
3 

Glass Transition Behavior of Aqueous  

Solution of Sugar-Based Surfactants 

Shigesaburo Ogawa1 and Shuichi Osanai2 
1Kyushu University 

2Kanagawa University 

Japan 

1. Introduction  

Since the end of previous century, the role of petroleum as a raw material of synthetic 

surfactant gradually deflated due to the reasons such as decreasing of the relative 

abundance of petroleum, leading to soared prices of petroleum and increasing of carbon 

dioxide emission by heavy utilization of petroleum. Instead, the industries concerning in the 

surfactants and detergents are focusing on the utilization of biobased feedstocks, 

intermediates and products. Under these circumstances, the biobased surfactants derived 

from carbohydrate or sugar are highlighted. 

Sugar-based surfactants commonly used for household products are frequently applied in 

foods, cosmetics and pharmaceutical industrial region (Rybinski, von W. & Hill . K. (1998). 

Hill, K. & Rhode O. (1999). Drummond, C. J.; Fong, C.; Krodkiewska, I.; Boyd, B. J. & Baker, 

I. J. A. (2003). Hill, K. & LeHen-Ferrenbach, C. (2007).). They are less toxic, highly 

biodegradable, and able to be readily formulated with other components. And it is well 

known that their representative nature is that they have ability to aggregate in an aqueous 

solution as well as conventional surfactants (Warr, G. G.; Drummond, C. J.; Grieser, F.; 

Ninham, B. W. & Evans, D. F. (1986). Auvray, X.; Petipas, C. & Anthore, R. (1995). 

Söderberg, I.; Drummond, C. J.; Furlong, D. N.; Godkin, S. & Matthews, B. (1995). 

Hoffmann, B. & Platz, G. (2001). Kocherbitov, V. & Söderman, O. (2003). Imura, T.; 

Hikosaka, Y.; Worakitkanchanakul, W.; Sakai, H.; Abe, M.; Konishi, M.; Minamikawa, H. & 

Kitamoto, D. (2007). Hato, M.; Minamikawa, H. & Kato T. (2007).). The morphology of the 

aggregate extends over ranges from the isotropic micelle solution to the liquid crystal such 

as hexagonal, cubic, lamella and sponge phases. 

Numerous phase diagrams of the amphiphiles, which describe the aggregative behavior of 

the compound, are exhibited in terms of concentration and temperature. We are able to see 

those of the anionic, cationic and nonionic surfactant, but the diagram under 0 ºC especially 

in the frozen state was not reported so much. Among such studies, cationic surfactant, octyl 

trimethylammonium bromide is reported to be able to lower the freezing point of ice 

effectively due to the presence of their ionic head group (Fukada, K.; Matsuzaka, Y.; Fujii, 

M.; Kato, T. & Seimiya, T. (1998).). Similarly, nonionic surfactant such as polyoxyethylene 
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glycol decyl (C10Em ; m = 4-8) and dodecyl (C12Em ; m = 5, 6 and 8) ether were reported to 

crystallize ice below −11 ºC or −4.5 ºC, respectively (Andersson, B. & Olofsson, G. (1987). 

Nibu, Y.; Suemori, T. & Inoue T. (1997). Nibu, Y. & Inoue, T. (1998a, 1998b). Zheng, L. Q.; 

Suzuki, M. & Inoue, T. (2002). Zheng, L.; Suzuki, M.; Inoue, T. & Lindman, B. (2002).). 

Contrary to this, the phase diagram of sugar-based surfactant seems to be uncompleted 

particularly under supercooled conditions under 0 ºC. 

Some nonionic surfactants were not used as a curative agent but a plasticizer because they 

showed the glass transition temperature (Tg) at low temperature region (Jensen, R. E.; 

O’Brien, E.; Wang, J.; Bryant, J.; Ward, T. C.; James, L. T. & Lewis, D. A. (1998); Amim, J.; 

Kawano, Y. & Petri, D. F. S. (2009).). Tween 40, poly(oxyethylene) sorbitan monopalmitate 

which have 20 EO units in the molecule was reported to possess Tg at −61 ºC. Triton X-100 

showed its Tg at −59 ºC. Ethylene oxide surfactant such as hexahydrofarnesyl ethylene 

oxide surfactants (EO = 1 - 8) exhibited their Tg at low temperatures below −80 ºC (Fong, 

C.; Weerawardena, A.; Sagnella, S. M.; Mulet, X.; Krodkiewska, I.; Chong, J. & 

Drummond, C. J. (2011).). In addition to this, there is a report that says sugar derivatives 

containing a hydrophobic group are applicable as a plasticizer. Gill stated that when such 

a sugar derivative was added to the corresponding free sugar, Tg of the mixture tended to 

lower than those of the free sugar system (Gill, I. & Valivety, R. (2000a, 2000b).). Here, the 

sugar given hydrophobicity worked as a plasticizer for a free sugar. On the other hand, 

when the other component which possessed much lower Tg than that of the sugar 

derivative was mixed in the system, the existing sugar derivative did not necessarily work 

as a plasticizer. 

Although it had been scarcely studied about the glass-forming property of sugar-based 

surfactants, but nowadays, much attention is being denoted to their interesting 

characteristics. It has been reported that n-alkyl glycosides such as ┙-D-glucosides, ┚-D-

maltosides, ┚-D-maltotrioside and sucrose fatty acid esters formed a glass state under 

anhydrous conditions (Hoffmann, B.; Milius, W.; Voss, G.; Wunschel, M.; van Smaalen, S.; 

Diele, S. & Platz G. (2000). Kocherbitov, V. & Söderman, O. (2004). Ericsson, C. A.; 

Ericsson, L. C.; Kocherbitov, V.; Söderman, O. & Ulvenlund, S. (2005). Ericsson, C. A.; 

Ericsson, L. C. & Ulvenlund, S. (2005). Szűts, A.; Pallagi, E.; Regdon, G. Jr; Aigner, Z.; 

Szabó-Révész, P. (2007).). Their Tg increased from −12.4 ºC of n-heptyl ┙-D-

glucopyranoside to 100 ºC of n-dodecyl ┚-D-maltotrioside in proportional to the number 

of saccharide unit. Thus, Tg of the sugar based surfactants are much higher than that of 

the other nonionic surfactants as mentioned above. That is, sugar-based surfactants 

possess a remarkable glass forming ability comparing to another type of surfactant. 

Because Tg of anhydrous sugar-based surfactant existed almost above the freezing point 

of water, 0 ºC, therefore, we expected that the behavior and ability of making glass state of 

the aqueous sugar-based surfactant solution can be readily observed without ice freezing 

if the cooling was conducted rapidly. 

Recently, authors studied the vitrification or glassification of the aqueous solution of sugar-

based surfactant, which must be associated with the specific function under freezing state 

(Ogawa, S. & Osanai, S. (2007). Ogawa, S.; Asakura, K. & Osanai, S. (2010).). In this chapter, 

we would like to elucidate some aspects of the aqueous solution of sugar-based surfactant 

under supercooling, where the simple primary phase transition such as gelation and 
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crystallization is not a key topic, but the vitrification plays an important role. We would like 

to indicate the some characteristics of the sugar-based surfactant in an aqueous solution 

under low temperature. The basic behavior of these surfactants solution will be focused on 

the following items. 

 The glass transition of the aqueous solution of sugar-based surfactant under low 
temperature with forming thermotropic and lyotropic liquid crystalline phases. 

 Correlation between the glass transition and the protective effect against freezing. 

The information obtained from this chapter would be valuable to the researchers who 
engage the low temperature technologies. 

2. Glass transition behavior of octyl β-D-glucoside/water binary mixtures  

Octyl -D-glucoside (G8Glu: Scheme 1) is one of the representative sugar-based surfactants. 

Although there are many reports on phase behavior of C8Glu/water binary system (Boyd, 

B. J.; Drummond, C. J.; Krodkiewska, I. & Grieser, F. (2000). Nilsson, F.; Söderman, O. & 

Johansson, I. (1996). Häntzschel,D.; Schulte, J.; Enders, S. & Quitzsch, K. (1999). Dörfler, H.-

D. & Göpfert, A. (1999). Bonicelli, M. G.; Ceccaroni, G. F. & La Mesa, C. (1998). Sakya, P., 

Seddon, J. M. & Templer, R. H. (1994). Loewenstein, A. & Igner, D. (1991). Kocherbitov, V.; 

Söderman O. & Wadsö, L. (2002).), no report was presented on its vitrification behavior 

under the low temperature. In this section, we introduce the glass transition behavior of 

octyl -D-glucoside/water binary mixture within a wide concentration range under the 

conditions without ice formation (Ogawa, S.; Asakura, K. & Osanai, S. (2010).). 

 

Scheme 1. Chemical structure of octyl  -D-glucoside (C8Glu). 

C8Glu was synthesized as described in the literature, with a little modification (Bryan, M. 

C.; Plettenburg, O.; Sears, P.; Rabuka, D.; Wacowich-Sgarbi, S. & Wong, C.-H. (2002).).  

2.1 Thermal behavior of C8Glu/water binary system 

Fig. 1 shows a typical DSC chart which illustrates the glass transition behavior of 

G8Glu/water mixture. Each sample with various concentrations was homogenized by 

heating until 120 ºC prior to the measurement. The sample was rapidly cooled to −120 ºC at 

−10 ºC/min and then heated at the rate of 10 ºC/min. As Fig. 1 shows, when the 

concentration of C8Glu was greater than ca. 80 wt%, no ice was produced during cooling, 

and the glass transition was observed during the heating process. Occurrence of the glass 

transition was confirmed by the discontinuity of the heat capacity as indicated by solid line 

arrows in Fig. 1. In the concentration range from ca. 80 to 82 wt% for C8Glu, the ice was 

formed by the devitrification and thawed in the heating process (Fig. 1(a)). Devitrification 

was defined as the solidification phenomena after the temperature exceeded Tg in the 

heating process. 
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Fig. 1. Typical DSC thermograms of heating process at 10 ºC/min of C8Glu/water mixture.  

The concentration of the sample is expressed in wt %. White arrows indicate the phase 

transition between the liquid crystalline phases or from the liquid crystalline phases to an 

isotropic solution or melt. Solid line arrows indicate the glass transition, as mentioned 

above. I: isotropic solution, H: hexagonal phase, Q: cubic phase, L: lamellar phase, C: 

crystalline phase. Apparatus; DSC 60 (SHIMAZU Co. Ltd.) equipped with a cooling 

accessory was used throughout the measurement. Sample preparation; Samples of an aqueous 

solution were prepared from C8Glu and the prescribed amount of water. The sample was 

prepared as following two methods. Method A; A dilute aqueous C8Glu solution (ca. 35 

wt%) in an aluminium pan was directly concentrated by drying over phosphorous 

pentoxide at an ambient temperature. Method B; A prescribed amount of water was 

absorbed under a humid atmosphere or added directly to C8Glu that was free from water. 

The anhydrous C8Glu was prepared by placing the sample on a hot stage at 125 ºC for 50 

min under a N2 atmosphere to remove any water. 

G8Glu/water binary system gave various kinds of liquid crystalline (LC) phase, such as 
hexagonal (H), cubic (Q), and lamella (L) phases and crystalline phase (C) according to its 
concentration and temperature. Fig. 1(b) indicates that L phase existed after the glass 
transition took place at around −40 ºC during a heating process and it changed into isotropic 
liquid at 120 ºC. In other words, the glass transition did not occur in crystalline and isotropic 
liquid phases but in a LC phase during the cooling process. A detailed comparison of (d1) 
with (d2) in Fig.1 clearly demonstrated that the phase transition from glass to lamella 
occurred in the LC phase, because the peak due to the transformation from crystalline to 
lamella LC at 70 ºC was not observed in (d1) chart. 

Observation by the polarizing optical microscopy (POM) gave a consistent result with these 
findings mentioned above. The sample was rapidly cooled to −100 ºC at −10 ºC/min and 
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then heated at the rate of 10 ºC/min. Fig. 2 shows the POM images of the C8Glu sample 
solution. Its conditions are shown in a legend of the figure. As can be seen from Fig. 2a and 
2b, the L texture exhibited oily streaks at both temperatures above and below Tg. It indicated 
that L phase texture was maintained above or below Tg. It presented unambiguous evidence 
that this sample changed from liquid crystal to a glassy phase with holding its lamella 
structure, that is, the “glassy liquid crystals“. The basic concept of the glassy liquid crystal 
was introduced in references. (Yoshioka, H.; Sorai, M. & Suga, H. (1983). Kocherbitov, V. & 
Söderman, O. (2004).  

50μm

(a) 25 ºC

  

50μm

(b) –75 ºC

 

Fig. 2. POM photographs of 92.5 wt% of C8Glu/water mixture above and below Tg of −47 ºC.  

Apparatus; Polarizing microscopy (BH-51, Olympus) equipped with a heating/cooling stage 

was used for observation. Sample preparation; Sample solutions were prepared in a similar 

manner to the DSC measurement. Sample was observed through a thin specimen 

sandwiched between a slide plate and cover-glass plate. 

2.2 Concentration-temperature phase diagram with Tg curve 

Fig. 3 is a phase diagram of the C8Glu/water binary system at concentrations of more than 

50 wt%. The diagram was constructed on the basis of experimental results obtained from 

DSC thermograms and POM photographs. Interested readers are able to refer detail 

methods for the determination of LC phases from numerous references as mentioned at the 

beginning of this section. 

In this diagram, Tg curve, the ice nucleation temperature curve (INC), and devitrification 

temperature curve (DC) are depicted. Although INC and DC curves are variable parameter 

according to the rate of nucleation, they are useful to understand the dynamic behavior of 

the system. As shown in Fig. 3, as the concentration of C8Glu increases, the lyotropic 

aggregates change from an isotropic solution (Micelle solution: M) to the liquid crystal 

phase, such as, H, Q, and L phases at 0 ºC. When the concentration of C8Glu was lower than 

80%, the INC was clearly recognized. It meant that the crystallization preferentially occurred 

below this temperature before the vitrification took place. 
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A lot of reference showed phase diagrams of C8Glu/water system that expressed the 

existence of crystal phase or gel phase in the concentrated region over 90 wt%. But in our 

study, the crystal phase did not appear in the same concentration at cooling rate −10 

ºC/min, between −120 ºC and 120 ºC. Instead of that, the glass transition was observed over 

ca. 80 wt% concentration. That was referred to Tg curve in Fig. 3. The glass transition 

temperature, Tg, shifted to higher, as the concentration of C8Glu moved to higher. It means 

that C8Glu did not work as a plasticizer but as a curative agent in an aqueous solution. 

Comparing the phase diagram above and below Tg curve in Fig. 3, we are able to 

understand that the glassy phase was formed by cooling both of Q and L phases. It could 

therefore be presumed that, the formation of Q and L types of glassy LC phase occurred 

below Tg curve. Even if temperature crossed the phase boundary between the Q and L 

phases, there was no discontinuity in Tg line. It suggested that the difference among the 

liquid crystalline structures was not a decisive factor for the determination of Tg in the 

aqueous solution. 
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Fig. 3. Phase diagram of C8Glu/water mixture from 50 to 100 wt % C8Glu concentration 
including Tg curve, ice nucleation curve (INC) and devitrification curve (DC). 

The dotted lines are predicted one. The phase transition temperatures were determined by 

the intersection of the baseline and tangent to the end of the endothermic peak of the DSC 

chart on heating. Tg was determined as the temperatures corresponding to half of the 

magnitude of the heat capacity change (ΔCp) at Tg (Blond, G.; Simatos, D.; Catté, M.; Dussap, 
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C. G.; Gros, J. B. (1997).). The ice crystallization temperatures were defined as the average of 

five measurements. 

2.3 Comparison of glass transition behavior with predicted curve 

Couchman and Karasz presented a model that predicts Tg of a mixture employing classical 
thermodynamics (Couchman, P. R. & Karasz, F. E. (1978). Couchman, P. R. (1978).). This 
model treated the glass transition as if it was equivalent to an Ehrenfest second order 
transition. The “original” Couchman-Karasz (C-K) formula is given below: 

 
1 1 2 2

1 2

         
 

g g
g

x lnT k x lnT
lnT

x k x

   (1) 

where the subscripts 1 and 2 denote components 1 (C8Glu) and 2 (pure water), respectively. 
The symbols x1 and x2 represent the mole fractions of the corresponding C8Glu and pure 
water, respectively. Tg is the glass transition temperature of the mixture under 
consideration; k is a constant defined as Cp2/Cp1. Cp1 and Cp2 are the Cp at Tg of 
component 1, pure solute and component 2, pure water, respectively. Eq. 1 is often 
“modified” to the following general form: 

 1 1 2 2

1 2

   
 

g g
g

x T k x T
T

x k x

   (2) 

The suitability of these two equations (“original” and “modified” C-K equations) was 
discussed by comparison with the actual experimental measurements for Tg of the 
G8Glu/water mixture. 

Fig. 4 shows the Tg-prediction curves obtained from the “original” and “modified“ C-K 
equations, using ΔCp1 = 142.2 J/mol K at Tg1 = 284.4 K (11.2 ºC) for the amorphous C8Glu as 
obtained from our experimental results. At the same time, the experimental values were 
indicated in the corresponding figures. Values of ΔCp2 = 35.0 J/mol K and Tg2 = 135 K 
(−138.2 ºC) for the pure water were taken from the literatures (Sugisaki, M.; Suga, H. & Seki, 
S. (1968). Rasmussen, D. H. & MacKenzie, A. P. (1971).). The experiment indicated that the 
analysis using the “original” (Eq. 1) gave a relatively good agreement with the experimental 
result over the entire concentration studied. By contrast, the predicted Tg obtained from the 
“modified” (Eq. 2) (dotted line) was not in accord with the experimental finding. By 
considering these results, we can state the “original” C-K equation would give a much better 
prediction than the “modified” one for Tg determination in mixtures. Couchman stated that 
if the assumption that Tg1/Tg2 ≈ 1 was applicable, the results obtained using the “modified” 
C–K would be valid (Couchman, P. R. & Karasz, F. E. (1978).). In our system, Tg1 of 
anhydrous C8Glu is 284.4 K, and giving a Tg1/Tg2 for C8Glu of 2.11. This value is far from 
the unity that is appropriate for the “modified” C–K equation. We guessed that the Tg ratio 
between two components which form the mixture must be approximately one if we want to 
employ the ‘modified’ C–K equation to predict Tg. 

         /       /     p sampleC J gK F W scanrate         (3) 

       1 1 2 2/       /    (             )p pC J molK C J g K MW x MW x                (4) 
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where Wsample is the sample weight in a sealed pan and ΔF is the heat flow change (Fig. 4b). 
MW1 and MW2 are the molar weight of C8Glu [MW1: 292.19], and pure water [MW2: 18.02]. 
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Fig. 4. (a) Comparison of experimental Tg of C8Glu/water mixture obtained by two kinds of 

predicted curves by C–K equations and (b) estimation of Tg and ΔF. 

Each plot shows the experimental data. ΔF was determined as sketched in Fig.4(b). Using 

this parameter, ΔCp was obtained as follows. 

2.4 Influence of concentration on Cp, H and phase transition temperature Tg 

Fig. 5 shows the ΔCp curve as a function of the mole fraction of C8Glu. As mole fraction is 

decreasing from 1.0, there were two bending points at 0.65 and 0.40. The curve is divided 

into three regions (A, B, and C) according to their characteristics. 

In the mixture of C8Glu/water, ΔCp for pure water (ΔCp2) obtained by extrapolation of the 

plots in region C to zero C8Glu content, was 35.0 J/mol K. This value is compatible with the 

experimental value reported by Sugisaki et al. (Sugisaki, M.; Suga, H. & Seki, S. (1968).). On 

the other hand, ΔCp for pure C8Glu (ΔCp1) obtained by extrapolation of the plots in region C 

to 1.0 C8Glu content, was about 175 J/mol K. There was an apparent difference between the 

extrapolated and actual experimental value, 142.2 J/mol K. By contrast, the extrapolation of 

plots in region A reached 0 J/mol K. These results showed that ΔCp of the binary mixture 

was not predictable using a simple linear function composed of ΔCp1 and ΔCp2 . 

In order to obtain information for clarification of this complex behavior of ΔCp, the 

transition between lamella and isotropic liquid phases were studied further in detail. 

Fig. 6 indicates the relationships of the phase transition between lamella (L) and isotropic 

solution (I) with C8Glu mole fraction. Enthalpy (ΔH) and temperature of the phase transition 

are depicted on the two vertical axes. Generally speaking, enthalpy of C8Glu solution decreased 

as the mole fraction of C8Glu reduced. A clear bending point was recognized at a particular 
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concentration with mole fraction of 0.65, which was in fair agreement with that of the first 

bending point shown in Fig. 5. The enthalpy of the system reached 0 J/mol by extrapolation of 

plots in region A in analogy with the result shown in Fig. 5. These results meant that the 

amount of water in region A would have no influence not only on ΔCp but also on ΔH.  

Here, we adopted a concept of the “non-continuous water” to propose a hypothesis that 
interprets above behavior of ΔCp in C8Glu/water mixture. 
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Fig. 5. ΔCp behavior of C8Glu/water mixture with variation in concentrations. 

The linear solid line connecting two ΔCp values, 35.0 and 142.2 shows ΔCp line when the 

mixing was carried out under holding ideal state. 

We interpreted the behavior of C8Glu in different concentration of aqueous solution as 
follows: Fig. 7 shows the relationships among ΔCp at Tg, ΔH of the phase transition and the 
phase transition temperature in C8Glu/water mixture systems on the basis of the 
experimental results. In region C, the molar ratio of water: C8Glu was 1.5 : 1 – 4 : 1, that is, 
molecule’s number of water is larger than that of the C8Glu. The water in this region will 
constitute the aqueous phase keeping continuous state among a bimolecular membrane 
lamellar structure. It is a kind of bulk water. Reduction of water means simple decrease of 
the bulk water stated above. The fact that extrapolation of plots of ΔCp in region C reached 
35 J/mol K and coincided with that of pure water proved its validity. 

On the other hand, in region A, the molar ratio of water : C8Glu is 1 : 2. In other words, the 
number of water molecule is less compared with that of C8Glu. The scarcity of water will be 
further signalized by consideration of their relative magnitude of the molecular bulkiness. 
This circumstance will not enable the water molecule to exist in continuous state. The water 
molecules in region A would be present in a non-continuous state with creating a new 
hydrogen bond among the glucoside molecules. 
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Fig. 6. Relationships of phase transition behavior between lamellar phase and isotropic 
solution with C8Glu fraction. 
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Fig. 7. Schematic figure of C8Glu/water mixture systems with variation of C8Glu concentration. 
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Region A: The water molecules would be present in a non-continuous state. 

Region B: The water characteristic is determined by the mixed system composed of the 

continuous and non-continuous water existed in the region C and A. 

Region C: The water behaves like bulk water and constitutes the aqueous phase keeping 

continuous state among a bimolecular membrane lamellar structure. Reduction of water 

means simple decrease of the bulk water. 

In region B, ΔCp kept in a constant state irrespective of its concentration of the system. This 
result demonstrated the additivity of two kinds of states at the corresponding concentration 
of the bending points in Fig. 5. It means the behavior of water in this region would be 
determined by the mixed system composed of the continuous and non-continuous water 
existed in the region C and A, respectively. 

3. Glass transition behavior of octyl β-D-glucoside/NaCl/water ternary 
mixtures 

The aqua-system of the life organism contains a various kinds of ions and exhibits 
complicated buffer actions to maintain its physiological functions in a normal state. As it is 
cooled down, eutectic phase composed of electrolyte and ice was generated in the 
concentrated unfrozen phase (Mullin, J. W. (2001).). Occurrence of the eutectic would be 
responsible of direct causes for damages against cells and enzymes and resulted unusual pH 
change would become a trigger for abnormal interactions (Heber, U.; Tyankova, L. & 
Santariu, K. A. (1971). Mollenhauer, A.; Schmitt, J. M.; Coughlan, S. & Heber U. (1983). Han, 
B. & Bischof, J. C. (2004). Wang, C.-L., Teo, K. Y. & Han. B. (2008). Goel, R.; Anderson, K.; 
Slaton, J.; Schmidlin, F.; Vercellotti, G.; Belcher, J. & Bischof, J. C. (2009).). In actual 
circumstances where the life organisms are treated under extremely and mildly cool 
atmosphere, various kinds of cryoprotectants and lyoprotectants such as salts, amino acids, 
carbohydrates, artificial and natural polymers are used to stabilize these bio-tissues from the 
cooling damages (Heber, U.; Tyankova, L. & Santariu, K. A. (1971). Tyankova, L. (1972). 
Izutsu, K.; Yoshioka, S. & Kojima, S. (1995). Koshimoto, C. & Mazur, P. (2002). Chen, N. J.; 
Morikawa, J. & Hashimoto, T. (2005). Chen, Y.-H. & Cui, Z. (2006). Kawai, K. & Suzuki, T. 
(2007). Izutsu, K.; Kadoya, S.; Yomota, C.; Kawanishi, T.; Yonemochi, E. & Terada, K. 
(2009).).  

The purpose of this section is to clarify the inhibition effect of sugar-based amphiphiles on 
eutectic formation in the freeze-thawing process of aqueous NaCl solution (Ogawa, S. & 
Osanai, S. (2007).). 

3.1 Thermal behavior of sugar-based amphiphiles/NaCl/water ternary system  

Fig. 8 shows DSC charts of the ternary system consist of C8Glu/NaCl/water. A solution 
containing C8Glu at the same concentration (C8Glu to water = 1:9 [wt%]) was mixed with  
various concentration of NaCl as shown in Fig. 8. Each sample was cooled to −100 ºC at −10 
ºC /min and then heated at the rate of 3 ºC/min. The peak appeared at −21 ºC referred to 
the fusion peak of eutectic of NaCl・2H2O/ ice and another peak at about 0 ºC was that of 

ice (Hvidt, A. & Borch, K. (1991).). These samples were classified into three groups 
according to the concentration of NaCl, Group I, II and III. 
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Fig. 8. DSC thermograms of C8Glu/NaCl/water systems in the thawing process at the heating 
rate of 3 ºC/min. 

The weight ratio between C8Glu and water was constant (C8Glu : water = 10 : 90 wt%). 
NaCl concentrations were shown in the figure. Apparatus; DSC 60 (SHIMAZU) was used 
throughout. Sample preparation; Each sample was prepared by dissolving NaCl and the 
C8Glu in a prescribed amount of water and leaving to stand for at least 2 h. 

Group I: Chart (a) and (b) in Fig. 8. Their NaCl concentration was low. Only one peak due to 
fusion of ice was noticeable, that is, formation of the eutectic was completely restrained. 

Group II: Chart (c), (d) and (e). Concentration of NaCl was moderate. The exothermic peak 
due to devitrification was also observed in addition to the peaks due to fusion of ice and 
eutectic were observed. 

Group III: Chart (f). Concentration of NaCl was high. Only two peaks due to fusion of the 
eutectic and ice were observed and the devitrification was not recognized. The exothermic 
peak due to devitrification was also observed in addition to the peaks due to fusion of ice 
and eutectic. 

3.2 Analysis of enthalpy for the fusion of eutectic and ice 

Fig. 9a shows the relationship between the fusion enthalpy of the eutectic and the ice under 
the presence and absence of C8Glu. It was examined based on the each DSC chart in Fig. 8. 
In Fig. 9a, two dotted lines represent the corresponding results obtained under without 
C8Glu, that is, the result of NaCl solution. Quantitative analysis of the two peaks was 
conducted as shown in Fig. 9b. 

As can be seen from Fig. 9a, it was confirmed that when the amphiphilic sugar derivative, 
C8Glu, was not present, the fusion enthalpy of ice decreased and that of the eutectic 
increased linearly with the concentration of NaCl. This result was interpreted that formation 
of the eutectic was regulated by NaCl concentration. 
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On the other hand, when C8Glu was present in the system at the concentration of 10 wt% of 

water mass, the fusion enthalpy of eutectic was zero in a region of Group (I), and that of the 

ice slowly decreased compared with that in other Groups. It meant that a part of water was 

retained as non-freezing water, which could not be attributed to the formation of ice even 

below −100 ºC. In the Group (II) and (III) in Fig. 9a, dotted and solid two lines were depicted 

in parallel. It signified that formation of a definite amount of eutectic was depressed by 

C8Glu in the system regardless of NaCl concentration. 

In this section, C8Glu clearly depicted the conception on the additive effect of amphiphilic 

sugar derivatives for eutectic formation. Some other sugar derivatives such as C12Raffinose, 

C12Sucrose, C12Maltose, C8Mannose, C8Gulose appeared in the following section also 

exhibited a similar behavior. From their nonspecific behavior, it was concluded that the 

characteristics that amphiphilic sugar derivatives possess the ability to depress the 

formation of eutectic was general one. 
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Fig. 9. Analysis of melting enthalpies in NaCl/water system with and without C8Glu. 
(a) Fusion enthalpies of ice (above) and eutectic (below). (b) Calculated enthalpy areas of ice 
fusion and eutectic fusion. 

3.3 Simultaneous XRD-DSC analysis 

The depression effect of another amphiphilic sugar derivative for eutectic formation was 
studied to clarify its mechanism in detail. Here, C12Raf was used as a specimen instead of 
C8Glu. Scheme 2 shows its chemical structure and synthetic route. 

Fig. 10 indicates DSC thermograms of C12Raf/NaCl/water ternary systems in the thawing 
process. The sample of C12Raf solution was prepared in a same concentration; C12Raf to 
water = 1:3 [weight ratio]. The molality of two NaCl solutions were 1.0 mol/kg and 2.5 
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mol/kg in Fig. 10(a) and (b). The appearance of the chart in Fig. 10(a) was similar to that of 
C8Glu system of Group (I) stated in Fig. 8 and Fig. 10(b) was to that of Group (II), respectively, 
although their sample situations were different in terms of their constituent and concentration. 
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Scheme 2. Chemical structure and synthesis of 6”-O-dodecylraffinose (5: C12Raf). 

C12Raf was synthesized from raffinose in four steps of tritylation, benzylation, detritylation, 
dodecylation and subsequent debenzylation, as shown in Scheme 2. 

In two DSC charts in Fig. 10, an irregular deviation pointed out by an arrow was recognized 
on the base line. It appeared at −40 ºC in (a) and −50 ºC in (b). They were corresponding to a 
glass transition at this temperature, respectively. Fig. 10(a) suggested that the unfrozen  
phase was converted into the glass state after ice was built up during the cooling process. 
The exothermic peak appeared at around −40 ºC during the heating process, in Fig. 10(b). It 
indicated that the devitrification conclusively occurred immediately after the glass 
transition. The unfrozen phase in a ternary sample became a glass state by freeze-
condensation during a cooling process at −70 ºC. Consequently, the formation of eutectic has 
been depressed under the kinetics. 
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Fig. 10. DSC thermograms of C12Raf/NaCl/water systems in the thawing process. 

The weight ratio between C12Raf and water was constant (C12Raf : water = 25 : 75 wt%). NaCl 
concentration was as follows; (a) 1.0 mol / kg of pure water and (b) 2.5 mol / kg of pure water. 
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Fig. 11. Simultaneous XRD-DSC measurement of the thawing process in C12Raf/NaCl/water 
systems. 

C12Raf and water was constant (C12Raf : water = 25 : 75 wt%). NaCl concentration was as 
follows; (a) 1.0 mol / kg of pure water and (b) 2.5 mol / kg of pure water. Apparatus; XRD-
DSC II (RIGAKU) was used for measurement. Details of this apparatus are found elsewhere 
(Arii, T.; Kishi, A. & Kobayashi, Y. (1999). Kishi, A.; Otsuka, M. & Matsuda, Y. (2002).)  
Measurement conditions were as follows; 1. Cooled to −70 ºC at −6 ºC/min. 2. Heated to 15 ºC 
at 2 ºC/min. e, eutectic diffraction peak; i, ice diffraction peak. 
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The two samples in Fig. 10, (a) and (b) were examined by simultaneous XRD-DSC 
measurement. The results were summarized in Fig. 11. DSC chart of Fig. 11(a) showed only 
one peak due to the fusion of ice. The XRD-DSC chart demonstrated that when the system 
was cooled until −70 ºC the ice was definitely formed. Five peaks at 2θ = 22.5, 24.1, 25.8, 33.4, 
39.8 [deg] were observed during the experiment. All diffraction peaks could be indexed to 
the standard hexagonal ice (Nishimoto, Y.; Kaneki, Y. & Kishi, A. (2004).). These peaks 
disappeared in the region above 0 ºC. No peaks other than the ice were observed throughout 
the each and every temperature examined. It meant that formation of eutectic was 
completely depressed by C12Raf at this NaCl concentration. 

Fig. 11(b) showed the XRD-DSC profiles for the sample prepared under a concentrated NaCl 
solution, its molality was 2.5 mol/kg. Highly meaningful results could be obtained by this 
method. In a cooler region of temperature between −67 ºC ~ −30 ºC, five peaks due to a 
hexagonal system of ice appeared at the same 2θ angles as in Fig.11(a) in a similar manner. 
At higher temperature after an exothermic peak appeared at about −40.5 ºC, four peaks 
newly emerged at 2θ = 30.7, 34.5, 35.8, 36.8 [deg]. This peak pattern was in fair consistent 
with the authentic diffraction data of the eutectic, NaCl・2H2O / ice (Kajiwara, K.; Motegi, 

A. & Murase, N. (2001).). That is, it was found that the devitrification induced the formation 
of eutectic after the occurrence of the glass transition at −50 ºC. These four peaks were 
extinguished accompanied by fusion of the eutectic above −21 ºC. Further increment of 
temperature also resulted in a complete disappearance of the diffractive peaks of the ice. 

These experiments were able to be summarized as follows; in a circumstance of dilute NaCl 

solution such as Group (I), the formation of eutectic was depressed by amphiphilic sugar 

derivatives such as C8Glu and C12Raf during both cooling and heating processes. On the 

other hand, in a medium concentrated NaCl solution designated Group (II), the formation of 

eutectic was restricted during the cooling process, but during the heating process, the 

devitrification induced the formation of eutectic after the occurrence of the glass transition. 

As could be seen from the Fig. 10, both in Group (I) and (II), the glass transition was 

confirmed during the heating process. 

The glass formation plays a main role for this phenomenon, such as depression of eutectic 

formation. Non-amphiphilic free sugars and certain polymers have properties to change an 

aqueous solution into the glass state and inhibit the eutectic formation (Nicolajsen, H. & 

Hvidt, A. (1994). Izutsu, K.; Yoshioka, S. & Kojima, S. (1995). Kajiwara, K.; Motegi, A. & 

Murase, N. (2001).). The amphiphilic sugars would exhibit more effective capabilities except 

for depressing the formation of eutectic because of the versatile characteristics based on 

their interface active properties. 

3.4 Effects of hydrophobic length and sugar structure on inhibition of eutectic 
formation 

Two different kinds of sugars with a hydrophobic group or without it were examined to make 

clear the influence of the hydrophobic groups on the inhibition effect for eutectic formation. In 

other word, the effect of formation of aggregate of the specimen was examined. The results 

were summarized in Fig. 12. 6”-O-Dodecyraffinose (C12Raf) and 6’-O-dodecanoylsucrose 

(C12Suc) were used as specimens. The former linked the hydrophobic dodecyl group through 

ether linkage and the latter combined it through dodecanoyl ester linkage. 
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We separately confirmed their aggregation behavior using an automatic digital Kyowa 

Surface Tensiometer, CBVP-3 (Kyowa Kaimen Kagaku Ltd) by Wilhelmy-plate method. It 

was found that these amphiphilic sugar derivatives, C12Raf and C12Suc, had a critical 

micelle concentration (cmc) in pure water at 0.49 mM and 0.16 mM, respectively under 

room temperature. It meant these sugars formed the aggregate in the measuring 

conditions. 
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Fig. 12. NaCl concentration range of Group (I) with various concentrations of sugar-based 
amphiphiles. (a) C12Raf and Raf. (b) C12Suc and Suc. 

Fig. 12 demonstrated relationships between the inhibited maximum NaCl concentration 

and the amphiphilic sugar concentration of the system in terms of two kinds of sugar. The 

ordinate suggested the maximum concentration of NaCl where the formation of eutectic 

was completely inhibited corresponding to the concentration of the sugar on the abscissa. 

This NaCl concentration refers to the boundary one between Group (I) and (II) shown in 

Fig. 9(a). 

As can be seen from Fig. 12, depression ability for the formation of eutectic was clearly 

proportional to concentration of the sugar. The amphiphilic trisaccharide (C12Raf) and 

disaccharide (C12Suc) showed smaller depression ability than the corresponding non-

amphiphilic free sugar. Its ratio was about 0.63 for all sugars examined. 

The slope of the graph in Fig. 12 suggests the magnitude of the depression ability 

expressed in units per sugar molality. Fig. 13 showed the comparison of various kinds of 

sugars on the depression effect for eutectic formation. Amphiphilic glucose (C8Glu), 

mannose (C8Man) and gulose (C8Gul) are monosaccharide, sucrose (C12Suc) and maltose 

(C12Mal) are disaccharides, and raffinose (C12Raf) is trisaccharide. As can be seen from 

Fig. 13, the depression ability for the formation of eutectic of the sugar derivatives was 

proportional to the number of saccharide unit that constituted the hydrophilic part of the 

amphiphiles. The formation of eutectic made from about 0.8 ~ 0.9 molality of NaCl 

solution was inhibited by a unit molality of the sugar derivative per single unit of the 
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saccharide in a proportional manner. In contrast to this, the epimeric isomerism and the 

structural isomerism between aldose and ketose gave little influence on the capability of 

inhibition of eutectic formation. 

In Group (I) region, the depression effect for the eutectic formation resulted from the 

vitrification of an unfrozen aqueous phase during the cooling process. Tg of anhydrous 

amphiphilic sugar derivatives of which the number of sugar unit are different were as 

follows: C8Glu =11.2 ºC (Ogawa, S.; Asakura, K & Osanai, S. (2010).); C8Mal = 50.4 ºC 

(Kocherbitov, V. & Söderman, O. (2004).; C12Maltotrioside = 100 ºC (Ericsson, C. A.; 

Ericsson, L. C. & Ulvenlund, S. (2005).)). As can be seen from this, the Tg of the sugar 

derivatives increased as the number of sugar unit increased. It was confirmed that the 

facility making vitrification was closely associated with the number of the sugar per a unit 

volume of the system or density of it. 
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Fig. 13. Comparison of inhibition effect on eutectic formation with sugar structure. 

Material; C12Suc, C8Man, C8Gul, and C12Mal were prepared according to published 

procedures (Ferrer, M.; Cruces, M. A.; Bernabé, M., Ballesteros, A. & Plou, F. J. (1999). Bryan, 

M. C.; Plettenburg, O.; Sears, P.; Rabuka, D.; Wacowich-Sgarbi, S. & Wong, C.-H. (2002). ). 
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4. Conclusion 

Although sugar-based surfactants possess extraordinarily high Tg in an anhydrous state, 

little is known about the actual application for its excellent glass forming ability. So far  

as we, authors know, this is the first attempt to apply it in aqueous system and 

description on it.  

In this chapter, we presented the fundamental behavior of glass formation of sugar-based 

surfactant/water binary system and the inhibition effects of the sugar-based amphiphiles on 

the formation of eutectic that caused a lot of damage to a variety of bio-organisms from cells 

to proteins. 

In Section 2, the outline of the glass transition behavior of C8Glu, which is one of the 

representative sugar-based surfactant, and water mixture system was described and 

summarized. It was clarified the formation of “lyotropic liquid crystal glass” generated from 

the liquid crystal such as cubic (Q) and lamella (L) in this system. The experimental data for 

Tg of the lyotropic liquid crystal glass were in fair agreement with the theoretical values 

proposed as “original” equation by Couchman-Karasz. The peculiar behavior of the system 

observed through the change of specific heat (ΔCp) during the glass transition and enthalpy 

(ΔH) of the phase transition from lamella to isotropic solution or fused liquid was discussed 

from the standpoint of the permeability of water molecule in the bimolecular membrane 

structure. 

In Section 3, we mentioned the key aspects of the relationships between the inhibiting effect 

of the sugar-based surfactants and the generating of eutectic in the system. It was also 

confirmed that increasing saccharide unit of sugar-based surfactant induced an excellent 

inhibiting effect to the formation of eutectic. Although we focused the increment of the 

inhibiting power for the formation of eutectic on the introduction of hydrophobic group into 

the free sugar, the resulted sugar-based surfactant showed only 0.63 times ability for it 

comparing with the original free sugar. 

Because the sugar-based surfactants possess not only the glass forming ability but also the 

interface active property in the same time, we could expect the possibility that these 

surfactants show some useful characteristic which could not be obtained by the ordinary 

free sugars. For example, various kinds of surfactant exhibit abilities that they can depress 

the deactivation of the protein during the freezing and thawing (Chang, B. S.; Kendrick, B. 

S. & Carpenter, J. F. (1996). Hillgren, A.; Lindgren, J. & Aldén, M. (2002).). But some 

surface active agents do not always show their contribution to maintain activities of the 

water soluble proteins such as LDH (Lactate Dehydrogenase) and ┚-Galactosidase in the 

freeze-drying treatment. In contrast to this, when a little amount of a certain sugar 

derivative was added to a system, it exhibited excellent effects for appreciable retention of 

the protein activities not only during freeze-thawing but also during freeze-drying 

processes (Izutsu, K.; Yoshioka, S. & Terao, T. (1993, 1994). Izutsu, K.; Yoshioka, S. & 

Kojima, S. (1995).). 

It has been well known that carbohydrates or sugars are materials that can easily form glass 

state. (Dave, H.; Gao, F.; Lee. J.-H.; Liberatore, M.; Ho, C.-C. & Co, C. C. (2007).). The sugar-

based surfactants could be considered as excellent multiple function surfactants, because 
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they have two representative properties of the glass forming and the interface activity. Their 

application in an aqua-system expands its availability in the fields of foods, medicine and 

functional materials. Although they have the potential to play an advisable role, their 

application in a multicomponent system remains underdevelopment state. Under the 

current situation, the sugar-based surfactant has been applied in the bio-science fields, such 

as a preservation agent of proteins by freeze-drying method, a solubilizing agent for the 

preparation of reconstituted protein etc.  

We expect that the research mentioned here would be further studied and contribute to their 

practical application of the sugar-based surfactants including the analytical development on 

the physico-chemical properties.  
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