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ABSTRACT 
The recent past has seen a tremendous increase in the size of 
design circuits that can be implemented in a single FPGA. These 
large design sizes significantly impact cycle time due to design 
automation software runtimes and an increased number of 
performance based iterations. New FPGA physical design 
approaches need to be utilized to alleviate some of these 
problems. Hierarchical approaches to divide and conquer the 
design, early estimation tools for design exploration, and 
physical optimizations are some of the key methodologies that 
have to be introduced in the FPGA physical design tools. This 
paper will investigate the loss/benefit in quality of results due to 
hierarchical approaches and compare and contrast some of the 
design automation problem formulations and solutions needed 
for FPGAs versus known standard cell ASIC approaches. 

1. INTRODUCTION 
Advances in process technology are enabling a profound increase 
in the number of applications that can be realized using FPGAs. 
Devices are now being fabricated in advanced, ultra deep sub-
micron technology with multi-million gate capacity and clock 
speed capability approaching 400 MHz. Difficult design 
problems associated with interconnect delay on large designs are 
now being seen. As witnessed when high gate-count deep sub-
micron ASIC designs first emerged, interconnect can account for 
as much as 70-90% of overall circuit delay as critical dimensions 
shrink below 0.18um. These large design sizes also significantly 
impact cycle time due to software runtimes and an increased 
number of performance based iterations. EDA tools for FPGA 
design have failed to keep pace with advances in complex high-
density devices. Today, RTL is synthesized using coarse 
interconnect estimates and then mapped, placed, and routed. If 
the design fails to meet performance constraints, the designer 
must make changes to the RTL and/or the constraints and then 
continually iterate the entire design through the flow. 
Hierarchical approaches that partition the design into smaller 
pieces, implement them separately, and assemble the pieces 
together in a final assembly phase need to be introduced in the 
FPGA physical design flow. A hierarchical design flow helps 
manage the design size complexity for the design team, makes 
the design flow more predictable, and enables incremental 
design. Researchers, however, have long claimed that such 
partitioning of the design leads to sub-optimal results and poor 
implementations.  This paper will quantify the loss in such 
quality due to design partitioning. The Dragon [24] placement 
tool framework is used to show our results. 

Floorplanning is a key ingredient of the hierarchical approaches. 
FPGA floorplanning has been tackled by [8]. [8] makes 
simplifying assumptions about the FPGA architectures. They 
describe the FPGA architecture as simply rows and columns of 

 

 

 

 CLBs. In this paper, we will describe the new generation FPGA 
architectures using the Xilinx Virtex-II as a template. The 
floorplanning problem for these next generation FPGAs is 
formulated and a desirable cost function is defined in this paper. 

Estimation tools at the floorplan level and the placement level 
are key to reducing the number of iterations done between RTL 
and the final routed design. Good estimation tools enable a 
shorter iteration loop between RTL and constraints changes to 
the floorplan or the placement. This paper will also analyze the 
variables involved in estimating delays at the placement level. 

The paper is organized as follows: Section 2 will give the basics 
of the Virtex-II architecture. This will form the context for the 
rest of the paper. In section 3 we will define the floorplanning 
problem for FPGAs using Virtex-II series as a template. In 
section 4 we analyze the loss of quality in partitioning the design 
in smaller pieces to be used in hierarchical design flows.  In 
section 5 we will discuss delay estimation techniques and we 
will conclude with section 6. 

2. FPGA ARCHITECTURE 
Till the recent past FPGAs were laid out as rows and columns of 
CLBs. Recently, however, this rule of square shaped uniform 
blocks distributed throughout the FPGA fabric has been broken. 
With greater requirements on the type of logic that needs to be 
implemented on the same die the FPGA fabric is looking more 
and more heterogeneous.  Figure 2.1 shows the Xilinx xc2v1000 
Virtex-II device. The display of the architecture is a logical or an 
abstract view of the actual device.  Each square unit is a CLB. 
This device has 4 “slices” within each CLB (Configurable Logic 
Block). Each slice contains 2 4-input LUTs and 2 Flip Flop. 
RAM and Multiplier blocks are distributed in columns through 
the device. Each RAM and a Multiplier has a width of half a 
CLB-column and height of 4 CLB-rows.    

VirtexII-PRO is an extension of the Virtex-II architecture and has 
power PC cores distributed evenly in the FPGA fabric. More 
extensions are expected to follow which will make this 
simplifying assumption about a matrix of CLBs less and less 
accurate. 

3. FLOORPLANNING 
Floorplanning is a key step in a hierarchical design flow.  
Floorplanning is performed to get the locations and sizes of the 
modules to be implemented. 

Traditionally the floorplanning problem has been defined to be 
an area packing problem on a set of modules; some that are hard 
macros and have fixed height and width, others that are soft 
modules that have a range of aspect ratios and areas to choose 
from. Techniques involve having a compact representation of a 
floorplan [9,10,15,16,17,18,19,20,21] and using simulated 
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annealing moves to modify the floorplan. There has been some 
work done for fixed outline floorplanning [22] but most of these 
are extensions of the area packing formulations. 

 

 Figure 2.1: xc2v1000 architecture 

Floorplanning in the FPGA domain needs a significantly 
different problem formulation. The FPGA fabric is made up of 
discrete number of resources ni of type i. The FPGA modules 
have discrete area requirements. Each module M j that needs to 
be placed and shaped would have certain resource requirements 
such as xj1 of type n1 and xj2 of type n2 and in general xji of type 
ni. The blocks need to be placed and shaped so as to fulfi ll the 
resource requirements, fit in the FPGA device with no overlaps 
and optimize a given cost. Obviously, the traditional floorplan 
representations and techniques will not be sufficient to meet the 
needs of the described problem.  For one, the traditional 
floorplan representations assume a continuous space and all 
locations are available for placement of modules. Secondly, the 
techniques assume a single area resource requirement that is a 
continuous function of height and width making the module areas 
additive. 

The cost function to be optimized by the floorplanner needs to 
account for the interconnect length between modules, the timing 
properties of the design once its fully implemented through 
placement and routing, and the routing congestion. 

The following subsections will propose a floorplan representation 
and a “good”  cost function for optimization. This paper, however, 
leaves the actual optimization strategies as future research work. 

3.1 Floorplan Representation 
The FPGA module floorplan can easily be represented using the 
location of the lower left corner of the module and the shape of 
the module.  

If, S = {(I, J)|1≤I≤Number of columns in device, 1≤J≤Number of rows in 
device}  

If M is a set of modules to be floorplanned, then, the set of all 
possible module placements can be represented as P = {(m, l, s)| 
m∈M, l∈S, s∈S}, where m is the module, l is the location of the 
lower left corner of the module and s is the bounding box height 

and width of the module. Also, the bounding box for any of the 
modules defined by l and s needs to be contained within the 
device boundary. The described representation is not suitable for 
standard cell ASIC floorplanning because of the continuous 
nature of the space that can make |P| infinite. As such in the 
FPGA domain |P| is O(|M|n4), where n is max(Number of 
columns in device , Number of rows in device). 

3.2 Optimization Criteria 
The cost function used in standard cell ASIC floorplanning 
literature is usually a combination of area optimization and 
connectivity length between modules.  The FPGA floorplanning 
problem is a fixed outline problem and hence area packing is of 
little consequence. The cost function needs to account for total 
wirelength (routability) and the timing characteristics of the 
design. The true measure of a good floorplan can only be 
ascertained once all modules are physically implemented through 
place and route. During the actual optimization process, 
however, the module placement and routing is usually not 
available. In fact, it is conceivable that even the netlist for these 
modules are not available at the time of floorplanning. The 
incompleteness of the design makes defining a “good” cost 
function during floorplanning a difficult problem. 

Generally, it has been observed that given reasonable module 
partitioning – there are significantly more nets within the module 
than there are outside the module [6]. Using this observation we 
claim that it is significantly more important to shape the modules 
such that there is higher probability of the average internal net 
lengths to be smaller than the average external net length. The 
average internal net length can be shortened by making the 
aspect ratio of the modules as close as possible to 1.0.  Secondly, 
care can be taken during module generation for hierarchical 
design to latch all the module boundaries such that most timing 
critical paths after place and route are within the module and do 
not cross module boundaries.  

The above observations lead us to the following cost function: ���
Σα �����	��
���
������ β ���	��������������
���
����	
�������� ��!#"�� γ ��� $��������	%�"

Where �&����
�� is the aspect ratio of the module, external-wire-
length is the total wirelength measured as center-to-center 
Manhattan distance between modules times the number of nets 
between module pairs, and ��$���������% is the total overlap between 

pairs of module rectangle boundaries; α, β, and γ are weights 
used to trade off the different cost criteria. In general, based on 
the above observations γ>>α>>β. The location and shape that 
does not satisfy all the resource requirements of a module as 
explained in the problem formulation is not considered to be 
legal. 

Given the above floorplan problem formulation, representation 
and a cost function the problem can be solved using a simulated 
annealing framework, but, we leave the actual optimization 
technique for further research and scrutiny. 

Figure 3.1 shows a sample solution for a design with 7 modules. 

RAM and Mult 
Columns 

CLB 
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Figure 3.1: Sample Floorplan: Module E is placed far 
from F to account for the RAM resource requirement 
on module E.  

4. HIERARCHICAL PLACEMENT 
Increasing FPGA design size and complexity makes partitioning 
an important aspect of the physical design flow. Partitioning is 
the process of dividing the design up into smaller and more 
manageable modules.  The goal of the partitioning step is to 
minimize the interdependence between the partitioned modules. 
Once partitioned, each of the modules are then optimized 
independently of each other and assembled together in a final 
assembly phase [2, 23]. Naturally, the smaller the size of the 
partitions and more dependence they have on each other the 
greater the loss in quality of results as compared to optimizing 
the design in its entirety. This section quantifies this very loss in 
quality due to partitioning. The framework used to study 
partitioning and its effect on the final quality of results is a 
hierarchical placement tool that mimics just such partitioning 
techniques [24, 26, 27]. 

4.1 Overview of Hierarchical Placement 

The hierarchical placement approach is essentially a divide-and-
conquer scheme. At each hierarchical level, the original 
placement problem will be divided into several sub-problems. 
Heuristic algorithms are then used to solve each of the sub-
problems.  In this approach, the sub-problems never interact with 
each other again. The final placement solution is just the union 
of solutions collected from all the solved sub-problems. For 
example, assume at the highest hierarchical level, the placer 
divides the original netlist into four parts: A, B, C and D and 
assigns them to 4 disjoint regions RA, RB, RC and RD 
respectively. If a cell is assigned to A and RA at this stage, it will 
never appear in the physical regions: RB, RC or RD. 

Divide-and-conquer is one of the most popular placement 
approach, however, Dragon [24], a high-performance ASIC 
hierarchical placer, breaks away from this mould in that it does 
allow a cell which was originally assigned to RA to be moved to 

RB, RC or RD. The following sections use Dragon to study the 
effects of partitioning on the quality of placement. 

4.2 Partition and Placement in Hierarchy 

There are two critical parameters that affect the quality of results 
in a hierarchical placement approach: 1). Partitioning the netlist 
into smaller sub-netlists. 2). Assigning these partitions to 
physical regions. We try to study the relations between these two 
aspects and the impact they have on the final placement quality. 
Our study can provide a deeper insight for developing next 
generation placement tools as well as provide insight into the 
loss of quality incurred through hierarchical design flows for 
multi-mill ion gate FPGA designs. 

4.3 Partition Quality vs. Placement Quality  

As indicated in section 4.2, how to perform netlist partitioning 
and how to place partitioned cell clusters are two most important 
aspects in the hierarchical placement context. In this sub-section, 
we designed series of experiments to try to reveal the 
relationship between these two aspects and the final placement 
quality.  

We use Dragon as the test-bed to perform our experiments as 
Dragon is very flexible in adding other components to mimic the 
behaviors of different placement approaches.  

Hierarchical placement algorithms work in a multi-level context. 
Interactions between hierarchical levels also affect the final 
placement quality. In order to focus solely on the two aspects 
pointed out in section 4.2, we designed controlled experiment 
which can filter out the interactions between levels.   

We let our test system behave as if there is only one level of 
hierarchy in the placer. The test placer will divide the original 
netlist into a number of sub-netlists. After that we let our placer 
solve placement problems for each sub-netlist. The final 
placement is obtained by assembling placement results for these 
sub-netlists together onto the original layout area. We test three 
cases which divide the original netlist into 4, 16 or 64 sub-
netlists, respectively. 

For each case, we have 5 different partitioning schemes, Par1, 
Par2, Par3, Par4 and Par5, each of them with a different 
partitioning quality. These five schemes are ordered from the 
highest result quality to the lowest result quality. Par1 is hMetis 
[13] which is one of best existing min-cut partitioners. Other four 
schemes are created by adding some artificial perturbations to 
the partitioning results obtained from Par1. Specifically, Par2 
randomly exchanges 0.5% of cells, Par3 randomly exchanges 1% 
of cells, Par4 randomly exchanges 5% of cells and Par5 randomly 
exchanges 10% of cells between partitions.  

In addition to these 5 partitioning schemes, we tested 3 cluster 
placement schemes, CP1, CP2 and CP3, where CP1 being the 
highest quality scheme and CP3 being the lowest quality scheme. 
CP1 is the regular simulated annealing cluster placement method 
used by Dragon. CP2 is a greedy cluster placement method and 
CP3 is a simulated annealing method which intentionally tries to 
increase the cluster wirelength. 

We can mimic the behavior of a hierarchical placement approach 
by pairing one partitioning scheme with one cluster placement 
scheme. Thus we have a total of 15 configurations with each of 
them being represented by pair { Par[1-5], CP[1-3]} . We picked 
three circuits from the IBM placement benchmark suite to run 
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our experiments. Table 4.1 shows the properties of these three 
circuits. 

Table 4.1. Testing circuit statistics (picked from IBM 
placement benchmark suite). 

circuits cells nets rows white 

space 

core(row) 

  util. 

routing 

 layers 

ibm01 12,028 11,753 132 14.88% 85.12% 4 

ibm08 50,672 48,230 243 9.97% 90.03% 5 

ibm12 68735 68,376 347 14.78% 85.22% 5 

Table 4.2 shows the 4-partition placement results for all 15 
configurations. The results are normalized with the results 
generated by Dragon. Table 4.3 and 4.4 show the placement 
results for the 16-partition and 64-partition case, respectively. 

Table 4.2. One-level hierarchical 4-partition placement 
results comparison (numbers in the table are final total 
wirelength normalized to the results obtained from 
Dragon).  

4-partition Par1 Par2 Par3 Par4 Par5 

CP1 1.008 1.026 1.109 1.428 1.871 

CP2 1.006 1.025 1.108 1.445 1.798 

IB
M

01
 

CP3 1.053 1.087 1.235 1.749 2.351 

CP1 1.026 1.072 1.142 1.358 1.590 

CP2 1.034 1.051 1.068 1.329 1.583 

IB
M

08
 

CP3 1.129 1.127 1.338 2.117 3.015 

CP1 1.020 1.056 1.140 1.554 2.019 

CP2 1.025 1.057 1.153 1.517 2.092 

IB
M

12
 

CP3 1.076 1.123 1.261 2.063 2.908 

 

Table 4.3. One-level hierarchical 16-partition 
placement results comparison. 

16-partition Par1 Par2 Par3 Par4 Par5 

CP1 1.038 1.030 1.100 1.196 1.307 

CP2 1.056 1.060 1.084 1.164 1.384 

IB
M

01
 

CP3 1.907 1.817 2.007 2.727 3.517 

CP1 1.035 1.107 1.080 1.242 1.307 

CP2 1.055 1.088 1.111 1.213 1.338 

IB
M

08
 

CP3 1.756 1.897 2.028 3.076 3.985 

CP1 1.054 1.171 1.153 1.278 1.404 

CP2 1.119 1.108 1.095 1.246 1.369 

IB
M

12
 

CP3 1.912 1.811 2.078 3.111 4.138 

 

4.4 Observations 

The experimental data supports and validates a number of 
intuitions. There are several important observations we can make 
from the experimental data. 

1). We compare results obtained using the same configuration 
but different circuits. They are consistent to a certain extent. 
However, there are discrepancies which are not negligible. For 
example, the configuration { Par2, CP1}  in Table 4.3 are quite 
different for three circuits (1.030 vs. 1.107 vs. 1.171). Thus 
different connectivity configurations have impacts on the 
performance of a certain hierarchical placement algorithm. A 
good placement tool should be adaptable based on the circuits’  
topological information [25]. 

Table 4.4. One-level hierarchical 64-partition 
placement results comparison. 

64-partition Par1 Par2 Par3 Par4 Par5 

CP1 1.088 1.121 1.100 1.173 1.216 

CP2 1.156 1.145 1.169 1.180 1.258 

IB
M

01
 

CP3 2.978 3.050 3.138 3.831 4.619 

CP1 1.165 1.129 1.147 1.180 1.269 

CP2 1.159 1.235 1.228 1.265 1.342 

IB
M

08
 

CP3 2.953 2.953 3.232 4.230 5.360 

CP1 1.162 1.151 1.193 1.293 1.332 

CP2 1.195 1.172 1.218 1.291 1.282 
IB

M
12

 

CP3 3.052 3.072 3.327 4.357 5.351 
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 Figure 4.1. Normalized 4-partition placement 
wirelength obtained by 15 different hierarchical 
configurations. Each configuration is represented by 
pairing one of the 5 partitioning schemes (x-axis) and 
one of the 3 cluster placement schemes (y-axis).  

 

2). The final placement wirelength degrades when a worse 
partitioning scheme is used.  

The placement results degrade from Par1 to Par5 for all circuits 
tested. With 1% of cells being randomly swapped between 
partitions (Par3), the final placement results can be degraded by 
roughly 10%. Fig. 4.1 plots the normalized 4-partition placement 
wirelength for all 15 configurations in a 3D view. From this 
observation, we can argue that improving partitioning quality is 
crucial in all min-cut based hierarchical placement tools. For 
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other tools which perform partitioning based on physical cell 
locations obtained from analytical methods, probably more 
considerations on minimizing interconnections between clusters 
will also be helpful.  

3). The final placement wirelength degrades when a bad cluster 
placement scheme is used.  

If we compare results using the same partitioning scheme but 
different cluster placement schemes, the one obtained by the bad 
cluster placement scheme (CP3) is obviously worse than the 
other two schemes. In majority cases, the final placement result 
of CP1 is better than the result of CP2. This observation shows 
the cluster placement quality correlates with the final placement 
wirelength in general. However, there are several counter 
examples where CP2 outperforms CP1. They will discussed later 
in this sub-section. 

4). Recursive divide-and-conquer approaches indeed have a 
quality loss over "flat" placement approaches. 

Partitioning scheme Par1 and cluster placement scheme CP1 are 
the same schemes used inside Dragon. The only difference 
between Dragon and configuration {Par1, CP1}  is that {Par1, 
CP1}  lets cells remains in their partition while Dragon does not 
have this restriction. Thus the comparison between the results of 
Dragon and the results of { Par1, CP1}  represents the quality loss 
by imposing the divide-and-conquer restriction in the hierarchical 
context. From the data shown in Table 4.2, we find that the final 
wirelength is roughly increased by 2% for the 4-partition case. 
The quality loss (wirelength increase) is higher for the 16 and 
64-partition case (roughly 4% and 12% respectively). 

Please note our test system only has one level of hierarchy. For a 
multi-mill ion gate design, the placement tools have around 10 
hierarchical levels if the quadrisection method is used. Thus it is 
reasonable to believe that a hierarchical placement tool will have 
a quality loss of 10-20% over a "flat" placement tool under the 
assumption that the runtime of the “ flat”  placement tool is not a 
concern. 

5). Partitioning quality affects final placement results less and 
less when the number of partitions increases.  

We compare results from {Par5, CP1}  and results from {Par1, 
CP1} . In Table 4.2 (4-partition case), {Par5, CP1}  produces 
results roughly 80% worse than { Par1, CP1}  does, while in 
Table 4.3 (16-partition case) and Table 4.4 (64-partition case), 
this difference is only 33% and 27%, respectively. 

This is because partitioning correlates with placement better 
when the number of partitions is small. Thus in the 4-partition 
case, a bad partitioning scheme (Par5) would severely affect the 
final placement result. In the 16-partition and 64-partition case, 
while using a better partitioning scheme can stil l help improve 
the final placement (Observation 2), it plays a less important role 
than in the 4-partition case. 

6).A better wirelength at a hierarchical level does not necessarily 
imply a better final placement wirelength.  

This observation is made by the fact that there are a number of 
places where CP2 outperforms CP1 while CP1 is a better cluster 
placement scheme than CP2. Due to the limitation of our test 
system and the nature of our partitioning schemes (randomized 
methods), even with the same partitioning scheme picked, 

different CP schemes most likely have non-identical initial 
clusters/partitions. Thus the numbers shown in the tables have 
some degrees of uncertainty. Nevertheless, it shows a better 
wirelength in a hierarchical level does not guarantee a better 
final wirelength. 

While this is more or less a disappointing observation for a 
placement problem researcher, there is one thing needed to be 
noticed. When a good partitioning scheme is used, hierarchical 
wirelength correlates better with the final wirelength. Most of 
the “bad”  correlation happens when a “bad” partitioning scheme 
is used.  

7). Different partition sizes have trade-offs between each other. 

Three cases are tested in this section, 4-partition, 16-partition 
and 64-partition. Each of them has its own advantages and 
disadvantages. When the number of partitions is small at a given 
hierarchical level, there is a better correlation between 
partitioning and placement and the cluster placement problem is 
almost trivial. The disadvantage is that more hierarchical levels 
are required and there is a quality loss at each level. When the 
number of partitions is large, there is a better correlation 
between the cluster wirelength and the final wirelength and a 
fewer number of total hierarchy is needed. However, getting a 
good clustering and a good cluster placement becomes a non-
trivial problem. 

5. DELAY ESTIMATION 
Delay estimation for FPGAs lacks a coherent methodology. 
Several recent works have tried to estimate wire delays at 
various levels of design stages [4], [5], [11], [12]. Almost all of 
these previous works have exploited features (routing resources, 
gridded architecture etc.) of targeted FPGA architecture to 
estimate delays. Though relevant to the targeted FPGA, most of 
these previous methodologies can not be applied to recent multi-
mill ion gate FPGAs because of the complexity of the estimation 
process [11][12].  

Delay estimation has three basic types [1]: a priori: estimating 
delays before placement and routing, a posteriori: for a given 
placement estimate the routing delays and on-line: estimating 
delays as the placement or routing is going on. In this work we 
will concentrate on a posteriori delay estimation. The models 
developed for a posteriori delay estimation can easily be 
extended to other types of estimation as well.  

Terminologies and Experimental Setup: 
From now on whenever we say distance we mean Manhattan 
distance between the CLBs in which driver and driven pins are 
respectively located. Similarly, delay would mean delay between 
driver and driven pins.  

We will show results on six (multi-mill ion gate) industry 
designs. Details of the benchmarks are in Table 5.1. All the data 
for these experiments was generated using Xilinx’ s Place and 
Route tool, PAR [28]. PAR was run in high-effort mode for 
timing and routing optimization. 

Variables affecting wire delays: 
Some of the variables which traditionally have been explored for 
wire delay estimation are: Fanout of nets (connecting driver-
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driven pin pairs), distance between driver-driven pin pairs and 
routing congestion [12]. Of these, routing congestion is the 
hardest to measure and depends heavily on routing algorithm 
being used. Congestion estimation is beyond the scope of this 
work. We will l imit ourselves to studying the impact of net 
fanout and distance between driver-driven pin pairs on wire 
delays. 

After studying the effectiveness of these, we will propose a more 
realistic variable, number and types of routes  (which most of the 
previous works have overlooked), and show that it correlates 
really well with the delay of pin pair under consideration. 

Table 5.1. Details of the benchmarks 

Design Number of gates  
 

Targeted 
FPGA 

(Virtex-II) 
 

Device Size 
(CLBs) 

 

ind_ccd 168K 2v500 32x24 

ind_st 1.6M 2v1000 40x32 

ind_ink 1.3M 2v1000 40x32 

ind_e5k 9.9M 2v6000 96x88 

ind_apa 7.5M 2v6000 96x88 

ind_com 8.7M 2v8000 112x104 

 

Fanout of the net connecting pin pair 

Fanout of the net has been shown to correlate really well with the 
delay in Standard-Cell design methodologies and has been used 
extensively to derive wire-load models for net delays [3]. 
However, our experiments show that in the FPGA domain a very 
weak correlation exists between the two. In Figure 5.1, we show 
post-routing delay for pin pair (with a distance of 2) versus net 
fanout plot for ind_com design. For different values of the fanout 
the range of delays is almost same, giving rise to the notion that 
fanout has very little impact on delay. The reason why fanout of 
the net does not impact delay lies more in the routing 
architecture of the Xilinx FPGA devices. These devices use 
buffered inter-connects to route the nets [28]. Routing switches 
break the net at regular intervals and hence the traditional fanout 
based wire-load models, using Elmore delay [7], cease to work. 
We will describe the routing architecture of these devices in the 
next a few sub-sections. 

 
Figure 5.1. Net fanout Vs delay for a fixed distance. 

Distance between pin pairs 

Authors in [12] have shown that delay between a pin pair has no 
direct l inear relation-ship with the distance between them. To 
corroborate their observation, for every driver-driven pin pair (for 
nets with fanout of 2) in ind_com design we plot distance versus 
post-routing delay. It is evident from the plot, Figure 5.2,  that 
even though the delay seems to be increasing with the distance, 
for a given distance the range of delays is too large (similar 
results were seen for other testcases). Trying to fit a linear line to 
extrapolate the delay for a given distance will have huge error 
margin. 

 
Figure 5.2. Distance Vs delay for a fixed fanout. 

However, if we plot delays for a given distance, interesting 
patterns emerge. Figure 5.3 shows the plots of delays of all the 
driver-driven pin pairs in ind_com design with a distance of 2. 
We see that most of the delays are centered around very few 
vertical l ines thereby indicating that delays are combination of 
discrete values. 

  
Figure 5.3. Discrete delay bands for a distance of 2. 

To motivate our argument for a discrete delay model, it would 
help to give an overview of routing architecture in Xilinx Virtex-
II devices, details of which can be found in [28].  

Figure 5.4 (squares denote CLBs and rectangles are slices) 
shows types of routes that occur in Virtex-II family of Xilinx 
devices. Long lines span full height and width of the chip, Hex 
lines route signals to every third or sixth CLB in all four 
directions, Double lines route signals to every first or second 
CLB in all four directions, Direct lines connect signals to 
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neighboring blocks and the Fast lines are internal CLB local 
connections. 

 
 

Figure 5.4. Routing lines in Virtex-II devices. 

It is this discrete routing structure which gives rise to vertical 
l ines in Figure 5.3. For a distance of 2 CLBs between a driver-
driven pair, the number of possible routes is limited. Such a 
distance can be routed using either of the following: one double 
line, two double lines, or a direct l ine and a double line etc. The 
delays for these different types of l ines are almost constant 
(minor variations might occur due to switch-box delays) and have 
no relation to each other. For example, delay of a hex line is not 
three times the delay of a double line or six times the delay of a 
direct l ine but is only slightly larger than the delay of a double or 
direct l ine. 

Hence given a placement, the delay estimation problem gets 
reduced to estimate the number and types of routes that will be 
used to route a particular driver-driven pin pair. 

Number and types of routes used to connect pin pair 

Given the placement for two pins, estimating the number and 
types of routes is a non-trivial problem. One has to predict 
almost exactly how the detailed router routes this connection. A 
good timing driven router will try to route driver-driven pin pairs 
on critical paths using as less routing lines as possible. We rely 
on this assumption of the router (use longest line first) to come 
up with our delay estimation algorithm. Let us denote delays of 
different lines by Dlong , Dhex , Ddouble , Ddirect and Dfast  
respectively. Our algorithm for estimating delay between a 
driver-driven pair is given below. 

For each of the six placed and routed benchmark designs we 
estimate delays for all the driver-driven pin pairs in the design 
using algorithm described above. To show the quality of our 
estimation, for ind_com design, we have plotted the difference 
between the estimated delay and the post-routing delay as a 
histogram in Figure 5.5. X-axis of the plot is the difference in 

delays and y-axis is the number of driver-driven pairs with that 
difference. Ideally we would like the histogram-curve to be a 
straight l ine at zero. 

Even with such a simple delay estimation algorithm, our 
histogram-curve is very close to perfect. Most of the driver-
driven delay estimates are within 1.0ns of corresponding post-
routing delays. One more feature of the curve is that they are 
evenly spread around zero. So for a timing path with long logic 
depth, the error in delay estimation might eventually cancel out. 

 
Figure 5.5. Histogram of difference in estimated and 
post-routing delays. 

We also report the estimated longest critical path delay versus 
the actual post-routing path delay. Results are show in the Table 
5.2 below. Our estimated path delay differs from the actual post-

estimate_driver_to_driven_delay( clbDriver, clbDriven ) { 

    if ( distance_between( clbDriver, clbDriven ) == 0 ) { 

       fast  = 1; 

    } else { 

      hori = horizontal_distance( clbDriver, clbDriven ); 

      vert = vertical_distance( clbDriver, clbDriven ); 

      get_num_lines( hori, long, hex, double, direct ); 

      get_num_lines( vert, long, hex, double, direct ); 

   } 

delay =   Dlong*long +  Dhex*hex +  Ddouble*double + 

              Ddirect*direct +  Dfast*fast; 

} 

get_num_lines( dist, long, hex, double, direct ) { 

    long += dist/length_of_long; 

    dist = dist%length_of_long; 

    hex += dist/length_of_hex; 

    dist = dist%length_of_hex; 

    double += dist/length_of_double; 

    dist = dist%length_of_double; 

    direct = dist; 

} 
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routing path delay by 6% on average. It shows that our new 
estimation method is very effective at the placement level. 

Table 5.2. Estimated Vs Post-routing delays. 

Design Estimated path 
delay (ns) 

 

Post-routing 
path delay (ns) 

 

% error 
 

ind_ccd 8.50 9.17 7.30% 

ind_st 17.17 17.14 0.20% 

ind_ink 7.45 7.00 6.43% 

ind_e5k 19.35 23.12 16.3% 

ind_apa 13.63 14.43 5.54% 

ind_com 14.76 14.66 0.68% 

6. CONCLUSION 
FPGA design sizes have seen tremendous growth over the past 
few years. It is clear that hierarchical design methodologies need 
to be introduced to handle the design size and complexity in the 
FPGA domain. Most research work til l date has focused mostly 
on standard cell ASIC design. We have shown that the problem 
formulations and solutions designed in the ASIC domain cannot 
necessarily be transported and made to work in the FPGA 
domain.   

We have studied 3 key ingredients of a hierarchical flow – 
Floorplanning, hierarchical placement, and delay estimation. We 
have formulated the FPGA floorplanning problem and described 
a floorplan representation and proposed a cost function. The 
actual floorplan optimization techniques need to be researched 
and is left as future work.    

We have studied the impact of partitioning and cluster placement 
on the final placement. We conclude that the partitioning quality 
is critically important for producing a high quality final 
placement. We also show that the divide-and-conquer scheme 
will be likely to have a quality loss of 10-20% comparing with an 
ideal “ flag” placement approach. 

We have explored the traditional variables that impact delay 
estimation. Variables such as fanout and Manhattan distance that 
are used extensively in the standard cell ASIC domain cease to 
work in the FPGA domain. We have proposed new variables – 
number and types of routes – to estimate post routing delay at the 
placement level. Results of our estimation algorithm correlate 
very well with the post routing delay numbers and the average 
error in prediction is within 6%. 
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