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Abstract: 
Conventional histopathology with hematoxylin & eosin (H&E) has been the gold standard for 

histopathological diagnosis of a wide range of diseases. However, it is not performed in vivo and 

requires thin tissue sections obtained after tissue biopsy, which carries risk, particularly in the central 

nervous system. Here we describe the development of an alternative, multicolored way to visualize 

tissue in real time through the use of coherent Raman imaging (CRI), without the use of dyes.  CRI 

relies on intrinsic chemical contrast based on vibrational properties of molecules and intrinsic optical 

sectioning by nonlinear excitation. We demonstrate that multi-color images originating from CH2 and 

CH3 vibrations of lipids and protein, as well as two-photon absorption of hemoglobin, can be obtained 

with subcellular resolution from fresh tissue. These stain-free histopathological images show 

resolutions similar to those obtained by conventional techniques, but do not require tissue fixation, 

sectioning or staining of the tissue analyzed. 
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INTRODUCTION 

With rare exceptions, histopathological techniques cannot be used for in situ diagnosis since they 

require the tissue to be frozen or fixed, thinly sliced, and stained with devitalizing dyes before the 

tissue can be observed under a microscope. A real-time, in situ technique for acquiring 

histopathological images would thus be tremendously advantageous in situations where the tissue 

removal imposes risk and delay required for fixation, sectioning and staining. Ideally, in situ stain-free 

histopathology could be used in the setting of tumor surgery to examine the margins of a resection 

cavity for residual neoplastic tissue.  

Coherent Raman imaging (CRI), including coherent anti-Stokes Raman scattering (CARS) 

microscopy1,2 and stimulated Raman scattering (SRS) microscopy3-6, allows chemical imaging based 

on intrinsic vibrational properties of the molecules in the tissue and thus does not require staining or 

labeling. The more recent SRS microscopy techniques offer further advantages: (1) elimination of 

image artifacts due to non-resonant background, (2) excitation spectra identical to well-documented 

spontaneous Raman spectra, (3) a linear relationship between signal and concentration of target 

molecules. Compared to spontaneous Raman scattering, signal levels are amplified by orders of 

magnitude by virtue of stimulated excitation of molecular vibrations, allowing video-rate image 

acquisition speeds7,8. Due to nonlinear excitation, CRI enables intrinsically three-dimensional 

sectioning1,4,9 and does not require physical sectioning of the tissue. Efficient signal detection in 

reflection of thick samples8,10 as well as biocompatibility of laser excitation intensities11,12 have been 

demonstrated, allowing stain-free, in vivo imaging in mice7,8,13-16 and humans8,17.  

The properties of CRI have inspired us18 and others19-21 to image diseases with CARS microscopy and 

development of miniaturized clinical instrumentation is underway22-25. This work describes the 

development of multicolor SRS imaging with contrast originating from lipids, protein and red blood 

cells, aiming to resembles the most widely used stain in histopathology, hematoxylin and eosin (H&E). 

We demonstrate ex vivo that the key diagnostic features appreciated with H&E staining are well 

visualized with CRI in tissue from wild type mice as well as mouse models of various diseases of the 

central nervous system. 
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MATERIALS AND METHODS 

Imaging Setup and Processing. CRI requires two synchronized pulse trains to achieve stimulated 

excitation of the vibrational transition. In narrowband SRS, the frequency bandwidth of such lasers is 

chosen to be smaller than the typical linewidth of Raman transition and the difference in frequency of 

the two center frequencies can be tuned to excite a single vibration at a time. Compared to multiplex 

excitation of multiple vibrations simultaneously using broadband lasers, this approach maximizes 

imaging speed. We use a passively mode-locked Nd:YVO4 laser (PicoTrain, High Q Laser) at 1064nm 

(7ps pulse-duration, 76MHz repetition rate) to provide the first beam, known as the Stokes beam. A 

portion of this beam is frequency-doubled and used to pump an optical parametric oscillator (Levante 

Emerald, APE GmbH) to provide the second tunable beam (650nm-1000nm tuning range), known as 

the pump beam. The two pulse trains are then overlapped in space and time, aligned into a laser 

scanning microscope (FV300, Olympus) and focused into the sample with a high numerical aperture 

(NA) water-immersion lens (UPlanSApo 60x, Olympus)2,4. 

For SRS microscopy we measure the intensity loss of the pump beam due the excitation of molecular 

vibrations in the focus. Sensitive detection of the signal requires the implementation of a high-

frequency modulation transfer scheme to distinguish the SRS signal from linear sample absorption or 

laser intensity fluctuation. This relies on the fact that SRS can only occur if both pump and Stokes are 

incident on the sample. By modulating the Stokes beam at a known frequency with an acousto-optic 

modulator and measuring the modulation transfer to the originally un-modulated pump beam at the 

same frequency, SRS can be detected specifically. If the modulation frequency is faster than the 

typical laser noise (e.g. 10MHz), high sensitivity detection is achieved at the moderate laser power 

required for medical imaging. Experimentally, the transmitted light from the sample is collected with a 

high NA oil condenser (Nikon), filtered to block the modulated Stokes beam (CARS890/220, Chroma) 

and detected with a large-area photodiode (FDS1010, Thorlabs). The modulation transfer is measured 

by a lock-in amplifier (SR844, Stanford Research), whose signal is fed into the microscope to provide 

the signal for a pixel. All images were sampled with 512 x 512 pixels ~30µs pixel dwell time, which is 

limited by the speed of the lock-in amplifier. In the meantime we have developed improved detection 

electronics and achieved imaging speeds up to video-rate (30 frames per second)4,8.  

For the multi-color imaging, three individual scans per region in the tissue are acquired with one beam 

fixed at 1064nm and the other at 816.7nm (CH2-stretching vibration), 810.5nm (CH3-stretching 

vibration) and 700nm (hemoglobin TPA). Fast tuning between these three wavelengths can be 
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achieved within a few seconds by changing the Lyot filter and the cavity length of the optical 

parametric oscillator. Images are acquired with the microscope scanning software and processed in 

ImageJ. Pseudo-colors can be assigned arbitrarily, e.g. to mimic H&E stained sections. In most cases 

we use a red-green-blue (RGB) look-up table. The green and red channels show CH2 and hemoglobin 

images, respectively. The blue channel is a CH3-CH2 difference image thresholded to show only nuclei 

(see Results section). To normalize for the curvature of the field of view we calculated a featureless 

reference image by averaging and smoothing about one hundred SRS images acquired the same day 

from different regions and dividing the CH2 and CH3 images before subtraction. Linear look-up tables 

are applied for the RGB coloring. H&E-like colors were applied using the “multiply layers” blend mode 

in Adobe Photoshop. 

 

Animal handling and preparation. All animals were treated in compliance with Harvard IACUC 

protocols #29-01 and #10-02. Mice were euthanized using CO2 or by an overdose of ketamine and 

xylazine, followed by cervical spine dislocation. Organs were harvested and imaged immediately. We 

used a mouse brain matrix (Harvard Apparatus) to produce 1mm thick tissue slices and mounted them 

stably for imaging between a No.1 coverslip and a coverslide using a ∼480µm spacer (Grace Bio-Labs 

Inc.). For the comparison with H&E-stained micrographs, the brain was coronally sectioned and one 

half was immediately fixed in 10% formalin for standard histopathological evaluation, while the other 

was imaged without further preparation as described above. Comparison is shown from mirror-images.  

Invasive glioma models. We created primary brain glioma models from immunocompromised mice. 

The human glioma stem cell lines were derived from Brigham and Women’s Hospital patients 

undergoing surgery according to approved protocols. These xenografts were derived from 

glioblastoma biopsies and implanted. Dissected xenografts were washed in artificial cerebrospinal fluid 

(CSF) and manually dissociated to single cells. Red blood cells were removed using Lympholyte-M 

(Cedarlane). The cells were cultured in DMEM/F12 (with L-glutamine, Invitrogen) medium containing 

glucose (0.3%), penicillin/streptomycin (50µg/ml), Apo-transferrin (0.1mg/ml), Progesterone (20nM), 

Sodium selenite (30nM), putrescine (60µM), insulin (25µM/ml), sodium bicarbonate (3mM), HEPES 

(10 mM), 20ng/ml EGF and 20ng/ml FGF. Live cells were counted using a hemocytometer and Trypan 

blue exclusion. The Brigham and Women’s Hospital IACUC protocol number is 000995. 

Metastasis model. We created breast cancer metastasis models from nude mice (Harlan Laboratory). 

MDA-MB-231 breast cancer cells were cultured in Eagle’s Minimum Essential Medium (ATCC, 
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containing non-essential amino acids, 2mM L-glutamine, 1mM sodium pyruvate, and 1500mg/L 

sodium bicarbonate) supplemented with 10% fetal bovineserum, 1% penicillin-streptomycin, and 

grown in a 5% CO2 incubator at 37°C. Metastatic breast cancer were established by intracranially 

injecting 1x105 MDA-MB-231 cells (in 2µl PBS)at 1mm posterior to bregma, lateral 2mm and 2.5mm 

depth from skull surface. The Brigham and Women’s Hospital IACUC protocol number is 04662. 

Stroke model. We used a transient model of focal brain ischemia in C57/BL6J mice (Charles River 

lab). Under an operating microscope (Leica), the origin of right common carotid artery (CCA) was 

ligated with 6-0 silk suture. A loose ligature and a microvascular clip (F.S.T) were placed on the CCA 

before the origin of the internal carotid artery (ICA). An incision was made between the two sutures 

through which the silicone coated tip (HeraeusKulzer) of a 7-0 filament was advanced to the origin of 

the middle cerebral artery (MCA). With a flexible fiber probe fixed to the right skull above the MCA, 

regional cerebral blood flow was monitored with laser Doppler flowmetry (PF2B, Perimed) to confirm 

successful MCA occlusion and reperfusion. The filament was withdrawn 30 minutes later. Mice were 

euthanized at day 3 post-ischemia. The Massachusetts General Hospital IACUC protocol number is 

2007N000168. 

EAE induction model. We created relapsing-remitting EAE (R-EAE) from C57Bl/6 mice (Charles-

River). Each mouse was immunized subcutaneously (into the flanks) with 100µg of MOG35-55 

(MEVGWYRSPFSRVVHLYRNGK), 400µg of Mycobacterium tuberculosis (strain H37Ra; Difco) in 

complete Freund’s adjuvant (CFA, Difco). 100ng of Bordetella pertussis toxin (List Biological 

Laboratories via Cedarlane Ltd.) was given intravenously at the time of immunization and 2 days later. 

The Brigham and Women’s Hospital IACUC protocol number is 04576. 

 

RESULTS 

Mechanism of Multicolor Image Contrast. 

Different molecules in the sample can be selectively imaged by tuning the difference frequency of the 

excitation beams into the target vibrational resonance (see Methods). Fig. 1A shows the vibrational 

spectra of the three major components of cells and tissue (lipids, protein and water) with characteristic 

peaks for the CH2 and CH3 stretching vibrations at 2845cm-1 and 2940cm-1, respectively. While 

imaging of DNA and RNA has recently been demonstrated with CRI in the finger-print region of 

Raman spectra26, the above 3 species are present in higher concentration and allow for faster imaging 

speed, as desirable for medical in vivo imaging18. 
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Figs. 1B-D show SRS images of a C2C12 mammalian cell at these two bands. Consistent with 

spontaneous Raman spectroscopy27, the CH2 image (Fig. 1B) mainly highlights lipids in the cytoplasm, 

while lipid-poor nuclei appear dark and featureless. The CH3 image (Fig. 1C) shows signal from both 

lipids and proteins (Fig. 1A). The same cytoplasmic features can be seen as in the CH2 image, but 

there is additional detail from within nuclei. We have demonstrated that a quantitative protein image17, 

which shows a similar  distribution of proteins in both the nucleus and cytoplasm, can be extracted 

from the CH2 and CH3 images based on the Raman ratios in Fig. 1A. Here we aim to generate a 

vibrational counter-stain to the CH2 image that accentuates nuclei similarly to hematoxylin component 

of an H&E stain. To do so, we subtract the CH2 from the CH3 image such that the cytoplasmic signal 

essentially vanishes and then threshold the resulting difference image to only show nuclear signal. 

This is possible in a robust way because the low CH2 signal inside the nucleus. Fig. 1D illustrates the 

resulting multi-color overlay showing the cell-body information from the CH2 image in green and 

nuclear information from a thresholded CH3-CH2 difference image in blue. Diagnostically important 

sub-nuclear features such as nucleoli are visible in the thresholded CH3-CH2 difference image, 

demonstrating that it is a true nuclear counterstain rather than merely the inverse of the CH2 image.  

Figs. 1E-J illustrate similar contrast obtained in fresh mouse brain tissue. Fig. 1E and the green 

component of Fig. 1H show the CH2 signal  from lipid-rich myelinated axons28 and unmyelinated 

neuropil. Additionally, the vibrationally off-resonant image (Fig. 1G) has contrast due two-color two-

photon absorption (TPA)9,16,29 and shows individual red blood cells within capillaries due to 

hemoglobin absorption. Overlaying these three images results in a single three-color, stain-free 

histological image shown in Fig. 1H. Since the choice of the color scheme is arbitrary, it is possible to 

choose the look-up tables to mimic an H&E stained section (Fig. 1J). This allows easy comparison 

with traditional histopathological techniques (Fig. 1I). Comparison of Fig. 1I and J reveals that the 

stain-free image is free of the vacuolization observed in the H&E stained section because the fresh 

tissue imaging eliminates the need for freezing, fixation or sections and hence associated tissue 

processing artifacts.  

Tissue Imaging of Various Organs. 

To further demonstrate the universal utility of this multi-color contrast we imaged a variety of organs of 

a wild-type mouse (Fig. 2). The myocardium image (Fig. 2B) shows myocytes with numerous lipid 

droplets, central nuclei and a rich vascular network. The typical morphology of the renal glomerulus 

inside Bowman’s capsule with tufts of capillaries and surrounding renal tubules is seen in the image of 
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the kidney (Fig. 2C). Variable lipid storage within hepatocytes is seen in the liver (Fig. 2D). In the lung, 

the vast capillary network of the alveolar walls is highlighted in the red channel (Fig. 2E). 

Characteristic cross striations and capillaries around the myocytes are easily identified in the skeletal 

muscle image (Fig. 2F).  Clusters of germinal cells and larger blood vessels are seen in the ovary (Fig. 

2G). Fig. 2H shows two different layers of mouse skin including the stratum corneum layer (top) with a 

cobblestone arrangement of cells and a protein-rich hair shaft in blue. A deeper image of the 

epidermis (bottom) collected simply by changing the level of focus highlights many nuclei in the 

stratum basale. The germinal centers with abundant green cytoplasm surrounded by mature 

lymphocytes with higher nuclear-to-cytoplasmic ratio, as well as scattered red blood cells, are 

observed in the white pulp of the spleen (Fig. 2I). 

Tissue Imaging of Normal Mouse Nervous System. 

Imaging of gray matter (Fig. 3A) demonstrates neuronal cell bodies in blue, reflecting a strong signal in 

the CH3-CH2 channel within in a background of the lipid-rich neuropil. Linear processes in green, due 

to high CH2 signal, are axons (Figs.3A to E). The white matter from the corpus callosum is dominated 

by densely packed axons with interspersed oligodendrocytes (Fig. 3E).The cytoarchitecture of various 

regions including the thalamus (B), the dentate gyrus (C) and the granular cell layer of the cerebellar 

cortex (D) is easily distinguished, as compared with the mirror images stained with Luxol-H&E (Figs. 

3F to J)  

Diagnostic Features in Brain Lesions. 

In addition to demonstrating image quality and histopathological information in healthy tissue, we 

imaged mouse models of four relatively common brain pathologies including glioblastoma, 

metastases, demyelination and stroke. We aimed at recognizing tumor from normal tissue, tumor 

margins, inflammatory infiltration and evidence of demyelination and cell death. For this reason, we 

imaged mouse models of invasive, high-grade glioma derived from human brain tumor stem cells, and 

breast cancer metastasis as well as demyelination and stroke models. Fresh tissue samples were 

bisected to acquire corresponding stain-free and paraffin-embedded, H&E-stained images from the 

same region of the same animal (Fig. 4).  

In comparison to healthy brain, increased cellularity, a fundamental histopathological feature of 

neoplasia, is made obvious in SRS and H&E images for both primary brain tumors (Figs. 4A, B, E, and 

F) and brain metastases (Figs. 4C, D, G, and H). The remaining myelinated axons interspersed 

between tumor cells are visible in the center of the infiltrating glioma (Fig. 4A) in contrast with the solid, 
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expansile metastatic tumor (Fig. 4C). Images of tumor margins illustrate the diffusely invasive nature 

of glial cells along white matter tracts of the corpus callosum (Fig. 4B), whereas a sharply defined 

margin is seen between metastasis and adjacent normal brain tissue (Fig. 4D). A three-dimensional 

image stack of the tumor margin further highlights this critical diagnostic feature (Video S1).  

Among other pathologies that can mimic brain cancer on MRI and CT are tumefactive demyelination 

and subacute stroke30. Fig. 5 and Videos S2 and S3 show multicolor SRS images of mouse models of 

experimental autoimmune encephalitis (EAE) and ischemic stroke. The comparison with 

corresponding H&E images shows similar diagnostic features. Lipid-laden macrophages and 

perivascular lymphocytes (Fig. 5A and C) were present in areas of demyelination. Tissue vacuolization 

due to cerebral edema was seen as black holes (Fig. 5B and D), which correlated well with the 

presence of clear vacuoles on H&E-stained sections. Foamy macrophages and condensation of nuclei 

correlated with apoptosis. 

 

DISCUSSION 

We report the successful acquisition of microscopic, multi-colored images of diagnostic quality on 

various fresh tissues, without the need for tissue fixation, processing or staining. We acquired images 

of multiple normal mouse organs and compared them with routine histopathology. Recognition of 

various tissue types of different organs was easy and characteristic histological features were 

demonstrated with a clarity that approaches that of traditional H&E staining. In addition, all major 

histologic features demonstrated in H&E-stained sections of cerebral cortex, white matter, 

diencephalon and cerebellum were visualized with CRI. Given the great variety of histopathological 

features in various conditions, we also imaged multiple regions of the normal mouse brain as well as 

models of glioma, metastasis, stroke and demyelination.  

The goal of this study was to demonstrate medical utility of CRI stain-free histology using a research 

type microscope in ex vivo tissue to motivate the design of a clinical prototype instrument in the future. 

We used the original instrumentation of SRS microscopy 4; The imaging speed was limited by the 

speed of the commercial lock-in amplifier and signal was collected in sample transmission. Since 

completion of the data acquisition, we have developed faster detection electronics and an improved 

signal collection scheme, which enable SRS at video-rate and in reflection from thick tissue samples, 

and demonstrated SRS in vivo imaging8. For this study we also used temporal multiplexing to acquire 

the individual color channels sequentially. Development of real-time multicolor imaging is 
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underway17,31 and will be available for the clinical prototype. TPA can also be probed at 827nm, so 

more robust and inexpensive fiber lasers with a limited tuning range over the CH-region of Raman 

spectra can be used in future. Because imaging depth in CRS is limited to about 150 microns, the 

most immediate applications are in imaging exposed tissue such as ex vivo pathological samples, 

skin, and in vivo intraoperative margins. The development of a fiber-coupled hand-held scanner for 

intraoperative use is underway22-25.  Imaging of hollow organs inside the living patient will require 

further development of endoscopic instrumentation in the future.  

Other label-free microscopy techniques used for in situ stain-free histopathology such as Infrared (IR) 

absorption microscopy32 allow multi-color imaging, however the spatial resolution is limited due to the 

long wavelength used in IR microscopy21. Alternative high-resolution techniques include confocal 

reflection (CR), optical coherence tomography (OCT), two-photon excited auto-fluorescence (TPAF), 

second harmonic generation (SHG) and third harmonic generation (THG) microscopy33-37. They either 

lack the capability for multi-color, chemical imaging (CF, OCT & THG) or have contrast limited to a 

few, specific molecules (TPAF & SHG)38-40. The latter techniques are more similar to specific 

functional stains (e.g. antibody stains) in traditional histopathology, which can be used after 

abnormalities have been recognized on H&E sections. TPAF has also been demonstrated to allow 

identification of nuclear and cytosolic regions41,42 because of absence of TPAF signal inside the 

nucleus, analogous to the dark nuclei seen in the CH2 CRI scans. Multi-color CRI can additionally 

provide a “counter-stain” image with positive nuclear contrast for diagnostically important sub-nuclear 

features, which makes multicolor CRI images an ideal foundation for versatile in situ histopathological 

tissue diagnosis. 

In conclusion, we have demonstrated the use of CRI for microscopic tissue imaging in a label-free 

manner. Moreover, CRI can be used to generate a degree of contrast, based on the intrinsic 

vibrational spectrum of the molecular components of biologic tissues that exceeds other label-free 

optical imaging methods. Our data indicates that CRI can be used for generating high quality 

histological images without the need of routine tissue processing. Additional work will be required to 

comprehensively compile an atlas of CRI images of normal tissue and various disorders. However, a 

preliminary sampling of key neurologic diseases supports the diagnostic capability of CRI.  Although, 

technical hurdles in creating practical intraoperative instrumentation remains, these findings reinforce 

the possibility that CRI can become an invaluable clinical tool for intraoperative distinction of tumor 

from normal tissue and immediate margin assessment of in situ tissue before surgical closure. 
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FIGURE CAPTIONS 

 

Figure 1 Stain-free histologic imaging with multi-color CRI. (A) Vibrational spectra of the major 

constituents of tissue: lipids, protein and water. Arrows indicate Raman shifts at which imaging is 

performed. (B-D) SRS images of a live C2C12 mammalian cell acquired at the CH2-stretching 

vibration at 2845cm-1 (B) and CH3-stretching vibration at 2940cm-1 (C). Multicolor image (D) generated 

from images (B) and (C) with the green channel (CH2 image) showing the cell-body and the blue 

channel (thresholded CH3-CH2 difference image) highlighting the nuclear morphology including a 

bright nucleolus. (E-H) SRS images of fresh ex vivo brain tissue acquired at CH2-stretching vibration at 

2845cm-1 (E), CH3-stretching vibration at 2940cm-1 (F), and vibrationally off-resonant showing TPA of 

hemoglobin at a sum frequency of 23,700 cm-1 (G). Multicolor image (H) generated from images (E-G) 

with the green channel (CH2 image) highlighting cytoplasm and myelin sheaths, blue channel 

(thresholded CH3-CH2 difference image) showing the nuclear morphology, and the red channel 

(hemoglobin image) highlighting red blood cells. (I) H&E-stained micrograph from the same region in 

the brain. (J) Same multicolor image as (H) with a different pseudo-color scheme, chosen to mimic the 

appearance of an H&E-stained micrograph, illustrates the similar image content and appearance of 

stain-free images and  H&E stained sections. Scale bar, 25 µm.
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Figure 2 Multicolor stain-free images of various mouse organs (green: CH2 image; blue: CH3-CH2 

difference image; red: hemoglobin image) of (A) brain, (B) heart, (C) kidney, (D) liver, (E) lung, (F) 

muscle, (G) ovary, (H) skin with stratum corneum (top) and stratum basale (bottom) and (I) spleen. 

Scale bar, 25 µm. 
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Figure 3 Multicolor stain-free images of various brain regions in a wild-type mouse in comparison with 

paraffin-embeded, H&E and Luxol-stained sections. (green: CH2 image; blue: CH3-CH2 difference 

image; red: hemoglobin image) of (A) cortex, (B) thalamus, (C) dentate gyrus, (D) cerebellum, and (E) 

corpus callosum. (F-J) show H&E / luxol stained section of corresponding regions. 
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Figure 4 Comparison of multicolor, label-free images with H&E-stained sections of primary mouse 

models of glioma and metastatic breast cancer. Images display practically identical diagnostic features 

as visualized with SRS.(A-D) Two-color SRS images (green: CH2 image; blue: CH3-CH2 difference 

image) and (E-H) H&E stained micrographs from the same region of the same animal.(A, B, E and F) 

are acquired from mouse models of primary brain tumor and (C, D, G and H) from models of breast 

cancer brain metastasis. Hypercellularity is noticeable in both primary tumor and metastasis. The 

primary brain tumor morphology (A and E) shows residual interspersed axons (highlighted in green), 

while metastasis (C and G) lacks this feature due to their epithelioid, cohesive and less infiltrative 

character. Primary and secondary tumors can be further distinguished at the tumor margin, where 

primary tumor cells invade the healthy tissue (B and F) while metastases produce a sharp margin at 

the interphase of tumor and normal tissue (D and H). Scale bar, 25 µm. 
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Figure 5 SRS label-free images of demyelination and stroke mouse models. (A) Two-color SRS 

image (green: CH2 image; blue: CH3-CH2 difference image) of a demyelinating lesion in a mouse with 

experimental allergic encephalomyelitis (EAE). (A) Perivascular inflammatory cells and histiocytes with 

large lipid droplets from phagocytized myelin are visible. Red blood cells in a capillary are highlighted 

by arrows (Hemoglobin image, red, not used in this picture). (B) Two-color SRS image of brain tissue 

in a mouse stroke model three days post-stroke. Macrophages with many small lipid droplets are 

dispersed throughout the tissue. Dark areas represent edema fluid. (C,D) H&E stained micrographs of 

(C) EAE and (D) stroke model from the same region. Scale bar, 25 µm. 
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SUPPLEMENTARY MATERIAL:  

Video S1. Three-dimensional stack of tumor margin of an invasive glioma model with SRS tuned into 

CH2 stretching vibration 

Video S2. Three-dimensional stack of demyelinating lesions in mouse model of demyelination 

disease with SRS tuned into CH2 stretching vibration 

Video S3. Three-dimensional stack of edema in mouse model of stroke three days post-stroke with 

SRS tuned into CH2 stretching vibration 

 

 


