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Abstract: Using unmanned aircraft systems (UAS) as remote sensing platforms offers the 

unique ability for repeated deployment for acquisition of high temporal resolution data at 

very high spatial resolution. Multispectral remote sensing applications from UAS are 

reported in the literature less commonly than applications using visible bands, although 

light-weight multispectral sensors for UAS are being used increasingly. . In this paper, we 

describe challenges and solutions associated with efficient processing of multispectral 

imagery to obtain orthorectified, radiometrically calibrated image mosaics for the purpose of 

rangeland vegetation classification. We developed automated batch processing methods for 

file conversion, band-to-band registration, radiometric correction, and orthorectification. An 

object-based image analysis approach was used to derive a species-level vegetation 

classification for the image mosaic with an overall accuracy of 87%. We obtained 

good correlations between: (1) ground and airborne spectral reflectance (R2 = 0.92); and 

(2) spectral reflectance derived from airborne and WorldView-2 satellite data for selected 

vegetation and soil targets. UAS-acquired multispectral imagery provides quality high 

resolution information for rangeland applications with the potential for upscaling the data 

to larger areas using high resolution satellite imagery. 
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1. Introduction  

Remote sensing applications for natural resources using unmanned aircraft systems (UAS) as the 

observing platform have grown considerably in recent years. This increase has been observed not only 

in practical applications, but also in the peer-reviewed literature. Two recent special issues on UAS for 

environmental remote sensing applications in the journals Geocarto International [1] and GIScience 

and Remote Sensing [2] as well as other recent publications reflect the growing acceptance by the 

remote sensing community of UAS as suitable platforms for acquiring quality imagery and other data 

for various application such as wildfire mapping [3,4], arctic sea ice and atmospheric studies [5], 

detection of invasive species [6], rangeland mapping [7-9], hydrology and riparian applications [10-12], 

and precision agriculture [13-16]. Due to limited payload capacities on small unmanned aerial vehicles 

(<50 kg), consumer digital cameras are often used. Such configurations have been employed successfully 

for mapping Mediterranean forests [11], arid rangelands [17,18], aquatic weeds [19], soils [20], and 

crops [13]. Using texture and/or the intensity-hue-saturation components can compensate for the low 

radiometric and spectral resolution of consumer cameras [9,21], although the lack of a near infrared 

band poses certain limitations for vegetation characterization. Quality lightweight multispectral sensors 

suitable for use on small UAS have not been widely available in the past, and one alternative has been to 

alter consumer cameras to acquire images in the near infrared band [14,22,23]. A multispectral sensor 

that captures data over a range of relatively narrow wavelength bands is preferable for vegetation 

applications because of the potential for quantitative remote sensing, retrieval of biophysical 

parameters, better differentiation of vegetation species, and greater suitability for comparison with 

satellite imagery. Despite the potential of UAS to acquire high spatial resolution multispectral data, 

research in this area is relatively limited, and only a few applications have been reported in the 

literature.  

Huang et al. [24] used a compact multispectral camera (ADC, Tetracam Inc.) to acquire data in the 

red, green, and near infrared bands for agricultural applications. The authors listed as pros the low cost 

and light weight of the camera, but reported that slow imaging speed, band saturation, and low image 

quality limited its applications and potential for true radiometric correction of the data. The same camera 

was used on an unmanned helicopter by other researchers, who reported more favorable results, including 

high correlations for field and image-based estimates for rice crop yield and biomass [25]. 

A higher quality multispectral sensor (MCA-6, Tetracam, Inc.) was used for retrieving various 

biophysical parameters and detecting water stress in orchard crops and the researchers concluded that 

quantitative multispectral remote sensing could be conducted with small UAS, although the area 

covered was limited by the endurance of the UAS [15,16]. Turner and Lucieer [26] presented 

promising preliminary results using imagery acquired from an unmanned helicopter equipped with 

visible, thermal, and multispectral sensors for precision viticulture applications. While individual 

image acquisition costs vary depending on the platform, required personnel, and legal restrictions [27], 

it is generally agreed that, compared to piloted aircraft, the major advantage of a UAS-based approach 
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is the ability to deploy the UAS repeatedly to acquire high temporal resolution data at very high spatial 

resolution.  

A UAS-based image acquisition commonly results in hundreds of very high resolution (cm to dm 

pixel size), small footprint images that require geometric and radiometric corrections and subsequent 

mosaicking for use in a Geographic Information System (GIS) and extraction of meaningful data. An 

efficient workflow is necessary for the entire processing chain so that end products of a given accuracy 

can be obtained in a reasonable time. The position and attitude data acquired from UAS often suffer 

from lower accuracy compared to data acquired with piloted aircraft, and various custom approaches 

have been developed for orthorectification and mosaicking of UAS imagery [28-31]. Radiometric 

correction can also be challenging due to the (potentially) large number of individual images, image 

quality, and limits over the control of image acquisition parameters [24]. Obtaining radiometric ground 

measurements for calibration can be time consuming and costly, even with piloted aerial image 

acquisitions [32]. Empirical line calibration methods have been used for radiometric normalization of 

multispectral UAS imagery to obtain quantitative results for various crop applications [16,33,34], but 

no multispectral UAS applications have been reported for rangelands. 

This study builds on previous work on development of workflows for UAS-based image acquisition, 

processing, and rangeland vegetation characterization using low-cost digital cameras [8,17,18]. The goal 

of this study was to develop a relatively automated and efficient image processing workflow for 

deriving geometrically and radiometrically corrected multispectral imagery from a UAS for the 

purpose of species-level rangeland vegetation mapping. The methods for orthorectification and 

mosaicking of the multispectral imagery follow closely the approaches we developed for low-cost 

digital cameras [8,29]. The main focus of this paper are the description of challenges and solutions 

associated with efficient processing of hundreds of multispectral UAS images into an orthorectified, 

radiometrically calibrated image mosaic for further analysis. We detail the batch processing methods, 

compare two approaches for radiometric calibration and report on the accuracy of a species-level 

vegetation classification for a 100 ha area. In addition, we provide a comparison of spectral data 

obtained from UAS imagery and a WorldView-2 satellite image for selected vegetation and soil 

classes. There is great potential for upscaling high resolution multispectral UAS data to larger areas, 

and the WorldView-2 imagery with its relatively high resolution and eight bands is well suited for this 

purpose.  

2. Methods 

2.1. UAS, Sensors and Image Acquisition  

We used a BAT 3 UAS (MLB Co., Mountain View, CA, USA) for aerial image acquisition (Figure 1). 

The BAT 3 weighs 10 kg, has a wingspan of 1.8 m, and is catapult launched from the roof of a vehicle. 

The BAT 3 has an endurance of up to six hours, but the camera’s data storage capacity usually limits 

flights to approximately two hours. 

The aircraft is equipped with three sensors: a forward looking color video camera, used for live 

video downlink, and two cameras, a Canon SD 900 ten megapixel compact digital camera in the wing, 

and a Mini MCA-6 (Tetracam, Inc., Chatsworth, CA, USA) in the modified nose of the aircraft. Both 

still cameras acquire imagery simultaneously with a 75% forward lap and 40% side lap for 
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photogrammetric processing. The image acquisition, processing, and analysis based on the Canon SD 

900 imagery has been reported previously [8,9,18]. In this paper, we are focusing on the processing and 

analysis of the multispectral images acquired with the Mini MCA-6 (MCA hereafter (for multi-camera 

array)).  

Figure 1. BAT 3 unmanned aircraft systems (UAS) positioned on the catapult on the roof 

of the launch vehicle. The UAS is equipped with a small video camera, a Canon SD 900 

digital camera in the wing, and a Mini MCA multispectral camera in the nose.  

 

The MCA is a light-weight (700 g) multispectral sensor (cost of US $ 15,000) designed for use on a 

small UAS. Six individual digital cameras with lenses with a focal lens of 8.5 mm and a 1.3 megapixel 

(1,280 × 1,024 pixels) CMOS sensor are arranged in a 2 × 3 array. Images can be acquired with 8-bit 

or 10-bit radiometric resolution and are stored on six compact flash (CF) cards. The cameras have 

interchangeable band pass filters (Andover Corp., Salem, NH, USA), and for this study, we used filters 

with center wavelengths (band widths at Full Width Half Maximum in brackets) at 450 (40), 550 (40), 

650 (40), 720 (20), 750 (100), and 850 (100) (all in nm). Image acquisition is triggered automatically 

by the flight computer based on the desired overlap and input flying height. A data file with position 

and attitude data for each image acquisition location is downloaded from the aircraft’s flight computer 

after landing. We acquired imagery at 210 m above ground, resulting in a ground resolved distance 

(GSD) of 14 cm for the MCA images.  

The UAS imagery was acquired in southern New Mexico at the Jornada Experimental Range, a 

780 km2 research area owned by the USDA Agricultural Research Service (Figure 2). The UAS flight 

areas (SCAN, TFT, TW) were located in restricted (military) airspace, and the flights were conducted 

with permission of White Sands Missile Range, who controls the airspace. Flying in military airspace 

offers greater flexibility than operating with a UAS in the National Airspace, which requires operating 

under a Certificate of Authorization (COA), issued by the Federal Aviation Administration.  

The times and locations of image acquisitions are shown in Table 1. The UAS imagery for the TW 

site was acquired in November 2010, two weeks after the acquisition of the WorldView-2 satellite 

image. Approximately ¾ of the area of the TW UAS image mosaic was covered by cloud and cloud 
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shadow in the WorldView-2 image. However, there was sufficient coverage to conduct a spectral 

comparison for selected targets in both images. The UAS images acquired in May of 2011 were used 

to test the efficiency of the image processing approach on a relatively large dataset of 624 images 

acquired over the three sites (SCAN, TFT, TW) during a single flight.  

Figure 2. Locations for UAS image acquisitions in southern New Mexico (a) at the 

Jornada Experimental Range (light grey outline) (b). The rectangle in (b) is shown in 

greater detail in (c) with the three UAS image mosaics (SCAN, TFT, TW) displayed over 

the WorldView-2 image. Dark grey areas in the WorldView-2 image are masked out areas 

of cloud and cloud shadow.  

 

Table 1. Image acquisition details. 

Image type Sites Date Number of UAS Images

World View-2 
Western 
Jornada 

26 October 2010  

UAS Aerial 

TW 10 November 2010 160 
TW 

25 May 2011 
160 

SCAN 77 
TFT 387 
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2.2. Image Processing 

The image processing workflow from data acquisition through image classification is shown in 

Figure 3. Each of the steps is described in detail in the following sections.  

Figure 3. Workflow for processing raw UAS-acquired MCA imagery into an 

orthorectified, radiometrically calibrated image mosaic and vegetation classification 

product.  

Data download from 
camera

Band‐to‐band registration

Multipage tif splitting

Band stacking

Radiometric calibration

Raw to multipage tif
conversion

Orthorectification and 
mosaicking

Training/test samples

Field spectrometer data

Image classification

Field data collection

8‐bit to 10‐bit conversion

 

2.2.1. Data Import and File Conversion 

The image data are stored in raw format on the six CF cards on the MCA camera. Data can be 

downloaded either by loading the CF cards in a card reader and copying the data, or by using the USB 

connection on the camera and downloading the data via an interface provided with the Tetracam 

software PixelWrench 2 (PW2). While relatively slow, the USB download is preferable in the field in 

order to minimize dust entering the interior of the camera, because the control boards are partially 

exposed when removing the CF cards. While most downloading occurs in the office, in some cases 

image quality needs to be checked in the field after the flights. We compared the times required for 

downloading using both methods.  

The PW2 software provides a batch file conversion from raw to multipage TIF. While the multipage 

TIF file format allows for scrolling through the six image bands within the PW2 software, this file 

format is incompatible (either opening or importing) with image analysis programs commonly used 

with multispectral imagery (Erdas, ENVI, ArcGIS, etc.). Only 3-band, 8-bit images can be exported 

from PW2. In order to access the bands in TIF format and preserve the 10-bit data range, we used the 

program Tiffsplitter 3.1 (http://www.tiffsoftware.com) which has a batch process to split the multipage 

TIF files into the six bands in TIF format readable by other software.  
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2.2.2. Band-to-Band Registration and Bit Conversion 

Although the image data are acquired in 10-bit raw format, the PW2 software cannot store 10-bit 

data in TIF format. Instead, for each band, the 10-bit data is distributed across the 3 bit planes (Red, 

Green, Blue) of the TIF file by dividing the original 10-bit value by 4 and storing that value in the Red 

and Green bitplanes, and the remainder of the division in the Blue bitplane. This allows for 

reconstructing the 10-bit values using the formula:  

 (1)

where G and B are the 8-bit values in the Green and Blue bitplanes. This conversion results in a 

panchromatic 16-bit TIF file.  

The band-to-band registration is a crucial aspect of image pre-processing, because with six cameras, 

band mis-alignment can strongly affect spectral image analysis results. The PW2 software provides a 

band-to-band registration step as part of the raw to multipage TIF file conversion by using an alignment 

file that contains information about the translation, rotation, and scaling between the master and slave 

cameras. The process to determine the band alignments in PW2 consists of first determining rotation 

and scaling by measuring length and angle of a line between two target points on each respective 

master/slave band combination. In a second step, the translation is determined by calculating the X,Y 

positions for a single point on the master/slave band combination. The translation, rotation, and scaling 

information is stored in an alignment file that can be applied to a series of images. We determined that 

this band-to-band alignment method lacked robustness due to the paucity of points used to determine 

the offsets. The method resulted in relatively fair alignment at the center of the image, but poor 

alignment at the edges, most likely due to lens distortion and variability in alignment between the 

individual lenses and their sensors. However, since the band alignment is already part of the raw to 

multipage TIF file conversion, using PW2 is rather convenient and we wanted to compare the results 

with other approaches. In order to improve the alignment, we first tested a band-to-band registration 

approach based on 85 tie points between master and slaves. The resulting polynomial model was 

applied in batch processing mode to all images. While the results were superior to the PW2 method, 

band misalignments were still apparent and could potentially affect accuracy of image analysis results.  

To further improve the band alignment, we developed a new automated band-to-band registration 

algorithm using a local weighted mean transform (LWMT), which is better able to compensate for locally 

varying pixel misalignments between bands than a polynomial approach. The algorithm automatically 

derives statistics for the mis-registration between the master (band 6) and the slaves (bands 1–5). The 

LWMT algorithm is based on the phase-correlation registration assessment method [35]. First, the  

mis-aligment between bands is estimated across each image in 128 × 128 pixel blocks and compared 

to the reference band. This provides an estimate of the local variation of the registration. Next, outliers 

are filtered to remove locations where the registration estimate failed due to lack of features in the 

image. Finally, a local averaging operation is used to estimate the mis-alignment across the entire 

image. While it can be assumed that the band-to-band alignment does not change from image to image 

within the same flight, it is advantageous to assess the band mis-registration for a large number of 

images to reduce the random error in the registration estimate. In this study, the mis-registration 

estimate was further defined by averaging the mis-registration statistics of all 624 images in the dataset 
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and applying the results in the band-to-band registration. Once the refined mis-registration estimate 

was complete, the registration correction was applied to each image using bilinear resampling. The 

LWMT algorithm is applied in a batch mode using parallel processing across multiple CPU cores for 

optimal use of the available computing power and to minimize processing time.  

Registration results obtained from PW2 and the LWMT algorithm were evaluated using statistics 

evaluating pixel mis-alignment, spatial profiles, and visual assessments. After band co-registration, the 

bands were stacked using a batch processing procedure in Erdas modeler (Erdas, Inc., Norcross, GA, 

USA) to obtain a 6-band 10-bit image in ERDAS IMG file format for subsequent radiometric calibration.  

2.2.3. Radiometric Calibration 

For radiometric calibration, we used two calibration targets (each 2.4 m × 2.4 m), painted with 

black flat paint and white paint. The average reflectance of the black and white targets was 0.02 and 

0.85 respectively. The black and white targets were constructed out of eight 1.2 m × 1.2 m panels of 

whiteboard that were laid over a leveled PVC frame to raise the targets above the ground. The frame 

and targets are sufficiently lightweight to be easily transported and assembled for use on multiple UAS 

flights. An ASD FieldSpec Pro (ASD Inc., Boulder, CO, USA) was used to obtain radiance 

measurements of the calibration targets and selected vegetation and soil targets during the 10 

November 2010 UAS flight. Target reflectance was calculated using measurements of irradiance 

acquired over a Spectralon® panel. The FieldSpec Pro acquires data in multiple narrow bands (3–10 nm 

spectral resolution) with a spectral range of 350–2,500 nm. These near-continuous data were 

resampled using a weighted mean based on the relative spectral response of each of the six MCA 

bands. An empirical line calibration method [36] was used to derive coefficients to fit the digital 

numbers of the MCA imagery to the ground measured reflectance spectra.  

Test flights prior to the November 2010 image acquisitions had been conducted to determine the 

optimum exposure settings. In spite of this, variations in reflectance from image to image remained 

due to illumination and viewing geometry. For this study, we did not attempt to derive parameters for 

the Bidirectional Reflectance Distribution Function (BRDF), because it would add considerable time 

and complication to the processing and would not be a feasible option for multiple UAS image 

acquisitions. The images also had a relatively strong anisotropic vignetting effect. The PW2 software 

has a vignetting correction function that was applied during the file conversion, however, the 

correction does not handle anisotropic effects well, and some vignetting effects remained. We 

determined that additional color balancing was necessary to produce a seamless mosaic, and an image 

dodging process was applied in Erdas during the mosaicking process. The dodging process uses grids 

to localize problem areas within an image (dark corners due to vignetting, hotspots), and applies a 

proprietary algorithm for color balancing. While this process was successful in eliminating the 

remaining vignetting effects, this manipulation affected the radiometric values of the images.  

For that reason, we tested two methods of applying the empirical line calibration for radiometric 

correction. For the first radiometric calibration method (RC-IND), we obtained digital numbers for the 

black and white targets from a single image, then applied the radiometric correction to every 

individual image, and subsequently mosaicked the images, using an image dodging approach to 

produce a seamless mosaic. For the second radiometric calibration method (RC-MOS), we first 
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mosaicked the un-calibrated images using the same image dodging method, then obtained digital 

numbers from the black and white targets from the image mosaic, and subsequently applied the 

radiometric correction to the image mosaic. A validation of the two methods was performed by 

evaluating the correlation between the ground reflectance acquired with the FieldSpec and reflectance 

values derived from the RC-IND and RC-MOS image mosaics for vegetation and soil patches.  

2.2.4. Orthorectification and Mosaicking 

The same approach we developed for orthorectification and mosaicking of the UAS-acquired RGB 

images with the Canon camera was applied to the processing of the MCA imagery. Details have been 

described elsewhere [8,29]. Briefly, the process used automatic tie point detection applied to a 3-band 

image, and a custom image matching algorithm (PreSync) applied to the UAS imagery and a 1 m 

resolution digital ortho image. A 5 m resolution digital elevation model (DEM) derived from 

Interferometric Synthetic Aperture Radar (IfSAR) data provided elevation information. Although 

exterior orientation data (position, attitude) from GPS and Inertial Measurement Unit (IMU) are 

provided by the UAS’ flight computer, the data have a low level accuracy that requires refinement. 

This was achieved in PreSync using an iterative optimization approach involving initial tie point 

alignment, rigid block adjustment, individual image adjustment, and realignment of tie points. 

Additional inputs included the camera’s interior orientation parameters (radial lens distortion, principal 

points, focal length) derived from a camera calibration procedure performed using PhotoModeler (Eos 

Systems, Inc., Vancouver, Canada). The output of the PreSync process was a data file with improved 

exterior orientation parameters and tie points with X,Y,Z information, which were used as input for the 

orthorectification and mosaicking process in Leica Photogrammetry Suite (LPS) (Erdas, Inc., 

Norcross, GA, USA). Our approach minimizes or eliminates the need for manual input ground control 

points, which commonly increase the cost and time of image processing. Geometric accuracies 

achieved with this approach have resulted in root mean square errors (RMSE) of 0.6–1.1 m for 

mosaics composed of 150–250 images with a GSD of 6 cm [8]. For this study, we evaluated the 

geometric accuracy of the image mosaic by comparing target coordinates acquired with real time 

kinematic differential GPS with image coordinates.  

2.3. Field Measurements 

We collected training and validation samples for the vegetation classification of the TW image 

within two weeks of the UAS flight. Previous tests of different methods for training sample collection 

for very high resolution UAS imagery have shown that on-screen digitizing of the samples over the 

image mosaic was most suitable for an object-based image classification [9]. This approach was used 

here, and the samples were selected in the field by walking the entire study area and selecting samples 

based on proportional cover of individual species. For shrubs, the samples consisted of the entire 

shrub, while for grasses, patches of a minimum of 0.2 m2 were selected. We collected a total of 1,083 

samples (0.2% of all image objects) for eight vegetation species (sample numbers in brackets): honey 

mesquite (Prosopis glandulosa Torr.) (shrub) (184), Sumac (Rhus L.) (shrub) (67), Creosote (Larrea 

tridentata (DC.) Coville) (shrub) (331), Tarbush, (Flourensia cernua DC. ) (shrub) (96), Mariola 

(Parthenium incanum Kunth) (shrub) (137), Broom snakeweed (Gutierrezia sarothrae (Pursh) 
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Britton&Rusby) (sub-shrub) (165), Tobosa grass (Pleuraphis mutica Buckley) (grass) (57), Bush 

muhly (Muhlenbergia porteri Scribn. Ex Beal) (grass) (46), as well as bare ground, and sparse 

vegetation on bright and dark soils. Using a random selection process, half of the samples were used to 

train the classifier, and half were retained for accuracy assessment.  

2.4. Image Classification 

An object-based image classification (OBIA) approach using eCognition 8.64 (Trimble GeoSpatial, 

Munich, Germany) was used. OBIA is highly suitable for very high resolution imagery, where  

pixel-based classification is less successful due to the high spatial variability within objects of interest. 

In its most basic form, OBIA consists of classification of image objects, but more commonly a 

recursive approach is implemented using image segmentation, classification of image objects, merging 

of objects, re-segmentation and re-classification using a combination of expert knowledge, fuzzy 

classification, and the incorporation of spectral, spatial, and contextual features for extraction of 

meaningful image objects [37]. Rule sets are saved as process trees and can be applied and adapted to 

other images. In this case, we used a rule set developed for the image mosaic acquired over the same 

site with the Canon camera. Adaptations detailed below were made to account for the greater number 

of spectral bands and difference in spatial resolution. The OBIA steps were as follows:  

(1). The mosaic was segmented at two scales based on visual assessment: a finer multi-resolution 

segmentation (scale parameter 20, color/shape 0.9/0.1, compactness/smoothness 0.5/0.5), and a 

coarser spectral difference segmentation (max spectral difference 100) to aggregate adjacent 

objects with similar spectral information while retaining spectrally unique shrub and grass patches.  

(2). A rule-based classification was used to define the classes shadow, vegetation, and bare/sparse 

vegetation in a masking approach. Brightness was used to define shadow, and the normalized 

difference vegetation index (NDVI) was used to define the vegetation and bare/sparse vegetation 

classes.  

(3). Objects within the vegetation and bare/sparse vegetation classes were merged and re-segmented 

using a combination of chessboard and spectral difference segmentation to better delineate shrub 

canopies and patches of bare, grass, and sparse vegetation.  

(4). A rule-base classification was used for the bare/sparse vegetation class to differentiate between 

bare, sparse vegetation on bright soils, and sparse vegetation on dark soils using a threshold for 

the mean of the blue band.  

(5). In the vegetation class, the re-segmentation clearly defined individual shrub canopies and grass 

patches for further classification. The field-collected samples for the vegetation classes were used 

as training samples for a nearest neighbor classification, using the most suitable features 

determined from the following two-step feature selection process.  

For each sample segment, we extracted information for 15 features: the means and ratios of the six 

bands, NDVI, area, and roundness. We used predominantly spectral features, because aside from the 

Broom snakeweed, which is relatively small and round, all other shrub and grass species had no 

discernable spatial features. The feature selection process consisted of (1) a Spearman’s rank 

correlation analysis to retain only those features with correlation coefficients smaller than 0.9, and (2) 

a decision tree analysis using CART (Salford Systems, San Diego, CA, USA ) [38] to determine the 



Remote Sens. 2011, 3              

 

 

2539

optimum features based on the variable importance scores of the primary splitter in the decision tree. The 

variable importance scores reflect the contribution of the features in predicting output classes and range 

from 0 to 100. This two-step feature selection method proved to be an efficient and objective method of 

reducing input features and selecting the most suitable features based on training sample data for other 

UAS-acquired imagery [9]. Using half of the field-collected samples, we conducted a classification 

accuracy assessment to obtain overall, producer’s, and user’s accuracies, and the Kappa index [39].  

2.5. Comparison with WorldView-2 Data 

The WorldView-2 satellite acquires imagery in one panchromatic and eight multispectral bands 

ranging from 425 nm to 950 nm (center wavelengths). Spatial resolution is 50 cm for the panchromatic 

and 2 m for the multispectral bands. The band widths and band distribution for the MCA and 

WorldView-2 multispectral data (Figure 4) are sufficiently similar to allow for a comparison of the 

spectral information acquired from both sensors. The WorldView-2 multispectral image was 

orthorectified using a 1 m resolution digital ortho image mosaic and a 5 m resolution Interferometric 

Synthetic Aperture Radar (IfSAR) DEM. The image was radiometrically and atmospherically 

corrected using ATCOR2 for Erdas (Geosystems GmbH, Germering, Germany), employing the 

coefficients provided by DigitalGlobe (Longmont, CO, USA) [40].  

With both image products corrected to reflectance, we compared spectral information for bare soil, 

sparse vegetation, and six vegetation species (Mesquite, Sumac, Creosote, Mixed grass, Dense Tobosa 

grass, and Sparse Tobosa grass) for the following bands: blue, green, red (for both sensors), red edge 

(WorldView-2) vs. red edge 1 (MCA), and NIR 1 (WorldView-2) vs. NIR (MCA). The objective was 

not to conduct an in-depth comparison, but rather to evaluate the spectral responses of vegetation and 

soil in the different bands graphically, and to determine the correlation of spectra for the sensors to 

draw general conclusions about the potential for upscaling of the MCA imagery in future studies.  

Figure 4. MCA and WorldView-2 band widths (full-width at half maximum) and band 

distribution. For this study, we compared vegetation and soil spectra in the blue, green, and 

red bands of both sensors, the red edge (WorldView-2) vs. red edge 1 (MCA), and the 

NIR 1 (WorldView-2) vs. NIR (MCA) bands.  
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3. Results and Discussion 

3.1. Assessment and Efficiency of Processing Workflow 

A breakdown of the time required for the batch processing steps from data download to radiometric 

correction is shown in Table 2. Details of the remaining image processing steps (orthorectification, 

mosaicking, classification) are described in subsequent paragraphs. All processing was performed on a 

workstation with 4 GB of RAM and two dual-core 2.6 GHz processors. Copying the CF cards by 

removing them from the camera was considerably faster (0.2 s/band, including switching the cards) 

than using the USB download (2.6 s/band [not shown in Table 2]), which was relatively slow due to 

the USB 1.1. Version. For 624 images, using the USB download took 2 h, 29 min. In most cases, this 

may not be a limiting factor, as this process runs unassisted, but if the images require a quick 

assessment after the flight to determine image quality, copying the CF cards is more efficient.  

Both the raw to multipage TIF conversion and the multipage TIF splitting were run in batch processing 

mode and required only initiating the process in the respective programs (PW2 and Tiffsplitter). The 

band-to-band registration and bit conversion step listed in Table 2 is for the LWMT method we used 

for this dataset. The band co-registration method implemented in PW2 is part of the raw to multipage 

TIF conversion algorithm, and thus would not increase processing times. However, the results of the 

LWMT band-to-band registration were far superior to the process implemented in PW2, and therefore 

LWMT was the preferred method. A comparison of the statistics for the pixel mis-alignment of the 

unregistered bands, and after band-to-band registration using PW2 and LWMT demonstrated a 

considerably lower band mis-alignment for the LWMT method with a mean of 0.5 pixels compared to 

the PW method, which had relatively poor results and a greater variation for the bands (Figure 5). No 

obvious systemic errors were observed in the band co-registration.  

Table 2. Time required for multispectral image batch processing steps per band, per 

image, and for the 624 images from the May 25, 2011 flight. 

Processing step Per Band  
(s) 

Per Image  
(s) 

624 Images  
(h:min) 

Data download from camera (copy CF cards) 0.2 1.2 0:12 
Raw to multipage TIF conversion 1.1 6.6 1:08 
Multipage TIF splitting 0.2 1.4 0:14 
Band-to-band registration and bit conversion 1.6 9.6 1:39 
Band stacking  4.0 0:41 
Radiometric correction (RC-IND method) 1  5.0 0:52 
Total 3.1 27.8 4:49 

1 Using the RC-MOS method reduced the processing time for radiometric correction to 8 min for the 3 

image mosaics, reducing total processing time to 4 h 5 min. 

The band-to-band registration results were also examined visually and using spatial profiles 

(Figure 6). Using the PW2 band-to-band registration approach resulted in noticeable halos around 

image objects (shrubs and targets) and noise in the homogenous portions of the image (Figure 6(a)). 

With the LWMT approach, the halos were eliminated, and the noise in the soil and grass patches was 
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reduced (Figure 6(b)). The band mis-alignment in PW2 was obvious when examining the spatial 

profile across the black radiometric target (Figure 6(c)), while in the LWMT approach, the bands were 

well aligned (Figure 6(d)).  

Figure 5. Mean and standard deviations of pixel mis-alignment between bands 1–5 

(slaves) compared to band 6 (master) for unregistered bands, and band-to-band registration 

approaches using PW2 and local weighted mean transform (LWMT).  
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Figure 6. Images and spatial profiles depicting comparison of band-to-band registration 

using the approach implemented in PW2 and the LWMT. The PW2 approach (a) resulted 

in halos around shrubs and target; the LWMT approach (b) had improved band alignment. 

The spatial profiles (2.5 m long) for PW2 (c) and LWMT (d) were taken across a black 

radiometric target. The dotted lines in and indicate the edges of the black target. The 

improved band-to-band alignment for the LWMT approach is apparent by the lack of halos 

around shrubs and targets, and the reduced noise in the soil background. The band order in 

the images is Near Infrared, Red, Green.  
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The band-to-band alignment is expected to remain relatively constant unless one of the camera’s 

sensors is physically removed or one of the filters is changed, which would necessitate a new  

mis-registration assessment. To date, we have applied the band-to-band registration approach using the 

same statistics on data acquired during subsequent flights with equally good band registration.  

Having close alignment for the bands is crucial for subsequent image analysis, especially when 

spectral signatures for specific vegetation species are extracted. Many of the shrubs are relatively 

small, and if the bands are not well aligned, the signatures may include pixels not belonging to the 

shrub canopy. Using a band-to-band registration method with sub-pixel accuracy ensures high 

accuracy results.  

3.2. Radiometric Calibration Results 

The validation of the radiometric calibration showed high correlation (R2 = 0.94, RMSE = 1.7%) 

between ground reflectance and image reflectance after applying the empirical line calibration to the 

single image covering the calibration targets (Figure 7(a)). The agreement between image reflectance 

and ground reflectance was inferior for the RC-IND method (Figure 7(b)) than the RC-MOS method 

(Figure 7(c)). The larger error in the RC-IND method was likely associated with the image-to-image 

differences in illumination and viewing geometry, and the vignetting effects.  

Figure 7. Evaluation of radiometric calibration depicting correlations between ground 

reflectance from the field spectrometer and MCA image reflectance for 5 shrub species and 

bare soil for 6 spectral bands. In (a), reflectance values for a single image are depicted, in 

(b) the image reflectance values were extracted from a mosaic composed of individually 

radiometrically calibrated images (RC-IND method), and in (c), radiometrically  

un-calibrated images were mosaicked first, followed by radiometric correction of the 

mosaic (RC-MOS method).  
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When the empirical line calibration corrections were applied to each image, the underlying  

image-to-image variations remained, resulting in less than accurate reflectance values. In the RC-MOS 

method, a seamless mosaic was produced before radiometric correction, and the vignetting effects and 

image-to-image variations were largely eliminated before the radiometric correction was applied to the 

image mosaic. As mentioned, we did not attempt a BRDF correction for this dataset, because obtaining 

the required parameters can be time consuming and would add considerably to the image processing 
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time. However, BRDF correction would likely reduce the image-to-image variations we observed, and 

potential methods adapted to UAS-acquired imagery have been described elsewhere [22,41].  

For our purposes, we concluded that the RC-MOS method yielded satisfactory results, and in 

addition resulted in a decrease in processing time. Compared to the RC-IND method, which required 

5 s/image or 52 min for 624 images to apply the empirical line calibration to each image (Table 2), the 

MOS method only required a total of 8 min to apply the calibration to all three image mosaics. Note 

that the determination of the calibration coefficients was not included in the time estimate in Table 2, 

but would add approximately 30 min to the total processing time.  

The orthorectification and mosaicking was largely identical to the process we had developed for the 

imagery acquired with the Canon camera [8]. In some images, additional tie points were required to 

achieve a satisfactory image to image alignment. The PreSync portion took the bulk of the processing 

time at 100 s/image. The process was run overnight, and the general turnaround time for producing an 

orthorectified image mosaic was 1–2 days, depending on the number of images. The extent of the 

orthomosaics was 9,187 × 9,778 pixels (TFT), 9,318 × 5,343 pixels (TW), and 6,268 × 5,417 pixels 

(SCAN). A comparison of the coordinates of 12 targets visible in the TW mosaic and measured with 

real time kinematic differential GPS resulted in an RMSE of 0.84 m, reflecting the kind of accuracy 

we generally achieve with the orthorectification approach without the use of ground control points. 

Although the UAS does not have a highly accurate GPS/IMU, and the absolute accuracy of the image 

coordinates at time of capture is relatively poor, the image matching procedure to a DOQ in PreSync 

compensates, resulting in relatively good internal geometric accuracies of the orthomosaics.  

3.3. Image Classification and Accuracy 

The two-step feature selection process reduced the 15 input features to eight optimum features 

based on the variable importance scores of the primary splitter in the decision tree. The optimum 

features were (feature followed by variable importance score in brackets): NDVI (100), Mean Near 

Infrared (93.68), Ratio Blue (90.93), Ratio Green (59.19), Mean Red (40.15), Mean Blue (32.31), Area 

(31.95), and Ratio Red edge 1 (28.45). The feature Area was only associated with the Broom 

snakeweed class in the decision tree. This was consistent with our expectations and with previous 

studies where Area had been an important feature associated with this shrub. Based on this 

information, we chose the seven spectral features for all classes, and in addition included the feature 

Area for the Broom snakeweed class.  

The resulting classification provided fine scale detail, and a visual assessment showed good 

differentiation for the chosen classes (Figure 8). Overall classification accuracy for the vegetation 

classes was 87%, with producer’s accuracies ranging from 52% to 94%, and user’s accuracies from 

72% to 98% (Table 3). The omission errors for Tarbush were mostly due to confusion with Creosote 

due to spectral similarity. Likewise, there was confusion between Sumac and Mesquite. Closer 

inspection of the mislabeled objects showed that the errors could be attributed to a canopy 

segmentation that was less than ideal for selected objects for these species. Due to the structure of the 

Mesquite and Sumac shrubs, brighter and darker portions of the canopy occurred in different segments 

instead as a single segment, which resulted in the omission errors in the Sumac class. 
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Figure 8. UAS image mosaic of TW site (a), detailed view of a 130 m × 130 m area in the 

black box (b), and vegetation classification (c).  

 

A good segmentation is crucial for a highly accurate classification, and while the segmentation 

quality was good overall, and shrubs were delineated well in the remaining classes, the canopy 

structure and brightness variations of Mesquite and Sumac led to a less suitable segmentation for some 

shrubs in these classes. Possible improvements would include editing of selected segments to merge 

adjacent segments in the same shrub canopy, which would likely improve the accuracy results. For this 

study, however, we wanted to assess the classification accuracy without editing in order to evaluate the 

rule set.  

An OBIA rule set has the potential to be applied repeatedly to image mosaics of the same area, or, 

with adjustments, to mosaics of other areas. Transferring rule sets reduces the time spent on image 

classification, increases efficiency, and is objective [9,42]. For this study, we adapted a rule set from 

an image mosaic of the same area, but acquired with the Canon camera. The major steps of analysis 

remained the same: segmentation at two scales, masking of shadow, vegetation, and bare/sparse 
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vegetation, merging and re-segmentation of the vegetation and bare/sparse vegetation classes, followed 

by sample selection, feature selection and nearest neighbor classification. Edits were required for the 

segmentation parameters, the threshold values in the masking process, choice of features and  

site-specific samples. These edits were minimal compared to developing a completely new rule base, 

and the resulting classification accuracy demonstrated that this was a viable approach for UAS-based 

multispectral image classification.  

Table 3. Error matrix for classification of TW site. Rows represent classification data, 

columns represent reference data. Values are in pixels. Bold numbers are correctly 

identified pixels.  

 
Tarbush 

Broom 
Snakeweed

Creosote
Bush 

Muhly
Mariola Mesquite Sumac Tobosa

Tarbush 1,047 140 68  

Broom snakeweed 13 1,129 28 65 205  99

Creosote 520 11,810 485 38 1,865 184

Bush muhly 293 10 90 3,687 322  687

Mariola 23 281 75 345 3,353  38

Mesquite 132 399 15,840 776

Sumac  37 956

Tobosa  150  9,776

Producer’s Acc. (%) 52 72 94 79 86 89 49 93

User’s Acc. (%) 83 73 79 72 81 92 96 98

Overall Acc. (%) 87  

Kappa index 0.83  

3.4. Spectral Reflectance Data from MCA and WorldView-2  

The comparison of the spectral reflectance data extracted from the MCA image mosaic and the 

WorldView-2 satellite image over the TW site showed relatively good agreement for the spectral 

responses of the vegetation and soil targets (Figures 9 and 10). Most of the targets showed similar 

spectral responses for the two sensors, although some differences were apparent, most noticeably 

lower reflectance values for Tobosa sparse compared to Sparse vegetation in the WorldView-2 image 

(Figure 9(a,b)). In general, the correlation of spectra for the two sensors was high, with somewhat 

lower reflectance values for the WorldView-2 image than the MCA image for the same target 

(Figure 10). This can likely be attributed to the fact that although the ranges and centers of the sensors’ 

wavelengths were sufficiently close to draw comparisons, they were not identical (Figure 4). Other 

sources of the variation in the reflectance values for the two sensors may include the different methods 

for calculating reflectance, as well as the resolution difference (14 cm for the MCA, 2 m for the 

WorldView-2). For small shrub species that are at the edge of the detection limit in the satellite image 

(i.e., Creosote), discrepancies in reflectance may arise. This was reflected in the relatively low R2 

value for Creosote (Figure 10). We were also somewhat limited in selecting suitable targets on the 
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WorldView-2 image, because approximately ¾ of the TW site was occluded by cloud and cloud 

shadow in the satellite image.  

Nevertheless, the data were sufficient to demonstrate the potential for either using the MCA data for 

ground truth of WorldView-2 data, or for upscaling fine detail information in the MCA imagery to 

larger areas using the satellite imagery. This could be accomplished by using the UAS to fly over key 

areas to capture detailed information for dominant vegetation communities, so that landscape scale 

mapping could be conducted using the WorldView-2 image.  

Figure 9. Comparison of spectral reflectance data for eight vegetation/soil targets 

extracted from WorldView-2 (a) and MCA (b). Five bands were compared (Blue, Green, 

Red, Red edge, Near Infrared).  
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4. Conclusions and Future Work  

In this paper, we have described an efficient workflow for processing multispectral imagery 

acquired with an unmanned aircraft into orthorectified, radiometrically calibrated image mosaics for 

subsequent vegetation classification. We identified several challenges in the process, including file 

format incompatibilities, as well as software and camera limitations. There are few multispectral 

cameras available that are light weight enough for use on small UAS, and there is a need for high 
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quality multispectral sensors as well as workflows that support fast turnaround times for quality 

remote sensing products. We envision that the limitations we discovered and the described solutions 

may lead to future improvements in software and hardware.  

Figure 10. Correlation of reflectance measurements for eight vegetation/soil targets 

extracted from WorldView-2 and MCA in the five bands that were compared (Blue, Green, 

Red, Red edge, Near Infrared). The graphs depict: Bare soil (a), Sparse vegetation (b), 

Tobosa dense (c), Tobosa sparse (d), Sumac (e), Mesquite (f), Creosote (g), and Mixed 

grass (h).  
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We developed several automated batch processing methods for file conversion, band-to-band 

registration, and radiometric correction, and these batch processes are easily scalable to larger number 

of images. The band-to-band-registration algorithm greatly improved the spectral quality of the final 

image product, leading to better agreement between ground- and image-based spectral measurements, 

especially for small shrub canopies. Deriving radiometric calibration coefficients from the image 

mosaic resulted in higher correlations between ground-and image-based spectral reflectance 

measurements than performing radiometric corrections on individual images. An orthorectified image 

mosaic can generally be produced in a two-day turnaround time, taking into account approximately 

five hours for the pre-processing steps, and the remainder for the orthorectification and mosaicking step.  

For the vegetation classification, we were able to use an OBIA rule set previously developed for 

imagery acquired with the Canon camera over the same site. This approach saved time, and we plan to 

evaluate the applicability of this rule set for future image acquisitions, both for the same area and other 

sites. Based on experiences with transferability of rule sets for UAS images acquired with the Canon 

camera, we expect that the segmentation parameters and general processing steps (initial segmentation, 

rule-based classification, re-segmentation, merging, nearest neighbor classification) will remain the 

same, with changes required for specific thresholds and site-specific training samples.  

Our comparison of vegetation and soil spectral responses for the airborne and WorldView-2 

satellite data demonstrate potential for conducting multi-scale studies and evaluating upscaling the 
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UAS data to larger areas, and future studies will investigate these aspects. In addition, we are currently 

acquiring multi-temporal multispectral UAS imagery for use in change detection studies.  

Acknowledgements 

This research was funded by the USDA Agricultural Research Service and the National Science 

Foundation Long-Term Ecological Research Program (LTER), Jornada Basin LTER V: Landscape 

Linkages in Arid and Semiarid Ecosystems. We would like to acknowledge the assistance of Steve 

Heinold of Tetracam Inc. for technical support, Peg Gronemeyer for field data collection efforts, and 

the Jornada UAS team: Jim Lenz, Connie Maxwell, Amalia Slaughter, David Thatcher, and Craig 

Winters. We also thank the three anonymous reviewers whose comments helped improve the 

manuscript.  

References 

1. Ambrosia, V.; Hutt, M.; Lulla, K. Unmanned airborne systems (UAS) for remote sensing 

applications: Editorial. Geocarto Int. 2011, 26, 69-70. 

2. Hardin, P.J.; Jensen, R.R. Small-scale unmanned aerial vehicles in environmental remote sensing: 

Challenges and opportunities: Editorial. GISci. Remote Sens. 2011, 48, 1-3. 

3. Ambrosia, V.G.; Wegener, S.; Zajkowski, T.; Sullivan, D.V.; Buechel, S.; Enomoto, F.; Lobitz, B.; 

Johan, S.; Brass, J.; Hinkley, E. The Ikhana unmanned airborne system (UAS) western states fire 

imaging missions: From concept to reality (2006–2010). Geocarto Int. 2011, 26, 85-101. 

4. Hinkley, E.A.; Zajkowski, T. USDA Forest Service-NASA: Unmanned aerial systems 

demonstrations—pushing the leading edge in fire mapping. Geocarto Int. 2011, 26, 103-111. 

5. Fladeland, M.; Sumich, M.; Lobitz, B.; Kolyer, R.; Herlth, D.; Berthold, R.; McKinnon, D.; 

Monforton, L.; Brass, J.; Bland, G. The NASA SIERRA science demonstration programme and 

the role of small-medium unmanned aircraft for earth science investigations. Geocarto Int. 2011, 

26, 157-163. 

6. Hardin, P.J.; Jackson, M.W.; Anderson, V.J.; Johnson, R. Detecting squarrose knapweed 

(Centaurea virgata Lam. Ssp. squarrosa Gugl.) using a remotely piloted vehicle: A Utah case 

study. GISci. Remote Sens. 2007, 44, 1548-1603. 

7. Breckenridge, R.P.; Dakins, M.E. Evaluation of bare ground on rangelands using unmanned aerial 

vehicles. GISci. Remote Sens. 2011, 48, 74-85. 

8. Laliberte, A.S.; Winters, C.; Rango, A. UAS remote sensing missions for rangeland applications. 

Geocarto Int. 2011, 26, 141-156. 

9. Laliberte, A.S.; Rango, A. Image processing and classification procedures for analysis of  

sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GISci. Remote 

Sens. 2011, 48, 4-23. 

10. Lejot, J.; Delacourt, C.; Piégay, H.; Fournier, T.; Trémélo, M.L.; Allemand, P. Very high spatial 

resolution imagery for channel bathymetry and topography from an unmanned mapping 

controlled platform. Earth Surf. Proc. Land. 2007, 32, 1705-1725. 



Remote Sens. 2011, 3              

 

 

2549

11. Dunford, R.; Michel, K.; Gagnage, M.; Piegay, H.; Tremelo, M.L. Potential and constraints of 

Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest. 

Int. J. Remote Sens. 2009, 30, 4915-4935. 

12. Hervouet, A.; Dunford, R.; Piegay, H.; Belletti, B.; Tremelo, M.L. Analysis of post-flood 

recruitment patterns in braided channel rivers at multiple scales based on an image series 

collected by unmanned aerial vehicles, Ultralight aerial vehicles, and satellites. GISci. Remote 

Sens. 2011, 48, 50-73. 

13. Hunt, E.R.; Cavigelli, M.; Daugherty, C.S.T.; McMurtrey, J.E.; Walthall, C.L. Evaluation of 

digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. 

Precis. Agric. 2005, 6, 359-378. 

14. Hunt, E.R.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. 

Acquisition of NIR-Green-Blue digital photographs from unmanned aircraft for crop monitoring. 

Remote Sens. 2010, 2, 290-305. 

15. Zarco-Tejada, P.J.; Berni, J.A.J.; Suárez, L.; Sepulcre-Cantó, G.; Morales, F.; Miller, J.R. 

Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for 

vegetation stress detection. Remote Sens. Environ. 2009, 113, 1262-1275. 

16. Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral 

remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. 

Remote Sens. 2009, 47, 722-738. 

17. Rango, A.; Laliberte, A.S.; Herrick, J.E.; Winters, C.; Havstad, K.; Steele, C.; Browning, D. 

Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and 

management. J. Appl. Remote Sens. 2009, 3, 033542:1-033541:15 

18. Laliberte, A.S.; Herrick, J.E.; Rango, A.; Winters, C. Acquisition, orthorectification, and  

object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. 

Photogramm. Eng. Remote Sensing 2010, 76, 661-672. 

19. Goktogan, A.H.; Sukkarieh, S.; Bryson, M.; Randle, J.; Lupton, T.; Hung, C. A rotary-wing 

unmanned air vehicle for aquatic weed surveillance and management. J. Intell. Robot Syst. 2010, 

57, 467-484. 

20. Corbane, C.; Raclot, D.; Jacob, F.; Albergel, J.; Andrieux, P. Remote sensing of soil 

characteristics from a multiscale classification approach. Catena 2008, 75, 308-318. 

21. Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of sub-decimeter resolution 

unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761-770. 

22. Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; S. Labbe, S.; Baret, F. Assessment of 

unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. 

Sensors 2008, 8, 3557-3585. 

23. Hunt, E.R.; Hively, W.D.; McCarty, G.W.; Daughtry, C.S.T.; Forrestal, P.; Kratochvil, R.J.; 

Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.; Miller, C. NIR-Green-Blue high-resolution digital 

images for assessment of winter crop cover biomass. GISci. Remote Sens. 2011, 48, 86-98. 

24. Huang, Y.; Thomson, S.J.; Lan, Y.; Maas, S.J. Multispectral imaging systems for airborne remote 

sensing to support agricultural production management. Int. J. Agric. Biol. Eng. 2010, 3, 50-62. 



Remote Sens. 2011, 3              

 

 

2550

25. Swain, K.C.; Thomson, S.J.; Jayasuriya, H.P.W. Adoption of an unmanned helicopter for  

low-altitude remote sensing to estimate yield and total biomass of a rice crop. Trans. ASABE 

2010, 53, 21-27. 

26. Turner, D.; Lucieer, A. Development of an Unmanned Aerial Vehicle (UAV) for Hyper 

Resolution Vineyard Mapping Based on Visible, Multispectral, and Thermal Imagery. In 

Proceedings of 34th International Symposium on Remote Sensing of Environment, Sydney, 

Australia, 10–15 April 2011; p. 4. 

27. Rango, A.; Laliberte, A.S. Impact of flight regulations on effective use of unmanned aircraft 

systems for natural resources applications. J. Appl. Remote Sens. 2009, 4, 043539:1-043539:12. 

28. Du, Q.; Raksuntorn, N.; Orduyilmaz, A.; Bruce, L.M. Automatic registration and mosaicking for 

airborne multispectral image sequences. Photogramm. Eng. Remote Sensing 2008, 74, 169-181. 

29. Laliberte, A.S.; Winters, C.; Rango, A. A Procedure for Orthorectification of Sub-Decimeter 

Resolution Imagery Obtained with an Unmanned Aerial Vehicle (UAV). In Proceedings of 

ASPRS Annual Conference, Portland, OR, USA, 28 April–2 May 2008; p. 9.  

30. Wilkinson, B.E.; Dewitt, B.A.; Watts, A.C.; Mohamed, A.H.; Burgess, M.A. A new approach for 

pass-point generation from aerial video imagery. Photogramm. Eng. Remote Sensing 2009, 75, 

1415-1423. 

31. Xiang, H.; Tian, L. Method for automatic georeferencing aerial remote sensing (RS) images from 

an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 2010, 108, 104-113. 

32. Asmat, A.; Milton, E.J.; Atkinson, P.M., Empirical correction of multiple flightline hyperspectral 

aerial image mosaics. Remote Sens. Environ. 2011, 115, 2664-2673. 

33. Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A Light-Weight Multispectral Sensor for Micro 

UAV—Opportunities for Very High Resolution Airborne Remote Sensing. In Proceedings of XXI 

ISPRS Congress, Beijing, China, 3–11 July 2008; In International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences; 2008; Volume 37, Part B1, 

pp. 1193-1199. 

34. Suárez, L.; Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J.; Sagardoy, R.; Morales, F.; 

Fereres, E. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne 

imagery. Remote Sens. Environ. 2010, 114, 286-298. 

35. Goforth, M.A. Sub-pixel registration assessment of multispectral imagery. Proc. SPIE 2006, 6302, 

63020S.  

36. Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data 

to reflectance. Int. J. Remote Sens. 1999, 20, 2653-2662. 

37. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2-16. 

38. Steinberg, D.; Colla, P. CART: Classification and Regression Trees; Salford Systems: San Diego, 

CA, USA, 1997. 

39. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and 

Practices; Taylor and Francis: Boca Raton, FL, USA, 2009. 

40. Updike, T.; Comp, C. Radiometric Use of WorldView-2 Imagery; DigitalGlobe: Longmont, CO, 

USA: 2010; p. 16. 

41. Hakala, T.; Suomalainen, J.; Peltoniemi, J.I. Acquisition of bidirectional reflectance factor dataset 

using a micro unmanned aerial vehicle and a consumer camera. Remote Sens. 2010, 2, 819-832. 



Remote Sens. 2011, 3              

 

 

2551

42. Schöpfer, E.; Möller, M.S. Comparing metropolitan areas—Transferable object-based image 

analysis approach. Photogramm. Fernerkun. 2006, 10, 277-286. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


