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Three-dimensional Green’s functions for
two-dimensional quasi-crystal bimaterials

BY YANG GAO* AND ANDREAS RICOEUR

Institute of Mechanics, University of Kassel, Kassel 34125, Germany

Owing to their specific structure, which can neither be classified as crystalline nor
amorphous, quasi-crystals (QCs) exhibit properties that are interesting to both material
science and mathematical physics or continuum mechanics. Within the framework of
a mathematical theory of elasticity, one major focus is on features evolving from the
coupling of phonon and phason fields, which is not observed in classical crystalline
or amorphous materials. This paper deals with the problems of combinations of point
phonon forces and point phason forces, which are applied to the interior of infinite solids
and bimaterial solids of two-dimensional hexagonal QCs. By using the general solution of
QCs, a series of displacement functions is adopted to obtain the analytical results when
the two half-spaces are supposed to be ideally bonded or to be in smooth contact. In the
final expressions, we provide three-dimensional Green’s functions for infinite bimaterial
QC solids in the closed form, which are very convenient to be used in the study of
dislocations, cracks and inhomogeneities of the new solid phase. Furthermore, the paper
is concluded by a discussion of some special cases, in which Green’s functions for infinite
transversely isotropic solids and Green’s functions for a half-space with free or fixed
boundary are given.
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1. Introduction

A two-dimensional quasi-crystal (QC) is defined as a three-dimensional body in
which the atom arrangement is quasi-periodic in a plane and periodic in the
orthogonal direction. Therefore, there are two kinds of displacement fields in
the elastic theory of QCs. One is a phonon displacement field, corresponding to
the displacement field of classical crystals. The other is the phason displacement
field, which is diffusive due to the elementary excitation associated with the
phason mode and describes the local rearrangements of the unit cells. Both types
of fields are coupled with each other. Accordingly, there are phonon and phason
stresses and strains, the phason appearing just in QC elasticity.

From the theoretical point of view, QCs are an interesting subject of
investigation since they exhibit a clearly defined anisotropy and the phenomenon
of field coupling. It is a fundamental concern to extend the theory of elasticity
towards this extraordinary class of solids. From the technological point of
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view, there is a variety of one-and two-dimensional quasi-crystalline materials
(Gao & Ricoeur 2011, submitted). For engineering applications, a theoretical
basis for stress and strain analyses has to be elaborated. Here, Green’s functions
supply a perfect background since arbitrary loading situations can be reproduced
by superposition. Hence, even cracks and other defects can be included in a
stress analysis based on Green’s functions. This is particularly important to
assess fracture loads and the lifetime of engineering structures composed of
quasi-crystalline materials.

QCs have become the focus of theoretical and experimental studies in the
physics of condensed matter since the first discovery of the icosahedral QC
in Al–Mn alloys (Levine & Steinhardt 1984; Shechtman et al. 1984). The
physical properties, including elasticity and defects of QCs have been intensively
investigated in experimental and theoretical analyses (Wollgarten et al. 1993;
Athanasiou et al. 2002; Park et al. 2005a,b). In particular, the field of linear
elastic theory of QCs has been formulated for many years (Levine et al. 1985;
Socolar 1989; Ding et al. 1993; Hu et al. 1996). Great progress has been made in
the fields of the mechanics involving the elasticity and defects, see review articles
for details (Hu et al. 2000; Fan & Mai 2004).

Many engineering structures are made by binding together two or more
materials with different physical properties. The elastic body joined with two
dissimilar materials with point forces applied at an arbitrary point is fundamental
to the development of three-dimensional elastic theory and is of vital significance
in the structural design. For isotropic materials, Vijayakumar & Cormack (1987)
and Huang & Wang (1991) studied the fundamental solutions for the case when
a point force is applied at one of the two bonded semi-infinite solids. With
regard to transversely isotropic elastic materials, Pan & Chou (1979) conducted a
systematic study on three-dimensional Green’s functions for point forces applied
to the interior of a two-phase infinite space. In the Fourier transformed domain,
Ting (1996) obtained Green’s functions of point forces in a two-phase anisotropic
elastic solid. In the case of transversely isotropic piezoelectric materials, Ding
et al. (1997a) developed effectively a novel method determining the closed-form
point force and point charge solutions for two-phase piezoelectric media using the
analysis technique of the image source. In a similar way, they considered plane
problems (Ding et al. 1997c). For plane problems of cubic QCs with imperfect
interface, Gao & Ricoeur (2010) obtained two-dimensional Green’s functions for
line forces applied at the interior of a two-phase infinite plane. The significance of
fundamental solutions and Green’s functions in constructing solutions to various
kinds of boundary-value problems has been well recognized in the mechanics
literature (Eshelby 1957; Mura 1987; Ting 1996, 2000).

Obviously, three-dimensional Green’s functions play an important role in the
analysis, because they not only have theoretical merits themselves, but also can be
benchmarks to clarify various approximate methods, such as the finite element
method and the boundary element method as well as in the study of cracks,
defects and inclusions. However, relevant three-dimensional Green’s functions for
two-dimensional QCs have not been attempted. The purpose of this paper is
to develop the previous work (Gao & Ricoeur 2010), and to study the problem
of point forces applied to the interior of an infinite bimaterial two-dimensional
hexagonal QC. To achieve this, the general solution of two-dimensional hexagonal
QC (Gao & Zhao 2009) is used to uncouple the system of equations of equilibrium.
Proc. R. Soc. A
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Similar to the derivation of Green’s functions for transversely isotropic elastic
and piezoelectric materials (Ding et al. 1997a,b,c), Green’s functions for infinite
QC solids and two half-spaces with point forces are obtained in the closed-form
by generalizing the analysis technique of the image source to two-dimensional
QC media.

2. Basic equations and the general solution

In a fixed rectangular coordinate system (x1, x2, x3), a two-dimensional QC refers
to a three-dimensional solid structure with quasi-periodic arrangement in a plane
(x1–x2 plane) and periodic arrangement in the orthogonal direction (x3-direction).
From two-dimensional QC elastic theory (Hu et al. 1996), in the absence of
body forces, the general equations governing the three-dimensional theory of
two-dimensional hexagonal QC can be written as:

3pq = vqup + vpuq

2
and waq = vqwa, (2.1)

vqspq = 0 and vqHaq = 0, (2.2)

s11 = C11311 + C12322 + C13333 + R1w11 + R2w22,

s22 = C12311 + C11322 + C13333 + R2w11 + R1w22,

s33 = C13311 + C13322 + C33333 + R3w11 + R3w22,

s23 = s32 = 2C44323 + R4w23, s31 = s13 = 2C44331 + R4w13,

s12 = s21 = 2C66312 + R6w12 + R6w21,

H11 = R1311 + R2322 + R3333 + K1w11 + K2w22,

H22 = R2311 + R1322 + R3333 + K2w11 + K1w22,

H23 = 2R4323 + K4w23, H12 = 2R6312 + K3w12 + K6w21

and H13 = 2R4331 + K4w13, H21 = 2R6312 + K6w12 + K3w21,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

where the subscripts i, p, q = 1, 2, 3, j = 4, 5 and a, b = 1, 2 are used throughout
this paper. up and wq denote phonon and phason displacements in the physical and
perpendicular spaces, respectively; spq and 3pq are phonon stresses and strains,
respectively; Haq and waq represent phason stresses and strains, respectively; Ckl ,
Kk and Rk stand for the elastic constants in the phonon, phason and phonon–
phason coupling fields, respectively, with the relationships 2C66 = C11 − C12, K6 =
K1 − K2 − K3, 2R6 = R1 − R2.

For the sake of compactness, the notations U1b = ub, U2b = wb, T11 = s11,
T21 = H11, T12 = s22, T22 = H22, T13 = s23, T23 = H23, T14 = s13 and T24 = H13 are
applied in the present paper. According to the general solution of two-dimensional
hexagonal QC with distinct eigenvalues (Gao & Zhao 2009), the components of
displacements take the form:

Ua1 = kaiv1ji + kajv2jj , Ua2 = kaiv2ji − kajv1jj and u3 = k3iv3ji . (2.4)
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The constants kai , kaj and k3i are defined as

k1i = dIi , k2i = a4s2
i − a3

a2s2
i − a1

, k3i = a7s4
i − a6s2

i + a5

a2s4
i − a1s2

i
, k1j = dJj , k2j = R6 − R4s2

j

K4s2
j − K3

,

a1 = R1(R3 + R4) − K1(C13 + C44), a2 = R4(R3 + R4) − K4(C13 + C44),

a3 = R1(C13 + C44) − C11(R3 + R4), a4 = R4(C13 + C44) − C44(R3 + R4),

a5 = C11K1 − R2
1, a6 = C11K4 + C44K1 − 2R1R4 and a7 = C44K4 − R2

4,

where dkl is the Kronecker delta symbol, and the following summation convention
has been used throughout this paper: the Einstein summation over repeated lower
case indices is applied, while upper case indices take on the same numbers as
the corresponding lower case ones but are not summed. Besides, the potential
functions ji and jj satisfy the equations

V2
I ji =

(
L + 1

s2
I

v2
3

)
ji = 0 and V2

J jj =
(

L + 1
s2
J

v2
3

)
jj = 0, (2.5)

in which L = v2
1 + v2

2 is the planar Laplacian; s2
I are three eigenvalues of the

following cubic algebraic equation of s2, as6 − bs4 + cs2 − d = 0; and s2
J are two

eigenvalues of the following quadratic algebraic equation of s2, (C44K4 − R2
4)s

4 −
(C66K4 + C44K3 − 2R4R6)s2 + C66K3 − R2

6 = 0, where

a = C33(C44K4 − R2
4),

b = C44(C44K4 − R2
4) + C33(C11K4 + C44K1 − 2R1R4)

+ 2R4(C13 + C44)(R3 + R4) − C44(R3 + R4)2 − K4(C13 + C44)2,

c = C33(C11K1 − R2
1) + C44(C11K4 + C44K1 − 2R1R4)

+ 2R1(C13 + C44)(R3 + R4) − C11(R3 + R4)2 − K1(C13 + C44)2

and d = C44(C11K1 − R2
1).

The components of stresses obtained from equations (2.3) and (2.4) can be shown
to be

Ta1 = aaiv
2
3ji + 2baiv

2
1ji + 2bajv1v2jj ,

Ta2 = aaiv
2
3ji + 2baiv

2
2ji − 2bajv1v2jj ,

Ta3 = caiv2v3ji − cajv1v3jj , Ta4 = caiv1v3ji + cajv2v3jj ,

s33 = div
2
3ji , s12 = 2b1iv1v2ji + b1j(v2

2 − v2
1)jj

H12 = eiv1v2ji + ejv
2
2jj − a2jv

2
1jj

and H21 = eiv1v2ji − ejv
2
1jj + a2jv

2
2jj ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)
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Figure 1. An infinite QC solid with applied phonon force (Q1, P1, F) and phason force (Q2, P2).

where

a1i = −(C12k1i + R2k2i)
1
s2
I

+ C13k3i , a2i = −(R2k1i + K2k2i)
1
s2
I

+ R3k3i ,

b1i = C66k1i + R6k2i , b2i = R6k1i + K6k2i , b1j = C66k1j + R6k2j ,

b2j = R6k1j + K6k2j ,

c1i = C44k1i + R4k2i + C44k3i , c2i = R4k1i + K4k2i + R4k3i ,

c1j = C44k1j + R4k2j , c2j = R4k1j + K4k2j ,

di = −(C13k1i + R3k2i)
1
s2
I

+ C33k3i

and ei = 2R6k1i + K3k2i + K6k2i , ej = R6k1j + K3k2j .

For the sake of brevity and conciseness, in the following two sections the
fundamental solutions for an infinite QC solid and an infinite bimaterial QC solid
will be given only for the case of distinct eigenvalues. When equal eigenvalues
appear, the fundamental solutions can be obtained by using a similar analysis
technique, although for these cases the general solution will take a more
complicated form (Gao & Zhao 2009).

3. Three-dimensional Green’s functions for infinite QC solids

A two-dimensional hexagonal QC full-space is considered as the domain of the
problem. As indicated in figure 1, a point phonon force with components Q1,
P1 and F in x1, x2 and x3-directions, respectively, and a point phason force with
components Q2, P2 in x1 and x2-directions, respectively are applied simultaneously
at an arbitrary point in the space. Without loss in generality, we take this point
Proc. R. Soc. A
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as the origin of Cartesian coordinates. Based on the theorem of superposition the
problem can be divided into two sub-problems: the problem of a point phonon
force F in the x3-direction and the problem of a combination of point phonon
and phason forces Qa in the x1-direction or Pa in the x2-direction. As a classical
elastic problem, the fundamental solutions of point phonon forces applied in the
x3-direction were derived based on the general solution (Gao & Zhao 2009).

(a) Solution for a point force F in the x3-direction

This is an axisymmetric problem discussed in Gao & Zhao (2009). The
potential functions have the form as

ji = sign(x3)Ai ln RI and jj = 0, (3.1)

where

Ri = ri + si|x3| and ri =
√

x2
1 + x2

2 + s2
i x

2
3 ,

Ai are undetermined constants and sign() is the signum function.
Since the general solution expressed by the potential functions ji and

jj satisfies the basic equations of QC elasticity, such as the deformation
geometry equations, the equilibrium equations and the constitutive equations,
the boundary-value problems of QC elasticity are transformed into finding a
solution that satisfies the continuity conditions and the prescribed boundary
conditions. Substitution of equations (3.1) into equations (2.4) and (2.6) yields
the expressions for the phonon and phason fields below

Uab = sign(x3)kaiAi
xb

RI rI
and u3 = k3iAi

sI

rI
(3.2)

and

Tab = −aaiAis3
I
x3

r3
I

+ 2 sign(x3)baiAi

(
1

RI rI
− x2

b

RI r3
I

− x2
b

R2
I r

2
I

)
,

Ta3 = −caiAisI
x2

r3
I

, Ta4 = −caiAisI
x1

r3
I

,

s33 = −diAis3
I
x3

r3
I

, s12 = −2 sign(x3)b1iAi

(
x1x2

RI r3
I

+ x1x2

R2
I r

2
I

)

and H12 = H21 = −sign(x3)eiAi

(
x1x2

RI r3
I

+ x1x2

R2
I r

2
I

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

Two kinds of continuity conditions should be considered in the boundary-value
problems to determine the free constants of the potential functions. One kind of
continuity condition is the mathematical continuity which means that ji and jj
are continuous functions. The other kind of continuity condition is the mechanical
continuity which assumes that the displacements and stresses are continuous. This
solution from equations (3.2) and (3.3) shows that the displacement component u3
and the stress components Ta3, Ta4 and s33 are continuous functions except at the
origin. However, the continuity of the other displacement and stress components
Proc. R. Soc. A
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and the potential functions ji in the plane x3 = 0 is unclear and needs further
examination. Since the components Uab, Tab, s12, H12, H21 and ji are odd
functions of x3, they must vanish across the plane x3 = 0. This implies that

kaiAi = 0, baiAi = 0 and eiAi = 0. (3.4)

In view of equations (3.4), the second and third equations of equations (3.4) are
satisfied automatically. Besides, the equilibrium condition of a layer between any
two planes, such as x3 = ±h, must meet the requirement stipulated as follows:

∫+∞

−∞

∫+∞

−∞
[s33(x1, x2, h) − s33(x1, x2, −h)] dx1 dx2 + F = 0. (3.5)

Substituting equations (3.3) into equation (3.5), one obtains

4pdiAis2
I = F . (3.6)

Thus, the three unknown constants Ai can be calculated from the first equation
of equations (3.4) and (3.6), written down matrix notation yielding

[A1
A2
A3

]
= F

4p

⎡
⎣ 1 1 1

k21 k22 k23

d1s2
1 d2s2

2 d3s2
3

⎤
⎦

−1 [0
0
1

]
, (3.7a)

or in another form

Ai = 3ipqdPpk2q

4p3ipqdIik2pdqs2
Q

F . (3.7b)

(b) Solution for point forces Qa in the x1-direction or Pa in the x2-direction

When the point forces Qa are applied at the origin along the x1-direction, it
can be assumed that

ji = Bix1

RI
and jj = Bjx2

RJ
, (3.8)

where Bi and Bj are constants to be determined. Following the same manipulation
as in the previous case, the expressions for the phonon and phason fields are
summarized as follows:

Ua1 = kaiBi

(
1
RI

− x2
1

R2
I rI

)
+ kajBj

(
1

RJ
− x2

2

R2
J rJ

)
,

Ua2 = −kaiBi
x1x2

R2
I rI

+ kajBj
x1x2

R2
J rJ

and u3 = −sign(x3)k3iBisI
x1

RI rI
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)
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Ta1 = aaiBis2
I
x1

r3
I

+ 2baiBix1

(
2

x2
1

R3
I r

2
I

+ x2
1

R2
I r

3
I

− 3
1

R2
I rI

)

+ 2bajBjx1

(
2

x2
2

R3
J r2

J

+ x2
2

R2
J r3

J

− 1
R2

J rJ

)
,

Ta2 = aaiBis2
I
x1

r3
I

+ 2baiBix1

(
2

x2
2

R3
I r

2
I

+ x2
2

R2
I r

3
I

− 1
R2

I rI

)

− 2bajBjx1

(
2

x2
2

R3
J r2

J

+ x2
2

R2
J r3

J

− 1
R2

J rJ

)
,

Ta3 = sign(x3)caiBisI

(
x1x2

R2
I r

2
I

+ x1x2

RI r3
I

)

− sign(x3)cajBjsJ

(
x1x2

R2
J r2

J

+ x1x2

RJ r3
J

)
,

Ta4 = sign(x3)caiBisI

(
x2

1

R2
I r

2
I

+ x2
1

RI r3
I

− 1
RI rI

)

+ sign(x3)cajBjsJ

(
x2

2

R2
J r2

J

+ x2
2

RJ r3
J

− 1
RJ rJ

)
,

s33 = diBis2
I
x1

r3
I

,

s12 = 2b1iBix2

(
2

x2
1

R3
I r

2
I

+ x2
1

R2
I r

3
I

− 1
R2

I rI

)

+ b1jBjx2

(
2
x2

2 − x2
1

R3
J r2

J

+ x2
2 − x2

1

R2
J r3

J

− 2
R2

J rJ

)

H12 = eiBix2

(
2

x2
1

R3
I r

2
I

+ x2
1

R2
I r

3
I

− 1
R2

I rI

)
+ ejBjx2

(
2

x2
2

R3
J r2

J

+ x2
2

R2
J r3

J

− 3
R2

J rJ

)

− a2jBjx2

(
2

x2
1

R3
J r2

J

+ x2
1

R2
J r3

J

− 1
R2

J rJ

)

and H21 = eiBix2

(
2

x2
1

R3
I r

2
I

+ x2
1

R2
I r

3
I

− 1
R2

I rI

)
+ a2jBjx2

(
2

x2
2

R3
J r2

J

+ x2
2

R2
J r3

J

− 3
R2

J rJ

)

− ejBjx2

(
2

x2
1

R3
J r2

J

+ x2
1

R2
J r3

J

− 1
R2

J rJ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

As before, the continuity of the components u3, Ta3 and Ta4 on x3 = 0 demands

k3iBisI = 0 and caiBisI − cajBjsJ = 0. (3.11)
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Also, the equilibrium condition of the layer bounded by the planes x3 = ±h
becomes∫+∞

−∞

∫+∞

−∞
[Ta4(x1, x2, h) − Ta4(x1, x2, −h)] dx1 dx2 + Qa = 0. (3.12)

Substituting the expression for Ta4 in equations (3.10) into equation (3.12) yields

caiBisI + cajBjsJ = Qa

2p
. (3.13)

From the integral result in equation (3.13), we know that the integral in equation
(3.12) is independent of the value of h. The five unknown constants Bi andBj can
be determined from equations (3.11) and (3.13) as follows:

Bi = laiQa and Bj = lajQa, (3.14)

where⎡
⎣l11s1

l12s2

l13s3

⎤
⎦ = 1

4p

⎡
⎣k31 k32 k33

c11 c12 c13

c21 c22 c23

⎤
⎦

−1 [0
1
0

]
,

⎡
⎣l21s1

l22s2

l23s3

⎤
⎦ = 1

4p

⎡
⎣k31 k32 k33

c11 c12 c13

c21 c22 c23

⎤
⎦

−1 [0
0
1

]

and
[
l14s4

l15s5

]
= 1

4p

[
c14 c15

c24 c25

]−1 [
1
0

]
,
[
l24s4

l25s5

]
= 1

4p

[
c14 c15

c24 c25

]−1 [
0
1

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.15)
When the problem of infinite QC solids subjected to point forces Pa in the

x2-direction is considered, we should replace x1 by x2 and x2 by −x1 in equations
(3.8), respectively, and replace Qa by Pa in equations (3.14). Therefore, if the
problem of combination of point forces Qa in the x1-direction and point forces Pa

in the x2-direction is considered, the potential functions ji and jj take the form

ji = lai(Qax1 + Pax2)
RI

and jj = laj(Qax2 − Pax1)
RJ

. (3.16)

By using the general solution in equations (2.4) and heuristic functions with
simple forms, the expressions of the displacements and stresses can be obtained.
It is important to note that these expressions are continuous except at the origin.
The only approximation is introduced by the approximate specification of the
boundary conditions of the layer, i.e. the boundary conditions in equations (3.5)
and (3.12) are specified in terms of the stress resultants, instead of the stress
distribution in the vicinity of the origin. Therefore, in the cases where Saint-
Venant’s principle holds, Green’s function solutions should be very accurate ones.

(c) The degenerated form of infinite quasi-crystal solids

Determination of the independent elastic constants Cij , Ki and Ri for different
kinds of QCs depends on their symmetries with the group representation theory
(Ding et al. 1993; Hu et al. 1996, 2000). It is noted that, although Cij in QCs can
be measured by some experimental methods, Ki are difficult to measure (Tanaka
et al. 1996). Significant progress in this area has been made by Jeong & Steinhardt
(1993), who evaluated Ki of decagonal QCs by Monte Carlo simulation. The
Proc. R. Soc. A
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values of Ki are of the same order of magnitude as Cij obtained by resonant
ultrasound spectroscopy (Chernikov et al. 1998). There are no data available for
Ri which, based on the estimation of some experts (Edagawa 2007; Takeuchi &
Edagawa 2007) working in the field of QCs, hold lower values than Ki .

However, the relevant data such as Ki andRi associated with the present paper
are still lacking. Alternatively, we will discuss a degenerated form of infinite QC
solids to investigate its validity, i.e. a two-dimensional QC body reduces to a
transversely isotropic elastic body. In this case, it can be shown that Ri = 0.
Hence the governing equations (2.1)–(2.3) reduce to two groups of equations
for uncoupled phonon and phason field problems, respectively. Then, the cubic
algebraic equation as6 − bs4 + cs2 − d = 0 can be reformulated as[

C33C44s4 + (C 2
13 + 2C13C44 − C11C33)s2 + C11C44

]
(K4s2 − K1) = 0. (3.17)

Let s2
a be the roots of the first multiplier of equation (3.17), and s2

3 = K1/K4
be the root of the second multiplier of equation (3.17) with no loss of
generality. The quadratic algebraic equation (C44K4 − R2

4)s
4 − (C66K4 + C44K3 −

2R4R6)s2 + C66K3 − R2
6 = 0 is rewritten as

(C44s2 − C66)(K4s2 − K3) = 0. (3.18)

We assume s2
4 = C66/C44 and s2

5 = K3/K4. Then it can be seen that s2
a and s2

4 relate
only to elastic constants in the phonon field, while s2

3 and s2
5 associate only with

elastic constants in the phason field.
For the transversely isotropic elastic body, the constants k3i , k2i and k2j take

the following form inserting s2
a from equation (3.17):

k3a = C11 − C44s2
a

(C13 + C44)s2
a

= C13 + C44

C33s2
a − C44

and k33 = k2a = k24 = 0, (3.19)

and k23, k25 �= 0 which associate with s2
3 and s2

5 . Since the analysis in the following
calculation does not involve k33, k23, k24 and k25 except the requirement k23, k25 �= 0,
it suffices to discuss only k3a and s2

a.
For the case of the point force F in the x3-direction, the solution of equations

(3.7a,b) reduces to

A1 = −A2 = (C13 + C44)F
4pC33C44(s2

2 − s2
1)

. (3.20)

Substitution of equation (3.20) into the degenerated equation of equations (3.2)
leads to the expressions of displacements in transversely isotropic elastic solids

ua = (C13 + C44)xax3

4pC33C44r1r2(s2r1 + s1r2)
F

and u3 = C44(x2
1 + x2

2 ) + C33s1s2[x2
1 + x2

2 + (s2
1 + s2

2)x
2
3 ]

4pC33C44r1r2(s2r1 + s1r2)
F .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.21)
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From equations (3.2) and (3.7a,b), the expressions of displacements in two-
dimensional QC solids are

ua = sign(x3)
dIi3ipqdPpk2q

4p3ipqdIik2pdqs2
Q

xa

RI rI
F ,

u3 = k3i3ipqdPpk2q

4p3ipqdIik2pdqs2
Q

sI

rI
F

and wa = sign(x3)
k2i3ipqdPpk2q

4p3ipqdIik2pdqs2
Q

xa

RI rI
F .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

In comparison with Green’s function of transversely isotropic solids, the
configuration and deformation in two-dimensional QC solids are strongly related
with not only the phonon elastic constants, but also phason and phonon–phason
coupling elastic constants, even if the point phonon force is applied alone. Owing
to the introduction of the phason field, a theoretical description of the deformed
state of QCs requires a combined consideration of interrelated phonon and phason
fields, so the elasticity of QCs is much more complex than that of conventional
crystals. Green’s function solutions provide important information for studying
the mechanical behaviours of the new solid phase and understanding clearly the
interplay of the interaction between the phonon and phason activity.

For the case of the point forces Q1 in the x1-direction, the solution of equations
(3.14) becomes

B1 = s1(C11 − C44s2
2)Q1

4pC11C44(s2
1 − s2

2)
, B2 = − s2(C11 − C44s2

1)Q1

4pC11C44(s2
1 − s2

2)
and B4 = Q1

4pC44s4
(3.23)

The above results in equations (3.20) and (3.23) are the same as the
corresponding results deduced by Ding et al. (1997b). To illustrate the
applications of Green’s functions, two numerical examples, isotropic elastic
solids with linear distributed loads on one surface and transversely isotropic
elastic solids containing a spheroidal cavity under uniform tension along the x3-
direction, were examined by the boundary element method (Ding et al. 1997b).
Comparing the results with the known solutions, these examples show that
the exact or accurate solutions may be obtained by applying Green’s function.
When the relevant material data are available, the same numerical examples of
two-dimensional QCs can be also obtained by performing similar derivations.

As Ding et al. (1997b) mentioned, Green’s function solutions for transversely
isotropic elastic solids are valid for two cases in which two eigenvalues are distinct
or equal to each other. Thus, these are the unified solutions for both isotropic
elasticity and transversely isotropic elasticity. This property means that there is
no need to worry about the eigenvalue conditions. This is particularly important
for materials with very close eigenvalues. By setting Ri = 0, the coefficients
in equations (3.7a,b) and (3.14) are available for both the two-dimensional
QC and degenerated cases (transversely isotropic elastic solids), so Green’s
Proc. R. Soc. A
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material 2

material 1

+

–

interface

O

F

Pa

Qa

x2

x3

x1

Figure 2. An infinite QC solid composed of two half-spaces.

function solutions are expressed in the united form for both two-dimensional
QC elasticity and pure elasticity. Therefore, the same codes can be used
to perform the numerical computation for different cases implementing an
appropriate algorithm.

4. Three-dimensional Green’s functions for infinite QC solids composed of
two half-spaces

An infinite solid composed of two two-dimensional hexagonal QC half-spaces with
different material constants is shown in figure 2. Let the lower half-space x3 ≥ 0 be
occupied by material 1 and the upper half-space x3 ≤ 0 be occupied by material 2.
The interface of the two half-spaces is parallel to their quasi-periodic plane and
the point forces are applied at the point (0, 0, h).

If the two half-spaces are rigidly bonded together along the interface x3 = 0
such that the components of stresses and displacements are continuous across
the interface, we have the following boundary conditions:

U −
ab = U +

ab, u−
3 = u+

3 , T−
a3 = T+

a3, T−
a4 = T+

a4 and s−
33 = s+

33, (4.1)

where superscripts ()− and ()+ denote the variables in the lower half-space x3 ≥ 0
and the upper half-space x3 ≤ 0, respectively. On the other hand, if the half-
spaces are in smooth contact, i.e. in a complete contact with relative frictionless
movement of both half-spaces along the x1–x2 plane, then

u−
3 = u+

3 , s−
33 = s+

33 and T−
a3 = T+

a3 = T−
a4 = T+

a4 = 0. (4.2)

In the following discussion, the components of displacements in the lower half-
space can be decomposed into two parts:

U −
ab = Uab + U ′

ab and u−
3 = u3 + u′

3, (4.3)
Proc. R. Soc. A
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where Uab and u3 are the displacements owing to Green’s functions for infinite QC
solids, and U ′

ab and u′
3 are the displacements which make equations (4.3) satisfy

the boundary conditions (4.1) or (4.2) on the interface. In the lower half-space,
Uab and u3 can be obtained simply by replacing x3 by x3 − h in equations (3.2),
(3.3), (3.9) and (3.10).

(a) Point force F in the x3-direction

When only a point phonon force F is applied at the origin along the x3-axis,
for the case of the lower half-space, namely, x3 ≥ 0, we assume that

j−
i = sign(x3 − h)Ai ln R̄I + A−

im ln R−
Im and j−

j = 0, (4.4)

where m = 1, 2, 3, and

R−
im = r−

im + s−
i x3 + s−

mh, r−
im =

√
x2

1 + x2
2 + (s−

i x3 + s−
mh)2

and

R̄i = r̄ i + s−
i |x3 − h|, r̄ i =

√
x2

1 + x2
2 + (s−

i )2(x3 − h)2.

Ai have been obtained in equations (3.7a,b), and A−
im are nine constants to be

determined. On substituting equations (4.4) into equations (2.4) and (2.6), we can
obtain the corresponding components of displacements and stresses as follows:

U −
ab = sign(x3 − h)k−

aiAi
xb

R̄I r̄ I
+ k−

aiA
−
im

xb

R−
Imr−

IM

and u−
3 = k−

3iAis−
I

1
r̄ I

+ k−
3iA

−
ims−

I
1

r−
Im

,

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

and

T−
a3 = −c−

aiAis−
I

x2

r̄3
I

− c−
aiA

−
ims−

I
x2

(r−
Im)3

, T−
a4 = −c−

aiAis−
I

x1

r̄3
I

− c−
aiA

−
ims−

I
x1

(r−
Im)3

s−
33 = −d−

i Ai(s−
I )3 x3 − h

r̄3
I

− d−
i A−

im(s−
I )2 (s−

I x3 + s−
M h)

(r−
Im)3

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)
For the case of the upper half-space, i.e. x3 ≤ 0, j+

i and j+
j take the form

j+
i = A+

im ln R+
Im and j+

j = 0, (4.7)

where

R+
im = r+

im − (s+
i x3 − s−

mh) and r+
im =

√
x2

1 + x2
2 + (s+

i x3 − s−
mh)2,

and A+
im are also nine constants to be determined. By using equations (2.4), (2.6)

and (4.7), we can obtain the displacements and stresses in the upper half-space

U +
ab = k+

aiA
+
im

xb

R+
Imr+

IM
and u+

3 = −k+
3iA

+
ims+

I
1

r+
Im

(4.8)
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T+
a3 = c+

aiA
+
ims+

I
x2

(r+
Im)3

, T+
a4 = c+

aiA
+
ims+

I
x1

(r+
Im)3

and s+
33 = d+

i A+
im(s+

I )2 (s+
I x3 − s−

M h)
(r+

Im)3
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.9)

The undetermined constants can be obtained using the contact conditions on
the interface. When the two half-spaces are ideally bonded, the conditions in
equations (4.1) lead to

−k−
aiAI + k−

amA−
mi = k+

amA+
mi ,

k−
3iAI s−

I + k−
3mA−

mis
−
M = −k+

3mA+
mis

+
M ,

−c−
aiAI s−

I − c−
amA−

mis
−
M = c+

amA+
mis

+
M

and d−
i AI (s−

I )3 − d−
mA−

mis
−
I (s−

M )2 = d+
mA+

mis
+
I (s+

M )2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.10)

When the two half-spaces are in smooth contact as defined by equations (4.2),
we get

k−
3iAI s−

I + k−
3mA−

mis
−
M = −k+

3mA+
mis

+
M ,

d−
i AI (s−

I )3 − d−
mA−

mis
−
I (s−

M )2 = d+
mA+

mis
+
I (s+

M )2,

−c−
aiAI s−

I − c−
amA−

mis
−
M = 0

and c+
amA+

mis
+
M = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.11)

It can be seen that there are totally 18 independent linear algebraic equations
involved in equations (4.10) or (4.11), from which the 18 unknown constants
A−

im and A+
im can be uniquely determined. However, the solutions will be lengthy

and we do not list them here. When calculating the displacements and stresses
numerically, it is easier to solve the equations listed in equations (4.10) or (4.11)
directly. According to the interface conditions (4.1), only some components (Uab,
u3, Ta3, Ta4 and s33) are continuous across the interface, while the others (Tab,
s12, H12 and H21) are discontinuous if the two bonded half-spaces are really
dissimilar. This continuous property is in line with the physical understanding
of two half-spaces with perfect interface. Therefore, more work has to be done if
these Green’s function solutions are to be adopted to analyse the coupling fields
at interfaces. One example is using Green’s function as fundamental solutions in
integral kernels of the boundary element method.

(b) Point forces Qa in the x1-direction or Pa in the x2-direction

When point forces Qa are applied at the origin along the x1-direction, for
material 1 in x3 ≥ 0, we take j−

i and j−
j as

j−
i = Bi

x1

R̄I
+ B−

im
x1

R−
Im

and j−
j = Bj

x2

R̄J
+ B−

jn
x2

R−
Jn

, (4.12)
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where n = 4, 5. R̄j and R−
jn have the same structures as R̄i and R−

im . Bi and Bj

have been obtained in equations (3.14), yet B−
im and B−

jn are 13 undetermined
constants. Substitution of equations (4.12) into equations (2.4) and (2.6) leads to

U −
a1 = k−

aiBi

(
1

R̄I
− x2

1

R̄2
I r̄ I

)
+ k−

aiB
−
im

[
1

R−
Im

− x2
1

(R−
Im)2r−

IM

]

+ k−
ajBj

(
1

R̄J
− x2

2

R̄2
J r̄J

)
+ k−

ajB
−
jn

[
1

R−
Jn

− x2
1

(R−
Jn)2r−

JN

]
,

U −
a2 = −k−

aiBi
x1x2

R̄2
I r̄ I

− k−
aiB

−
im

x1x2

(R−
Im)2r−

IM
+ k−

ajBj
x1x2

R̄2
J r̄J

+ k−
ajB

−
jn

x1x2

(R−
Jn)2r−

JN

and u−
3 = −sign(x3 − h)k−

3iBis−
I

x1

R̄I r̄ I
− k−

3iB
−
ims−

I
x1

R−
Imr−

Im
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.13)

T−
a3 = sign(x3 − h)c−

aiBis−
I

(
x1x2

R̄2
I r̄

2
I

+ x1x2

R̄I r̄3
I

)

+ c−
aiB

−
ims−

I

[
x1x2

(R−
Imr−

IM )2
+ x1x2

R−
Im(r−

IM )3

]

− sign(x3 − h)c−
ajBjs−

I

(
x1x2

R̄2
J r̄2

J

+ x1x2

R̄J r̄3
J

)

− c−
ajB

−
jns−

J

[
x1x2

(R−
jnr−

JN )2
+ x1x2

R−
Jn(r−

JN )3

]
,

T−
a4 = sign(x3 − h)c−

aiBis−
I

(
x2

1

R̄2
I r̄

2
I

+ x2
1

R̄I r̄3
I

− 1

R̄I r̄ I

)

+ c−
aiB

−
ims−

I

[
x2

1

(R−
Imr−

IM )2
+ x2

1

R−
Im(r−

IM )3
− 1

R−
Imr−

IM

]

+ sign(x3 − h)c−
ajBjs−

J

(
x2

1

R̄2
J r̄2

J

+ x2
1

R̄J r̄3
J

− 1

R̄J r̄J

)

+ c−
ajB

−
jns−

J

[
x2

1

(R−
Jnr−

JN )2
+ x2

1

R−
Jn(r−

JN )3
− 1

R−
Jnr−

JN

]

and s−
33 = d−

i Bi(s−
I )2 x1

r̄3
I

+ d−
i B−

im(s−
I )2 x1

(r−
IM )3

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.14)

For material 2 in x3 ≤ 0, we assume that

j+
i = B+

im
x1

R+
Im

and j+
j = B+

jn
x2

R+
Jn

, (4.15)
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where B+
im and B+

jn are 13 constants to be determined again. R+
jn has the same

structure as R+
im . With the use of equations (4.15), we rewrite equations (2.4) and

(2.6) as

U +
a1 = k+

aiB
+
im

[
1

R+
Im

− x2
1

(R+
Im)2r+

IM

]
+ k+

ajB
+
jn

[
1

R+
Jn

− x2
1

(R+
Jn)2r+

JN

]
,

U +
a2 = −k+

aiB
+
im

x1x2

(R+
Im)2r+

IM
+ k+

ajB
+
jn

x1x2

(R+
Jn)2r+

JN

and u+
3 = k+

3iB
+
ims+

I
x1

R+
Imr+

Im
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.16)

T+
a3 = −c+

aiB
+
ims+

I

[
x1x2

(R+
Imr+

IM )2
+ x1x2

R+
Im(r+

IM )3

]
+ c+

ajB
+
jns+

J

[
x1x2

(R+
jnr+

JN )2
+ x1x2

R+
Jn(r+

JN )3

]
,

T+
a4 = −c+

aiB
+
ims+

I

[
x2

1

(R+
Imr+

IM )2
+ x2

1

R+
Im(r+

IM )3
− 1

R+
Imr+

IM

]

− c+
ajB

+
jns+

J

[
x2

1

(R+
Jnr+

JN )2
+ x2

1

R+
Jn(r+

JN )3
− 1

R+
Jnr+

JN

]

s+
33 = d+

i B+
im(s+

I )2 x1

(r+
IM )3

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.17)
If the two half-spaces are ideally bonded, similarly, the conditions listed in

equations (4.1) lead to

k−
aiBI + k−

amB−
mi = k+

aiB
+
im ,

k−
ajBJ + k−

anB−
nj = k+

anB+
nj ,

k−
3iBI s−

I − k−
3mB−

mis
−
M = k+

3mB+
mis

+
M ,

−c−
aiBI s−

I + c−
amB−

mis
−
M = −c+

amB+
mis

+
M ,

c−
ajBJ s−

J − c−
anB−

nj s
−
N = c+

anB+
nj s

+
N

and d−
i BI (s−

I )2 + d−
mB−

mi(s
−
M )2 = d+

mB+
mi(s

+
M )2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

Again, when the two half-spaces are in smooth contact on their interface, the
conditions specified by equations (4.2) lead to

k−
3iBI s−

I − k−
3mB−

mis
−
M = k+

3mB+
mis

+
M ,

d−
i BI (s−

I )2 + d−
mB−

mi(s
−
M )2 = d+

mB+
mi(s

+
M )2,

−c−
aiBI s−

I + c−
amB−

mis
−
M = 0,

c+
amB+

mis
+
M = 0,

c−
ajBJ s−

J − c−
anB−

nj s
−
N = 0

and c+
anB+

nj s
+
N = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.19)
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It can be seen again that there are totally 26 independent linear algebraic
equations involved in equations (4.18) or (4.19), from which the 26 unknown
constants B−

im , B−
jn , B+

im and B+
jn can be solved.

If the problem of the QC half-spaces subjected to point forces Pa in the x2-
direction is considered, in a similar manner to infinite solids we replace x1 by x2
and x2 by −x1 in equations (4.12) and (4.15), respectively, and replace Qa by Pa

in equations (4.18) and (4.19). Thus, the potential functions j−
i , j−

j , j+
i and j+

j
for the problem of combination of point forces Qa in the x1-direction and point
forces Pa in the x2-direction are as follows:

j−
i = lai

Qax1 + Pax2

R̄I
+ l−aim

Qax1 + Pax2

R−
Im

and

j−
j = laj

Qax2 − Pax1

R̄J
+ l−ajn

Qax2 − Pax1

R−
Jn

, (4.20)

j+
i = l+aim

Qax1 + Pax2

R+
Im

and j+
j = l+ajn

Qax2 − Pax1

R+
Jn

. (4.21)

In equations (4.20) and (4.21), lai and laj have been determined in equations
(3.15). Besides, the algebraic equations to determine l−aim , l−ajn , l+aimand l+ajn are the
same as equations (4.18) or (4.19), only B−

im , B−
jn , B+

im and B+
jn in these equations

are replaced by the corresponding constants l−aim , l−ajn , l+aimand l+ajn , respectively.
When the QC materials of the two half-spaces are the same, that is to say,
A−

im , A+
im , B−

im , B−
jn , B+

im and B+
jn in these equations are equal to zero, the results

obtained above reduce directly to those in the previous section for infinite QC
solids, provided that h = 0.

5. Three-dimensional Green’s functions for half-space QC solids

For classical elastic problems, Lorentz (1907) developed the fundamental solutions
for the displacement boundary-value problem of the elastic half-space. Phanthien
(1983) showed that Lorentz’s results could be further extended to point forces
applied in the interior of a half-space with a fixed boundary. By superposing
a complementary part of the solution to Kelvin’s full-space function, Mindlin
(1936) gave the fundamental solutions of the same problem under traction-free
boundary conditions. These two solutions construct the basis of solving elastic
problems in the half-space. According to the above results, we can directly
extend Mindlin’s and Lorentz’s results for half-space QC solids with either free or
fixed boundaries.

For the generalized Lorentz problem of half-space QC solids, the boundary
condition at the surface is that the displacement components in the lower half-
space are zero, i.e. U +

ab = u+
3 = 0. As a result, the right-hand sides of the first two
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equations of equations (4.10) vanish, and we can get nine algebraic equations to
determine the constants A−

im .

⎡
⎢⎣

A−
1i

A−
2i

A−
3i

⎤
⎥⎦ =

⎡
⎢⎣

k−
11 k−

12 k−
13

k−
21 k−

22 k−
23

−k−
31s

−
1 −k−

32s
−
2 −k−

33s
−
3

⎤
⎥⎦

−1 ⎡
⎢⎣

k−
1I

k−
2I

k−
3I s

−
I

⎤
⎥⎦ Ai . (5.1)

Similarly, the constants B−
im and B−

jn can be determined from the first three
equations of equations (4.18), so they can be conveniently solved as follows:

⎡
⎢⎣

B−
1i

B−
2i

B−
3i

⎤
⎥⎦ = −

⎡
⎢⎣

k−
11 k−

12 k−
13

k−
21 k−

22 k−
23

−k−
31s

−
1 −k−

32s
−
2 −k−

33s
−
3

⎤
⎥⎦

−1 ⎡
⎢⎣

k−
1I

k−
2I

k−
3I s

−
I

⎤
⎥⎦ Bi

and

[
B−

4j

B−
5j

]
= −

[
k−
44 k−

45

k−
54 k−

55

]−1 [
c−
4J

c−
5J

]
Bj .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

For the generalized Mindlin problem of half-space QC solids, the boundary
condition at the surface of the lower half-space is traction-free, i.e. T+

a3 = T+
a4 =

s+
33 = 0. As a result, the right-hand sides of the last two equations of equations

(4.10) and the last three equations of equations (4.18) also vanish, so we can get
the corresponding algebraic equations to determine the constants A−

im , B−
im and

B−
jn . It is useful to list them here:

⎡
⎢⎣

A−
1is

−
I

A−
2is

−
I

A−
3is

−
I

⎤
⎥⎦ =

⎡
⎢⎣

−c−
11s

−
1 −c−

12s
−
2 −c−

13s
−
3

−c−
21s

−
1 −c−

22s
−
2 −c−

23s
−
3

d−
1 (s−

1 )2 d−
2 (s−

2 )2 d−
3 (s−

3 )2

⎤
⎥⎦

−1 ⎡
⎢⎣

c−
1I s

−
I

c−
2I s

−
I

d−
I (s−

I )3

⎤
⎥⎦ Ai , (5.3)

⎡
⎢⎣

B−
1i

B−
2i

B−
3i

⎤
⎥⎦ = −

⎡
⎢⎣

−c−
11s

−
1 −c−

12s
−
2 −c−

13s
−
3

−c−
21s

−
1 −c−

22s
−
2 −c−

23s
−
3

d−
1 (s−

1 )2 d−
2 (s−

2 )2 d−
3 (s−

3 )2

⎤
⎥⎦

−1 ⎡
⎢⎣

c−
1I s

−
I

c−
2I s

−
I

d−
I (s−

I )2

⎤
⎥⎦ Bi

and

[
B−

4j

B−
5j

]
=

[
c−
44s

−
4 c−

45s
−
5

c−
54s

−
4 c−

55s
−
5

]−1 [
c−
4J s−

J

c−
5J s−

J

]
Bj .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)

When the point forces are applied to the surface of the half-space, i.e. h = 0, the
generalized Mindlin problem degenerates to the generalized Boussinesq problem
(Gurtin 1972).

Up to here, these three generalized problems of half-space QC solids can be
solved directly from the fundamental solutions of two infinite half-spaces. Results
show that the fundamental solutions developed in this paper are reliable and
help to describe problems in an incisive way, so they can serve as a basis for
further applications.
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6. Conclusions

The present paper studies the problems of combination of point phonon forces
and point phason forces applied in infinite spaces and bimaterials, which consist
of two half-spaces of dissimilar two-dimensional QC materials bonded together.
By using the general solution of two-dimensional hexagonal QC, a series of
displacement functions is established, and the fundamental solutions of infinite
spaces and two half-spaces with point forces applied in the interior of QC solids
are obtained. Furthermore, the present solutions are reduced to the solutions of
infinite transversely isotropic solids, the fundamental solutions of the generalized
Lorentz problem, the generalized Mindlin problem and the generalized Boussinesq
problem of half-space QC solids with either free or fixed boundary. The method
for deriving the displacements and stresses presented here has some merits. One
of the key features of the method is that the physical quantities can be readily
calculated without the need of performing any transformation operations.

Three-dimensional Green’s functions can be extended to a wide range of
engineering problems, for instance interlaminar stresses and surface responses
in a laminated structure composed of different material layers (Gao & Noda
2005), interfacial cracks and contact in earthquake/rock engineering (Gao &
Wang 2001), and inverse evaluation of materials properties using experimental
approaches. Moreover, the solutions can be directly applied to the study of
strained quantum dot semiconductor devices (Pan & Yang 2001), since a
semiconductor device commonly appears as an anisotropic heterostructure, i.e. a
layered structure.

The performance of QC materials is influenced by the presence of defects
such as dislocations, inclusions, cracks, etc. Such solutions are very convenient
to be used in the study of point defects and inhomogeneities in the materials.
These provide important information for further studying the deformation and
fracture of the new solid phase and understanding clearly the interplay of
the interaction between the phonon and phason activity. They also play an
important role in numerical simulations such as the finite element method and the
boundary element method. The straightforward but tedious formulation process
can be simplified if a computer symbolic manipulator software package, such as
MATHEMATICA or MAPLE, is used.

The work is supported by the National Natural Science Foundation of China (no. 10702077) and
the Alexander von Humboldt Foundation in Germany.
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