
Multi-Million Gate FPGA Physical Design Challenges

ABSTRACT
The recent past has seen a tremendous increase in the size of
design circuits that can be implemented in a single FPGA. These
large design sizes significantly impact cycle time due to design
automation software runtimes and an increased number of
performance based iterations. New FPGA physical design
approaches need to be utilized to alleviate some of these
problems. Hierarchical approaches to divide and conquer the
design, early estimation tools for design exploration, and
physical optimizations are some of the key methodologies that
have to be introduced in the FPGA physical design tools. This
paper will investigate the loss/benefit in quality of results due to
hierarchical approaches and compare and contrast some of the
design automation problem formulations and solutions needed
for FPGAs versus known standard cell ASIC approaches.

1. INTRODUCTION
Advances in process technology are enabling a profound increase
in the number of applications that can be realized using FPGAs.
Devices are now being fabricated in advanced, ultra deep sub-
micron technology with multi-million gate capacity and clock
speed capability approaching 400 MHz. Difficult design
problems associated with interconnect delay on large designs are
now being seen. As witnessed when high gate-count deep sub-
micron ASIC designs first emerged, interconnect can account for
as much as 70-90% of overall circuit delay as critical dimensions
shrink below 0.18um. These large design sizes also significantly
impact cycle time due to software runtimes and an increased
number of performance based iterations. EDA tools for FPGA
design have failed to keep pace with advances in complex high-
density devices. Today, RTL is synthesized using coarse
interconnect estimates and then mapped, placed, and routed. If
the design fails to meet performance constraints, the designer
must make changes to the RTL and/or the constraints and then
continually iterate the entire design through the flow.
Hierarchical approaches that partition the design into smaller
pieces, implement them separately, and assemble the pieces
together in a final assembly phase need to be introduced in the
FPGA physical design flow. A hierarchical design flow helps
manage the design size complexity for the design team, makes
the design flow more predictable, and enables incremental
design. Researchers, however, have long claimed that such
partitioning of the design leads to sub-optimal results and poor
implementations. This paper will quantify the loss in such
quality due to design partitioning. The Dragon [24] placement
tool framework is used to show our results.

Floorplanning is a key ingredient of the hierarchical approaches.
FPGA floorplanning has been tackled by [8]. [8] makes
simplifying assumptions about the FPGA architectures. They
describe the FPGA architecture as simply rows and columns of

 CLBs. In this paper, we will describe the new generation FPGA
architectures using the Xilinx Virtex-II as a template. The
floorplanning problem for these next generation FPGAs is
formulated and a desirable cost function is defined in this paper.

Estimation tools at the floorplan level and the placement level
are key to reducing the number of iterations done between RTL
and the final routed design. Good estimation tools enable a
shorter iteration loop between RTL and constraints changes to
the floorplan or the placement. This paper will also analyze the
variables involved in estimating delays at the placement level.

The paper is organized as follows: Section 2 will give the basics
of the Virtex-II architecture. This will form the context for the
rest of the paper. In section 3 we will define the floorplanning
problem for FPGAs using Virtex-II series as a template. In
section 4 we analyze the loss of quality in partitioning the design
in smaller pieces to be used in hierarchical design flows. In
section 5 we will discuss delay estimation techniques and we
will conclude with section 6.

2. FPGA ARCHITECTURE
Till the recent past FPGAs were laid out as rows and columns of
CLBs. Recently, however, this rule of square shaped uniform
blocks distributed throughout the FPGA fabric has been broken.
With greater requirements on the type of logic that needs to be
implemented on the same die the FPGA fabric is looking more
and more heterogeneous. Figure 2.1 shows the Xilinx xc2v1000
Virtex-II device. The display of the architecture is a logical or an
abstract view of the actual device. Each square unit is a CLB.
This device has 4 “slices” within each CLB (Configurable Logic
Block). Each slice contains 2 4-input LUTs and 2 Flip Flop.
RAM and Multiplier blocks are distributed in columns through
the device. Each RAM and a Multiplier has a width of half a
CLB-column and height of 4 CLB-rows.

VirtexII-PRO is an extension of the Virtex-II architecture and has
power PC cores distributed evenly in the FPGA fabric. More
extensions are expected to follow which will make this
simplifying assumption about a matrix of CLBs less and less
accurate.

3. FLOORPLANNING
Floorplanning is a key step in a hierarchical design flow.
Floorplanning is performed to get the locations and sizes of the
modules to be implemented.

Traditionally the floorplanning problem has been defined to be
an area packing problem on a set of modules; some that are hard
macros and have fixed height and width, others that are soft
modules that have a range of aspect ratios and areas to choose
from. Techniques involve having a compact representation of a
floorplan [9,10,15,16,17,18,19,20,21] and using simulated

Maogang Wang
Cadence Design Systems

mgwang@cadence.com

Abhishek Ranjan
Hier Design Inc

ranjan@hierdesign.com

Salil Raje
Hier Design Inc

salil@hierdesign.com

891

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

annealing moves to modify the floorplan. There has been some
work done for fixed outline floorplanning [22] but most of these
are extensions of the area packing formulations.

 Figure 2.1: xc2v1000 architecture

Floorplanning in the FPGA domain needs a significantly
different problem formulation. The FPGA fabric is made up of
discrete number of resources ni of type i. The FPGA modules
have discrete area requirements. Each module M j that needs to
be placed and shaped would have certain resource requirements
such as xj1 of type n1 and xj2 of type n2 and in general xji of type
ni. The blocks need to be placed and shaped so as to fulfi ll the
resource requirements, fit in the FPGA device with no overlaps
and optimize a given cost. Obviously, the traditional floorplan
representations and techniques will not be sufficient to meet the
needs of the described problem. For one, the traditional
floorplan representations assume a continuous space and all
locations are available for placement of modules. Secondly, the
techniques assume a single area resource requirement that is a
continuous function of height and width making the module areas
additive.

The cost function to be optimized by the floorplanner needs to
account for the interconnect length between modules, the timing
properties of the design once its fully implemented through
placement and routing, and the routing congestion.

The following subsections will propose a floorplan representation
and a “good” cost function for optimization. This paper, however,
leaves the actual optimization strategies as future research work.

3.1 Floorplan Representation
The FPGA module floorplan can easily be represented using the
location of the lower left corner of the module and the shape of
the module.

If, S = {(I, J)|1≤I≤Number of columns in device, 1≤J≤Number of rows in
device}

If M is a set of modules to be floorplanned, then, the set of all
possible module placements can be represented as P = {(m, l, s)|
m∈M, l∈S, s∈S}, where m is the module, l is the location of the
lower left corner of the module and s is the bounding box height

and width of the module. Also, the bounding box for any of the
modules defined by l and s needs to be contained within the
device boundary. The described representation is not suitable for
standard cell ASIC floorplanning because of the continuous
nature of the space that can make |P| infinite. As such in the
FPGA domain |P| is O(|M|n4), where n is max(Number of
columns in device , Number of rows in device).

3.2 Optimization Criteria
The cost function used in standard cell ASIC floorplanning
literature is usually a combination of area optimization and
connectivity length between modules. The FPGA floorplanning
problem is a fixed outline problem and hence area packing is of
little consequence. The cost function needs to account for total
wirelength (routability) and the timing characteristics of the
design. The true measure of a good floorplan can only be
ascertained once all modules are physically implemented through
place and route. During the actual optimization process,
however, the module placement and routing is usually not
available. In fact, it is conceivable that even the netlist for these
modules are not available at the time of floorplanning. The
incompleteness of the design makes defining a “good” cost
function during floorplanning a difficult problem.

Generally, it has been observed that given reasonable module
partitioning – there are significantly more nets within the module
than there are outside the module [6]. Using this observation we
claim that it is significantly more important to shape the modules
such that there is higher probability of the average internal net
lengths to be smaller than the average external net length. The
average internal net length can be shortened by making the
aspect ratio of the modules as close as possible to 1.0. Secondly,
care can be taken during module generation for hierarchical
design to latch all the module boundaries such that most timing
critical paths after place and route are within the module and do
not cross module boundaries.

The above observations lead us to the following cost function: ���
Σα �����	��
���
������ β ���	��������������
���
����	
�������� ��!#"�� γ ��� $��������	%�"

Where �&����
�� is the aspect ratio of the module, external-wire-
length is the total wirelength measured as center-to-center
Manhattan distance between modules times the number of nets
between module pairs, and ��$���������% is the total overlap between

pairs of module rectangle boundaries; α, β, and γ are weights
used to trade off the different cost criteria. In general, based on
the above observations γ>>α>>β. The location and shape that
does not satisfy all the resource requirements of a module as
explained in the problem formulation is not considered to be
legal.

Given the above floorplan problem formulation, representation
and a cost function the problem can be solved using a simulated
annealing framework, but, we leave the actual optimization
technique for further research and scrutiny.

Figure 3.1 shows a sample solution for a design with 7 modules.

RAM and Mult
Columns

CLB

892

Figure 3.1: Sample Floorplan: Module E is placed far
from F to account for the RAM resource requirement
on module E.

4. HIERARCHICAL PLACEMENT
Increasing FPGA design size and complexity makes partitioning
an important aspect of the physical design flow. Partitioning is
the process of dividing the design up into smaller and more
manageable modules. The goal of the partitioning step is to
minimize the interdependence between the partitioned modules.
Once partitioned, each of the modules are then optimized
independently of each other and assembled together in a final
assembly phase [2, 23]. Naturally, the smaller the size of the
partitions and more dependence they have on each other the
greater the loss in quality of results as compared to optimizing
the design in its entirety. This section quantifies this very loss in
quality due to partitioning. The framework used to study
partitioning and its effect on the final quality of results is a
hierarchical placement tool that mimics just such partitioning
techniques [24, 26, 27].

4.1 Overview of Hierarchical Placement

The hierarchical placement approach is essentially a divide-and-
conquer scheme. At each hierarchical level, the original
placement problem will be divided into several sub-problems.
Heuristic algorithms are then used to solve each of the sub-
problems. In this approach, the sub-problems never interact with
each other again. The final placement solution is just the union
of solutions collected from all the solved sub-problems. For
example, assume at the highest hierarchical level, the placer
divides the original netlist into four parts: A, B, C and D and
assigns them to 4 disjoint regions RA, RB, RC and RD
respectively. If a cell is assigned to A and RA at this stage, it will
never appear in the physical regions: RB, RC or RD.

Divide-and-conquer is one of the most popular placement
approach, however, Dragon [24], a high-performance ASIC
hierarchical placer, breaks away from this mould in that it does
allow a cell which was originally assigned to RA to be moved to

RB, RC or RD. The following sections use Dragon to study the
effects of partitioning on the quality of placement.

4.2 Partition and Placement in Hierarchy

There are two critical parameters that affect the quality of results
in a hierarchical placement approach: 1). Partitioning the netlist
into smaller sub-netlists. 2). Assigning these partitions to
physical regions. We try to study the relations between these two
aspects and the impact they have on the final placement quality.
Our study can provide a deeper insight for developing next
generation placement tools as well as provide insight into the
loss of quality incurred through hierarchical design flows for
multi-mill ion gate FPGA designs.

4.3 Partition Quality vs. Placement Quality

As indicated in section 4.2, how to perform netlist partitioning
and how to place partitioned cell clusters are two most important
aspects in the hierarchical placement context. In this sub-section,
we designed series of experiments to try to reveal the
relationship between these two aspects and the final placement
quality.

We use Dragon as the test-bed to perform our experiments as
Dragon is very flexible in adding other components to mimic the
behaviors of different placement approaches.

Hierarchical placement algorithms work in a multi-level context.
Interactions between hierarchical levels also affect the final
placement quality. In order to focus solely on the two aspects
pointed out in section 4.2, we designed controlled experiment
which can filter out the interactions between levels.

We let our test system behave as if there is only one level of
hierarchy in the placer. The test placer will divide the original
netlist into a number of sub-netlists. After that we let our placer
solve placement problems for each sub-netlist. The final
placement is obtained by assembling placement results for these
sub-netlists together onto the original layout area. We test three
cases which divide the original netlist into 4, 16 or 64 sub-
netlists, respectively.

For each case, we have 5 different partitioning schemes, Par1,
Par2, Par3, Par4 and Par5, each of them with a different
partitioning quality. These five schemes are ordered from the
highest result quality to the lowest result quality. Par1 is hMetis
[13] which is one of best existing min-cut partitioners. Other four
schemes are created by adding some artificial perturbations to
the partitioning results obtained from Par1. Specifically, Par2
randomly exchanges 0.5% of cells, Par3 randomly exchanges 1%
of cells, Par4 randomly exchanges 5% of cells and Par5 randomly
exchanges 10% of cells between partitions.

In addition to these 5 partitioning schemes, we tested 3 cluster
placement schemes, CP1, CP2 and CP3, where CP1 being the
highest quality scheme and CP3 being the lowest quality scheme.
CP1 is the regular simulated annealing cluster placement method
used by Dragon. CP2 is a greedy cluster placement method and
CP3 is a simulated annealing method which intentionally tries to
increase the cluster wirelength.

We can mimic the behavior of a hierarchical placement approach
by pairing one partitioning scheme with one cluster placement
scheme. Thus we have a total of 15 configurations with each of
them being represented by pair { Par[1-5], CP[1-3]} . We picked
three circuits from the IBM placement benchmark suite to run

A

B

C D

E F G

893

our experiments. Table 4.1 shows the properties of these three
circuits.

Table 4.1. Testing circuit statistics (picked from IBM
placement benchmark suite).

circuits cells nets rows white

space

core(row)

 util.

routing

 layers

ibm01 12,028 11,753 132 14.88% 85.12% 4

ibm08 50,672 48,230 243 9.97% 90.03% 5

ibm12 68735 68,376 347 14.78% 85.22% 5

Table 4.2 shows the 4-partition placement results for all 15
configurations. The results are normalized with the results
generated by Dragon. Table 4.3 and 4.4 show the placement
results for the 16-partition and 64-partition case, respectively.

Table 4.2. One-level hierarchical 4-partition placement
results comparison (numbers in the table are final total
wirelength normalized to the results obtained from
Dragon).

4-partition Par1 Par2 Par3 Par4 Par5

CP1 1.008 1.026 1.109 1.428 1.871

CP2 1.006 1.025 1.108 1.445 1.798

IB
M

01

CP3 1.053 1.087 1.235 1.749 2.351

CP1 1.026 1.072 1.142 1.358 1.590

CP2 1.034 1.051 1.068 1.329 1.583

IB
M

08

CP3 1.129 1.127 1.338 2.117 3.015

CP1 1.020 1.056 1.140 1.554 2.019

CP2 1.025 1.057 1.153 1.517 2.092

IB
M

12

CP3 1.076 1.123 1.261 2.063 2.908

Table 4.3. One-level hierarchical 16-partition
placement results comparison.

16-partition Par1 Par2 Par3 Par4 Par5

CP1 1.038 1.030 1.100 1.196 1.307

CP2 1.056 1.060 1.084 1.164 1.384

IB
M

01

CP3 1.907 1.817 2.007 2.727 3.517

CP1 1.035 1.107 1.080 1.242 1.307

CP2 1.055 1.088 1.111 1.213 1.338

IB
M

08

CP3 1.756 1.897 2.028 3.076 3.985

CP1 1.054 1.171 1.153 1.278 1.404

CP2 1.119 1.108 1.095 1.246 1.369

IB
M

12

CP3 1.912 1.811 2.078 3.111 4.138

4.4 Observations

The experimental data supports and validates a number of
intuitions. There are several important observations we can make
from the experimental data.

1). We compare results obtained using the same configuration
but different circuits. They are consistent to a certain extent.
However, there are discrepancies which are not negligible. For
example, the configuration { Par2, CP1} in Table 4.3 are quite
different for three circuits (1.030 vs. 1.107 vs. 1.171). Thus
different connectivity configurations have impacts on the
performance of a certain hierarchical placement algorithm. A
good placement tool should be adaptable based on the circuits’
topological information [25].

Table 4.4. One-level hierarchical 64-partition
placement results comparison.

64-partition Par1 Par2 Par3 Par4 Par5

CP1 1.088 1.121 1.100 1.173 1.216

CP2 1.156 1.145 1.169 1.180 1.258

IB
M

01

CP3 2.978 3.050 3.138 3.831 4.619

CP1 1.165 1.129 1.147 1.180 1.269

CP2 1.159 1.235 1.228 1.265 1.342

IB
M

08

CP3 2.953 2.953 3.232 4.230 5.360

CP1 1.162 1.151 1.193 1.293 1.332

CP2 1.195 1.172 1.218 1.291 1.282
IB

M
12

CP3 3.052 3.072 3.327 4.357 5.351

1
2

3
4

5 CP1

CP2

CP30

0.5

1

1.5

2

2.5

 Figure 4.1. Normalized 4-partition placement
wirelength obtained by 15 different hierarchical
configurations. Each configuration is represented by
pairing one of the 5 partitioning schemes (x-axis) and
one of the 3 cluster placement schemes (y-axis).

2). The final placement wirelength degrades when a worse
partitioning scheme is used.

The placement results degrade from Par1 to Par5 for all circuits
tested. With 1% of cells being randomly swapped between
partitions (Par3), the final placement results can be degraded by
roughly 10%. Fig. 4.1 plots the normalized 4-partition placement
wirelength for all 15 configurations in a 3D view. From this
observation, we can argue that improving partitioning quality is
crucial in all min-cut based hierarchical placement tools. For

894

other tools which perform partitioning based on physical cell
locations obtained from analytical methods, probably more
considerations on minimizing interconnections between clusters
will also be helpful.

3). The final placement wirelength degrades when a bad cluster
placement scheme is used.

If we compare results using the same partitioning scheme but
different cluster placement schemes, the one obtained by the bad
cluster placement scheme (CP3) is obviously worse than the
other two schemes. In majority cases, the final placement result
of CP1 is better than the result of CP2. This observation shows
the cluster placement quality correlates with the final placement
wirelength in general. However, there are several counter
examples where CP2 outperforms CP1. They will discussed later
in this sub-section.

4). Recursive divide-and-conquer approaches indeed have a
quality loss over "flat" placement approaches.

Partitioning scheme Par1 and cluster placement scheme CP1 are
the same schemes used inside Dragon. The only difference
between Dragon and configuration {Par1, CP1} is that {Par1,
CP1} lets cells remains in their partition while Dragon does not
have this restriction. Thus the comparison between the results of
Dragon and the results of { Par1, CP1} represents the quality loss
by imposing the divide-and-conquer restriction in the hierarchical
context. From the data shown in Table 4.2, we find that the final
wirelength is roughly increased by 2% for the 4-partition case.
The quality loss (wirelength increase) is higher for the 16 and
64-partition case (roughly 4% and 12% respectively).

Please note our test system only has one level of hierarchy. For a
multi-mill ion gate design, the placement tools have around 10
hierarchical levels if the quadrisection method is used. Thus it is
reasonable to believe that a hierarchical placement tool will have
a quality loss of 10-20% over a "flat" placement tool under the
assumption that the runtime of the “ flat” placement tool is not a
concern.

5). Partitioning quality affects final placement results less and
less when the number of partitions increases.

We compare results from {Par5, CP1} and results from {Par1,
CP1} . In Table 4.2 (4-partition case), {Par5, CP1} produces
results roughly 80% worse than { Par1, CP1} does, while in
Table 4.3 (16-partition case) and Table 4.4 (64-partition case),
this difference is only 33% and 27%, respectively.

This is because partitioning correlates with placement better
when the number of partitions is small. Thus in the 4-partition
case, a bad partitioning scheme (Par5) would severely affect the
final placement result. In the 16-partition and 64-partition case,
while using a better partitioning scheme can stil l help improve
the final placement (Observation 2), it plays a less important role
than in the 4-partition case.

6).A better wirelength at a hierarchical level does not necessarily
imply a better final placement wirelength.

This observation is made by the fact that there are a number of
places where CP2 outperforms CP1 while CP1 is a better cluster
placement scheme than CP2. Due to the limitation of our test
system and the nature of our partitioning schemes (randomized
methods), even with the same partitioning scheme picked,

different CP schemes most likely have non-identical initial
clusters/partitions. Thus the numbers shown in the tables have
some degrees of uncertainty. Nevertheless, it shows a better
wirelength in a hierarchical level does not guarantee a better
final wirelength.

While this is more or less a disappointing observation for a
placement problem researcher, there is one thing needed to be
noticed. When a good partitioning scheme is used, hierarchical
wirelength correlates better with the final wirelength. Most of
the “bad” correlation happens when a “bad” partitioning scheme
is used.

7). Different partition sizes have trade-offs between each other.

Three cases are tested in this section, 4-partition, 16-partition
and 64-partition. Each of them has its own advantages and
disadvantages. When the number of partitions is small at a given
hierarchical level, there is a better correlation between
partitioning and placement and the cluster placement problem is
almost trivial. The disadvantage is that more hierarchical levels
are required and there is a quality loss at each level. When the
number of partitions is large, there is a better correlation
between the cluster wirelength and the final wirelength and a
fewer number of total hierarchy is needed. However, getting a
good clustering and a good cluster placement becomes a non-
trivial problem.

5. DELAY ESTIMATION
Delay estimation for FPGAs lacks a coherent methodology.
Several recent works have tried to estimate wire delays at
various levels of design stages [4], [5], [11], [12]. Almost all of
these previous works have exploited features (routing resources,
gridded architecture etc.) of targeted FPGA architecture to
estimate delays. Though relevant to the targeted FPGA, most of
these previous methodologies can not be applied to recent multi-
mill ion gate FPGAs because of the complexity of the estimation
process [11][12].

Delay estimation has three basic types [1]: a priori: estimating
delays before placement and routing, a posteriori: for a given
placement estimate the routing delays and on-line: estimating
delays as the placement or routing is going on. In this work we
will concentrate on a posteriori delay estimation. The models
developed for a posteriori delay estimation can easily be
extended to other types of estimation as well.

Terminologies and Experimental Setup:
From now on whenever we say distance we mean Manhattan
distance between the CLBs in which driver and driven pins are
respectively located. Similarly, delay would mean delay between
driver and driven pins.

We will show results on six (multi-mill ion gate) industry
designs. Details of the benchmarks are in Table 5.1. All the data
for these experiments was generated using Xilinx’ s Place and
Route tool, PAR [28]. PAR was run in high-effort mode for
timing and routing optimization.

Variables affecting wire delays:
Some of the variables which traditionally have been explored for
wire delay estimation are: Fanout of nets (connecting driver-

895

driven pin pairs), distance between driver-driven pin pairs and
routing congestion [12]. Of these, routing congestion is the
hardest to measure and depends heavily on routing algorithm
being used. Congestion estimation is beyond the scope of this
work. We will l imit ourselves to studying the impact of net
fanout and distance between driver-driven pin pairs on wire
delays.

After studying the effectiveness of these, we will propose a more
realistic variable, number and types of routes (which most of the
previous works have overlooked), and show that it correlates
really well with the delay of pin pair under consideration.

Table 5.1. Details of the benchmarks

Design Number of gates

Targeted
FPGA

(Virtex-II)

Device Size
(CLBs)

ind_ccd 168K 2v500 32x24

ind_st 1.6M 2v1000 40x32

ind_ink 1.3M 2v1000 40x32

ind_e5k 9.9M 2v6000 96x88

ind_apa 7.5M 2v6000 96x88

ind_com 8.7M 2v8000 112x104

Fanout of the net connecting pin pair

Fanout of the net has been shown to correlate really well with the
delay in Standard-Cell design methodologies and has been used
extensively to derive wire-load models for net delays [3].
However, our experiments show that in the FPGA domain a very
weak correlation exists between the two. In Figure 5.1, we show
post-routing delay for pin pair (with a distance of 2) versus net
fanout plot for ind_com design. For different values of the fanout
the range of delays is almost same, giving rise to the notion that
fanout has very little impact on delay. The reason why fanout of
the net does not impact delay lies more in the routing
architecture of the Xilinx FPGA devices. These devices use
buffered inter-connects to route the nets [28]. Routing switches
break the net at regular intervals and hence the traditional fanout
based wire-load models, using Elmore delay [7], cease to work.
We will describe the routing architecture of these devices in the
next a few sub-sections.

Figure 5.1. Net fanout Vs delay for a fixed distance.

Distance between pin pairs

Authors in [12] have shown that delay between a pin pair has no
direct l inear relation-ship with the distance between them. To
corroborate their observation, for every driver-driven pin pair (for
nets with fanout of 2) in ind_com design we plot distance versus
post-routing delay. It is evident from the plot, Figure 5.2, that
even though the delay seems to be increasing with the distance,
for a given distance the range of delays is too large (similar
results were seen for other testcases). Trying to fit a linear line to
extrapolate the delay for a given distance will have huge error
margin.

Figure 5.2. Distance Vs delay for a fixed fanout.

However, if we plot delays for a given distance, interesting
patterns emerge. Figure 5.3 shows the plots of delays of all the
driver-driven pin pairs in ind_com design with a distance of 2.
We see that most of the delays are centered around very few
vertical l ines thereby indicating that delays are combination of
discrete values.

Figure 5.3. Discrete delay bands for a distance of 2.

To motivate our argument for a discrete delay model, it would
help to give an overview of routing architecture in Xilinx Virtex-
II devices, details of which can be found in [28].

Figure 5.4 (squares denote CLBs and rectangles are slices)
shows types of routes that occur in Virtex-II family of Xilinx
devices. Long lines span full height and width of the chip, Hex
lines route signals to every third or sixth CLB in all four
directions, Double lines route signals to every first or second
CLB in all four directions, Direct lines connect signals to

896

neighboring blocks and the Fast lines are internal CLB local
connections.

Figure 5.4. Routing lines in Virtex-II devices.

It is this discrete routing structure which gives rise to vertical
l ines in Figure 5.3. For a distance of 2 CLBs between a driver-
driven pair, the number of possible routes is limited. Such a
distance can be routed using either of the following: one double
line, two double lines, or a direct l ine and a double line etc. The
delays for these different types of l ines are almost constant
(minor variations might occur due to switch-box delays) and have
no relation to each other. For example, delay of a hex line is not
three times the delay of a double line or six times the delay of a
direct l ine but is only slightly larger than the delay of a double or
direct l ine.

Hence given a placement, the delay estimation problem gets
reduced to estimate the number and types of routes that will be
used to route a particular driver-driven pin pair.

Number and types of routes used to connect pin pair

Given the placement for two pins, estimating the number and
types of routes is a non-trivial problem. One has to predict
almost exactly how the detailed router routes this connection. A
good timing driven router will try to route driver-driven pin pairs
on critical paths using as less routing lines as possible. We rely
on this assumption of the router (use longest line first) to come
up with our delay estimation algorithm. Let us denote delays of
different lines by Dlong , Dhex , Ddouble , Ddirect and Dfast
respectively. Our algorithm for estimating delay between a
driver-driven pair is given below.

For each of the six placed and routed benchmark designs we
estimate delays for all the driver-driven pin pairs in the design
using algorithm described above. To show the quality of our
estimation, for ind_com design, we have plotted the difference
between the estimated delay and the post-routing delay as a
histogram in Figure 5.5. X-axis of the plot is the difference in

delays and y-axis is the number of driver-driven pairs with that
difference. Ideally we would like the histogram-curve to be a
straight l ine at zero.

Even with such a simple delay estimation algorithm, our
histogram-curve is very close to perfect. Most of the driver-
driven delay estimates are within 1.0ns of corresponding post-
routing delays. One more feature of the curve is that they are
evenly spread around zero. So for a timing path with long logic
depth, the error in delay estimation might eventually cancel out.

Figure 5.5. Histogram of difference in estimated and
post-routing delays.

We also report the estimated longest critical path delay versus
the actual post-routing path delay. Results are show in the Table
5.2 below. Our estimated path delay differs from the actual post-

estimate_driver_to_driven_delay(clbDriver, clbDriven) {

 if (distance_between(clbDriver, clbDriven) == 0) {

 fast = 1;

 } else {

 hori = horizontal_distance(clbDriver, clbDriven);

 vert = vertical_distance(clbDriver, clbDriven);

 get_num_lines(hori, long, hex, double, direct);

 get_num_lines(vert, long, hex, double, direct);

 }

delay = Dlong*long + Dhex*hex + Ddouble*double +

 Ddirect*direct + Dfast*fast;

}

get_num_lines(dist, long, hex, double, direct) {

 long += dist/length_of_long;

 dist = dist%length_of_long;

 hex += dist/length_of_hex;

 dist = dist%length_of_hex;

 double += dist/length_of_double;

 dist = dist%length_of_double;

 direct = dist;

}

Long

Hex

Double

Direct

Fast

897

routing path delay by 6% on average. It shows that our new
estimation method is very effective at the placement level.

Table 5.2. Estimated Vs Post-routing delays.

Design Estimated path
delay (ns)

Post-routing
path delay (ns)

% error

ind_ccd 8.50 9.17 7.30%

ind_st 17.17 17.14 0.20%

ind_ink 7.45 7.00 6.43%

ind_e5k 19.35 23.12 16.3%

ind_apa 13.63 14.43 5.54%

ind_com 14.76 14.66 0.68%

6. CONCLUSION
FPGA design sizes have seen tremendous growth over the past
few years. It is clear that hierarchical design methodologies need
to be introduced to handle the design size and complexity in the
FPGA domain. Most research work til l date has focused mostly
on standard cell ASIC design. We have shown that the problem
formulations and solutions designed in the ASIC domain cannot
necessarily be transported and made to work in the FPGA
domain.

We have studied 3 key ingredients of a hierarchical flow –
Floorplanning, hierarchical placement, and delay estimation. We
have formulated the FPGA floorplanning problem and described
a floorplan representation and proposed a cost function. The
actual floorplan optimization techniques need to be researched
and is left as future work.

We have studied the impact of partitioning and cluster placement
on the final placement. We conclude that the partitioning quality
is critically important for producing a high quality final
placement. We also show that the divide-and-conquer scheme
will be likely to have a quality loss of 10-20% comparing with an
ideal “ flag” placement approach.

We have explored the traditional variables that impact delay
estimation. Variables such as fanout and Manhattan distance that
are used extensively in the standard cell ASIC domain cease to
work in the FPGA domain. We have proposed new variables –
number and types of routes – to estimate post routing delay at the
placement level. Results of our estimation algorithm correlate
very well with the post routing delay numbers and the average
error in prediction is within 6%.

7. REFERENCES
[1] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A.
Zelikovsky, “On Wirelength Estimations for Row-based Placement,” ISPD,
pp. 4-11, 1998.

[2] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection
Alone Produce Routable Placements?” in Design Automation Conference,
pp. 477-482, 2000

[3] C. Chen and C. Tsui, “Timing Optimization of Logic Network using
Gate Duplication” , ASP-DAC, pp. 233-236, 1999.

[4] C. S. Chen, Y.-W. Tsay, T. HwangA. C. H. Wu and Y.-L. Lin,
“Combining Technology Mapping and Placement for Delay-Optimization in
FPGA Designs,” ICCAD, pp. 240-247, 1993.

[5] J. Cong and Y. Ding, “An Optimal Technology Mapping Algorithm for
Delay Optimization in Lookup-Table Based FPGA Designs,” ICCAD, pp.
48-53, 1992.

[6] W. E. Donath, “Placement and average interconnection lengths of
computer logic” , IEEE Transactions on Circuits and Systems, CAS-
26(4):272-277, April 1979.

[7] W. C. Elmore, “The Transient Response of Damped Linear Networks
with Particular Regard to Wide Band Amplifiers,” J. Applied Physics, 19(1),
1948.

[8] J. M. Emmert, and D. Bhatia, “A Methodology for Fast FPGA
Floorplanning”, Proc. FPGA, 1999.

[9] P. N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-Tree Representation
of Non-Slicing Floorplan and Its Applications” , Proc. DAC, pp. 268-273,
1999.

[10] M. Z. Kang and W. Dai., “Arbitrary Rectilinear Block Packing Based
on Sequence Pair” , Proc. ICCAD, pp. 259-266, 1998

[11] T. Karnik, “Hierarchical Timing-Driven Partitioning and Placement for
Symmetrical FPGAs,” PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

[12] T. Karnik and S. M. Kang, “An Empirical Model For Accurate
Estimation of Routing Delay in FPGAs,” ICCAD, pp. 328-331, 1995.

[13] G. Karypis and V. Kumar, “Multilevel k-way Hyper-graph
Partitioning”, in Design Automation Conference, pp. 343-348, 1999

[14] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich,
“GORDIAN: VLSI Placement by Quadratic Programming and Slicing
Optimization” , IEEE Transactions on Computer Aided Design, 10(3): 365-
370, 1991

[15] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, “VLSI Module
Placement Based on Rectangle-Packing by the Sequence Pair” , IEEE Trans.
On CAD, vol 15(12), pp. 1518-1524, 1996

[16] R. Nair, C. L. Berman, P. Hauge, E. Yoffa, “Generation of Performance
Constraints for Layout” , IEEE Trans. On CAD, vol. 8(8), pp. 860-874,
1989.

[17] R. H. J. M. Otten, “Efficient Floorplan Optimization” , ICCD, pp. 499-
503, IEEE/ACM, 1983

[18] R. H. J. M. Otten, “Automatic Floorplan Design” , Proc. DAC, pp.261-
267, 1992

[19] L. Stockmeyer, “Optimal Orientation of Cells in Slicing Floorplan
Designs” , Information and Control,57(2), pp. 91-101, 1983

[20] X. Tang, R. Tian and D. F. Wong, “Fast Evaluation of Sequence Pair in
Block Placement by Longest Common Subsequence Computation” , DATE
2000, pp. 106-111.

[21] X. Tang and D. F. Wong, “FAST-SP: A Fast Algorithm for Block
Placement Based on Sequence Pair” , ASPDAC 2001.

[22] A. Ranjan, K. Bazargan, M. Sarrafzadeh, "Fast Hierarchical
Floorplanning with Congestion and Timing Control", IEEE International
Conference on Computer Design (ICCD), pp. 357-362, September 2000.

[23] J. Vygen, "Algorithms For Large-scale Flat Placement", Proc. Design
Automation Conference, pp. 746-51, 1997.

[24] M. Wang, X. Yang and M. Sarrafzadeh, “Dragon2000: Standard-Cell
Placement Tool For Large Industry Circuits” , ICCAD, pp. 160-163, 2000

[25] H. Xu, M. Wang, B. Choi and M. Sarrafzadeh, “A Trade-Off Oriented
Placement Tool” , ICCAD, 2002

[26] X. Yang, B. Choi and M. Sarrafzadeh, “A Standard-Cell Placement
Tool for Designs with High Row Utilization” , ICCD, pp. 45-47, 2002

[27] X. Yang, B. Choi and M. Sarrafzadeh, “Routability Driven White
Space Allocation for Fixed-Die Standard-Cell Placement” , ISPD, 2002

[28] Xilinx Inc., http://www.xilinx.com/

898

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

