be sent back 
to the ALU before they are written into one of the register 
files. 

Multiplier. The multiplier is optional and can be im-
plemented in one of two ways. If the FPGA chip supports 
hard multiplier blocks then those blocks can be used to 
implement a fast, fully pipelined multiplier. However, the 
number of PEs may be restricted if there are insufficient 
multiplier blocks available on the FPGA. The other option 
is a sequential multiplier that uses fewer FPGA resources, 
but is slower and cannot be used by multiple threads si-
multaneously. 

Divider. The divider is also optional, but is only avail-
able as a sequential unit. As such, multiple threads cannot 
use it at the same time. However, since division is an un-
common operation, structural hazards for the divider 
should not degrade performance significantly. 

6.3. Control Unit Organization 

The control unit is essentially a multithreaded scalar 
processor with a few additions to support parallel instruc-
tions. The control unit consists of a fetch unit, a de-
code/issue unit, and a scalar datapath. The organization of 
the control unit is illustrated in Figure 3. 

Fetch Unit. The fetch unit fetches instructions from 
the instruction cache/memory and places them in an in-
struction buffer. Each thread's instruction buffer, PC, and 
state are recorded in a data structure called the thread 
status table, which is shared between the fetch unit and 
the decode unit. 

Figure 3. Organization of the control unit. 



Decode Unit. The decode unit decodes the instructions 
in the buffers and determines which ones are ready to 
execute. This unit is replicated for each hardware thread 
so that instructions from different threads can be decoded 
in parallel. 

Scheduler. The scheduler selects a thread that has an 
instruction ready to execute and issues that instructions to 
either the scalar datapath or the PE array. A rotating prior-
ity selection policy is employed to ensure fairness be-
tween threads. The scheduler also maintains the instruc-
tion status table, which keeps track of all the instructions 
currently executing and is used by the decode unit to de-
tect hazards. 

Scalar Datapath. The scalar datapath executes scalar 
instructions and has an organization nearly identical to the 
PEs. There are additional components to handle scalar-
specific instructions such as branches, forks, and joins. 

6.4. Broadcast/Reduction Network 

A key element of this Multithreaded ASC Processor, 
the broadcast/reduction network is fully pipelined so that 
threads never contend for its use. The broadcast network 
is not pipelined as deeply as the reduction network, since 
the broadcast network does not perform any computation. 
The reduction network supports the bitwise AND/OR and 
maximum/minimum functions, which are required by the 
ASC model, as well as the count responders and sum 
functions. 

Broadcast Unit. The broadcast unit broadcasts in-
structions and data from the control unit to the PE array. It 
is implemented as a pipelined k-ary tree with registers at 
each node. The unit has an initiation rate of one operation 
per cycle and a latency of lgk p cycles, where p is the 
number of PEs. The arity (k) of the tree in used in the 
broadcast network is variable and is chosen so as to 
maximize system performance. 

Logic Unit. The logic unit performs bitwise reduction 
of integers and flags and supports both the AND and OR 
functions. The logic unit is implemented as a pipelined 
tree of OR gates with bypassable inverters before and 
after the tree. The unit has an initiation rate of one opera-
tion per cycle and a latency of lg p cycles, where p is the 
number of PEs. 

Maximum/Minimum Unit. The maximum/minimum 
unit supports maximum and minimum reduction of signed 
and unsigned integers. The previous ASC Processors per-
formed maximum/minimum reductions using the Falkoff 
algorithm, which processes one bit of the data word each 
cycle. In order to avoid stalls in the event that multiple 
threads attempt to perform a maximum or minimum op-
eration at the same time, the multithreaded processor uses 
a pipelined tree-based structure. Each node in the tree 
computes the maximum or minimum of its inputs and 
passes that result on to the next node after one clock cy-

cle. The unit has an initiation rate of one operation per 
cycle and a latency of lg p cycles, where p is the number 
of PEs. 

Sum Unit. The sum unit produces the sum of a set of 
data words located in the PEs. While the ASC model does 
not require this function, it is used in a number of image 
and video processing algorithms. If overflow occurs while 
computing the sum, the result is saturated to the largest or 
smallest representable value. The sum unit is imple-
mented as a pipelined binary adder tree. The unit has an 
initiation rate of one operation per cycle and a latency of 
lg p cycles, where p is the number of PEs. 

Multiple Response Resolver. The multiple response 
resolver identifies the first responder in a set, and is used 
to implement sequential and single selection modes of 
responder resolution. The multiple response resolver is 
implemented as a pipelined parallel prefix network. The 
unit has an initiation rate of one operation per cycle and a 
latency of lg p cycles, where p is the number of PEs. 
Unlike the other reduction units, the output of the multiple 
response resolver is a parallel value.  

Response Counter. The response counter counts the 
number of PEs whose responder bit is set. The ASC 
model only requires the ability to do a binary count 
(some/none) of the responders, however this unit goes a 
step further and produces an exact count of the number of 
responders. Due to the pipelined implementation, the 
simpler counter would not have been only faster than the 
exact one. The response counter is implemented as a pipe-
lined binary adder tree. The unit has an initiation rate of 
one operation per cycle and a latency of lg p cycles, 
where p is the number of PEs. 

7. Synthesis Results 

The first prototype of the Multithreaded ASC Proces-
sor was implemented in VHDL and targeted for an Altera 
Cyclone II (EP2C35) FPGA. This prototype implements 
the basic architecture specified in Section 6, though a few 
features (e.g., multiplier/divider and interthread commu-
nication) are still missing. 

This first prototype Processor has 16 16-bit PEs, 1 KB 
of local memory per PE, and supports 16 hardware thread 
contexts. The entire Processor requires 9,672 logic ele-
ments (LEs) and 104 RAM blocks. It operates at a clock 
speed of approximately 75 MHz on the EP2C35 device.  

Table 1 shows the resource usage for each of three 
main subsystems: control unit, processing element, and 
broadcast/reduction network. The main factor that limits 
the number of PEs is the availability of RAM blocks; the 
critical path that limits the clock speed is the forwarding 
logic in the PE. 



8. Related Work 

An FPGA-based SIMD processor is described in [10]. 
This processor is implemented in a Xilinx Virtex 
XCV1000E FPGA, has 95 8-bit PEs with 512 bytes of 
memory per PE, and can operate at a maximum clock 
speed of 68 MHz. Because the instruction broadcast net-
work is not pipelined, the clock speed is limited by the 
time is takes to distribute instructions to the PEs.  Their 
processor is larger than our prototype (though our next 
version will be larger), but is not pipelined or multi-
threaded. 

Another FPGA-based SIMD processor is described in 
[11]. This processor is implemented in an Altera Stratix 
EP1S80 FPGA, has 88 8-bit PEs, and can operate at a 
maximum clock speed of 121 MHz. This processor does 
use a pipelined instruction broadcast network to improve 
clock speed. However, it does not pipeline instruction 
execution, which limits throughput. 

9. Future Work 

The first prototype of the Multithreaded ASC Proces-
sor described in this paper has not yet been fully opti-
mized. Future work will focus on trying to fit more PEs 
on a FPGA single chip and on improving clock speed. As 
shown in Table 1, the main factor limiting the number of 
PEs is the number of RAM blocks. Future versions of the 
processor may explore alternative PE organizations that 
require fewer RAM blocks and take advantage of unused 
logic resources. 

Future plans also include implementing software for 
the architecture in order to better show the performance 
advantages of multithreading and to explore possible ap-
plication areas for the architecture. 

10. References 

[1] ClearSpeed Technology, “Products Overview,” 
[2006 Dec 18], Available at HTTP: 
http://www.clearspeed.com/products/overview 

[2] WorldScape, “Massively Parallel Computing,” 
[2006 Dec 18], Available at HTTP: 
http://www.wscapeinc.com/technology.html 

[3] James D. Allen and David E. Schimmel, “Issues in the 
Design of High-Performance SIMD Architectures,” IEEE 
Transactions on Parallel and and Distributed Systems,
vol. 7, no. 8, Aug., pp. 818–829, 1996. 

[4] Jerry Potter, Johnnie Baker, Stephen Scott, Arvind Bansal, 
Chokchai Leangsuksun, and Chandra Asthagiri, “ASC: An 
Associative-Computing Paradigm,” Computer, vol. 27, 
no. 11, Nov., pp. 19-25, 1994. 

[5] Meiduo Wu, Robert Walker, and Jerry Potter, “Implement-
ing Associative Search and Responder Resolution,” in 
Proc. International Parallel and Distributed Processing 
Symposium: Workshop on Massively Parallel Processing,
2002, p. 246. 

[6] Hong Wang and Robert Walker, “Implementing a Scalable 
ASC Processor,” in Proc. International Parallel and Dis-
tributed Processing Symposium: Workshop on Massively 
Parallel Processing, 2003, p. 267a. 

[7] Hong Wang and Robert Walker, “A Scalable Pipelined 
Associative SIMD Array with Reconfigurable PE Intercon-
nection Network for Embedded Applications,” in Proc. In-
ternational Conference on Parallel and Distributed Com-
puting and Systems, 2005, pp. 667–673. 

[8] Anant Agarwal, “Performance Tradeoffs in Multithreaded 
Processors,” IEEE Transactions on Parallel and Distrib-
uted Systems, vol. 3, no. 5, Sept., pp. 525–539, 1992. 

[9] Henry M. Levy, Susan J. Eggers, and Dean M. Tullsen, 
“Simultaneous Multithreading: Maximizing On-Chip Paral-
lelism,” in Proc. International Symposium on Computer 
Architecture, 1995, p. 392. 

[10] Stanley Y.C. Li, Gap C.K. Cheuk, K.H. Lee, and Philip 
H.W. Leong, “FPGA-based SIMD Processor,” in Proc. 
Symposium on Field-Programmable Custom Computing 
Machines, 2003, p. 267. 

[11] Raymond Hoare, Shenchih Tung, and Katrina Werger, “An 
88-Way Multiprocessor within an FPGA with Customiza-
ble Instructions,” in Proc. International Parallel and Dis-
tributed Processing Symposium: Workshop on Massively 
Parallel Processing, 2004, p. 258b. 

Component LEs RAMs 

Control Unit 1,897 8 

PE Array (16 PEs) 5,984 96 

Network 1,791 0 

Total 9,672 104 

Available 33,216 105 

Table 1. Resource usage for initial proces-
sor prototype implemented in EP2C35 
FPGA. 


