

Artificial Abelian gauge potentials induced by dipole-dipole interactions between Rydberg atoms

Alexandre Cesa, John Martin

Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège, 4000 Liège, Belgium

Introduction

Many works on artificial gauge potentials induced by atom-light interaction adopt a single-particle approach. The predicted potentials are then supposed to be valid for a system of many weakly interacting atoms. So far, the consequences of atom-atom interactions on the generation of artificial gauge fields has little been studied [1]. The aim of this work is to study the artificial gauge fields arising from the interaction of two Rydberg atoms driven by a common laser field [2].

Artificial gauge potentials without atom-atom interactions [3]

 Ω : Rabi frequency δ : detuning $\delta = \omega_L - \omega$

Consider a single two-level atom interacting with a classical laser field.

- $E_{\pm}=\pm\hbar\sqrt{|\Omega|^2+\delta^2}$: eigenvalues of internal Hamiltonian (\hat{H}_{2l}) : eigenstates of \hat{H}_{2l} ; depend parametrically on the atomic position ${\bf r}$
- Total hamiltonian : $\hat{H}_{1at} = \hat{\mathbf{p}}^2/(2m) \otimes \hat{\mathbb{1}}^{int} + \hat{\mathbb{1}}^{ext} \otimes \hat{H}_{2l}$
- \bullet Global wave function in position representation :

$$\langle \mathbf{r} | \psi(t) \rangle = \sum_{j=\pm} \psi_j(\mathbf{r}, t) | \chi_j(\mathbf{r}) \rangle$$

• Adiabatic evolution of the internal state $(j = \pm)$:

$$\langle \mathbf{r} | \psi(0) \rangle = \psi_{j}(\mathbf{r}, 0) | \chi_{j}(\mathbf{r}) \rangle \Rightarrow \langle \mathbf{r} | \psi(t) \rangle \approx \psi_{j}(\mathbf{r}, t) | \chi_{j}(\mathbf{r}) \rangle$$

$$i\hbar \partial_{t} | \psi(t) \rangle = \hat{H}_{1at} | \psi(t) \rangle \downarrow$$

$$i\hbar \frac{\partial}{\partial t} \psi_{j}(\mathbf{r}, t) = \left[\frac{(\hat{\mathbf{p}} - \mathbf{A}^{j})^{2}}{2m} + \phi^{j} + E_{j} \right] \psi_{j}(\mathbf{r}, t)$$
(1)

 \bullet Eq. (1) is formally equivalent to Schrödinger's equation for a particle of unit charge immersed in EM fields described by the artificial potentials $\mathbf{A}^{j}(\mathbf{r})$ and $\phi^{j}(\mathbf{r})$ given by [3]:

$$\mathbf{A}^{\pm}(\mathbf{r}) = i\hbar \langle \chi_{\pm}(\mathbf{r}) | \nabla_{\mathbf{r}} \chi_{\pm}(\mathbf{r}) \rangle = -\langle \hat{\mathbf{p}} \rangle_{\chi_{\pm}}$$

$$\phi^{\pm}(\mathbf{r}) = \hbar^{2} |\langle \chi_{\mp}(\mathbf{r}) | \nabla_{\mathbf{r}} \chi_{\pm}(\mathbf{r}) \rangle|^{2} / 2m$$

$$= (\Delta \hat{\mathbf{p}})_{\chi_{\pm}}^{2} / 2m$$
new formulation [2]

- $-(\hat{\mathbf{p}} \mathbf{A}^{\pm})^2/2m \Leftrightarrow \text{kinetic energy of slow C.M. motion}$
- $-\phi^{\pm}$ originates from the quantum fluctuations of momentum
- $-\Omega$ and δ homogeneous $\Rightarrow \mathbf{A}^{\pm}$ homogeneous $\Rightarrow \mathbf{B}^{\pm} = 0$
- Classical electromagnetic field + many noninteracting atoms ⇒ same artificial gauge potentials as in the single atom case

Two interacting Rydberg atoms

Consider a pair of Rydberg atoms driven by a common laser field [4] in the case of spatially uniform Ω and δ for which the artificial gauge fields vanish in the absence of atom-atom interactions

- Dipole-dipole interactions \Rightarrow energy shift $\hbar V = \hbar C_3/r_{ab}^3$ of $|ee\rangle$
- Two-atom internal Hamiltonian :

$$\hat{H}_{d-d} = \hat{H}_{2l,a} + \hat{H}_{2l,b} + \hbar V(r_{ab})|ee\rangle\langle ee|$$

- Two-atom internal eigenstates $|\chi_i(V(r_{ab}))\rangle$ $(i=0,1,\pm)$ of energy E_i ; depend parametrically on the atomic positions
- Definition of a crossover interatomic distance r_c :

Dipole-dipole

 $\hbar V(r_c) = \hbar \sqrt{|\Omega|^2 + \delta^2}$ Atom-light Interaction energy Atom-light

Artificial gauge potentials and fields with dipole-dipole interactions [2]

Adiabatic evolution of internal state $|\chi_i\rangle$ $(i=1,\pm) \Rightarrow$ equation for the two-atom spatial wave function $\psi_i({\bf r}_a,{\bf r}_b,t)$ equivalent to Schrödinger's equation for two charged particles in EM fields

• Artificial gauge potentials (for atom $\alpha = a, b, \mathbf{e}_{\mathbf{k}_L} = \mathbf{k}_L/k_L$):

$$\mathbf{A}_{\alpha}^{i} = i\hbar \langle \mathbf{\chi}_{i} | \mathbf{\nabla}_{\mathbf{r}_{\alpha}} \mathbf{\chi}_{i} \rangle = A_{\alpha}^{i}(r_{ab}) \ \mathbf{e}_{\mathbf{k}_{L}}$$

$$\phi_{\alpha}^{i} = \frac{\hbar^{2}}{2m_{\alpha}} \sum_{j \neq i} |\langle \chi_{j} | \nabla_{\mathbf{r}_{\alpha}} \chi_{i} \rangle|^{2}$$

• Artificial magnetic fields experienced by atom a for $\mathbf{k}_L = k_L \mathbf{e}_z$, $\mathbf{r}_b = 0$ and spherical coordinates $\{r_{ab}, \theta, \varphi\}$:

$$\mathbf{B}_a^i(\mathbf{r}_{ab}) = \mathbf{\nabla}_{\mathbf{r}_a} \times \mathbf{A}_a^i = \frac{dA_a^i}{dr_{ab}} \sin\theta \, \mathbf{e}_\varphi = B_{a,\varphi}^i(r_{ab}) \, \mathbf{e}_\varphi$$

- For realistic Ω , δ , \mathbf{k}_L and $V(r_{ab})$ [4], $r_c \approx 8 \ \mu \text{m}$ and $B_0 \approx 2 \ \text{mT}$
- $\bullet \ \mathbf{A}_a^i = \mathbf{A}_b^i \ \Rightarrow \ \mathbf{B}_a^i = -\mathbf{B}_b^i$
- $\delta \nearrow (\delta \searrow) \Rightarrow |\mathbf{B}_{\alpha}^{i}| \nearrow (\searrow)$ • For $\delta \gg 0$, peaks of intensity of \mathbf{B}_{0}^{i}
- located at $r_{ab} = r_c$ or $r_{ab} = r_c / \sqrt[3]{2}$

Physical interpretation

The location of the peaks of intensity of $|\mathbf{B}_{\alpha}^{i}|$ is related to transitions between bare states. For $\delta \gg 0$, transitions between bare states are possible only when $\hbar V(r_{ab})$ compensates for $\delta \Rightarrow$ antiblockade [5]

- Single-photon antiblockade : $\hbar\omega + \hbar V(r_{ab}) = \hbar\omega_L$ \Rightarrow transitions $|eg\rangle, |ge\rangle \leftrightarrow |ee\rangle$ resonant
- Two-photon antiblockade : $2\hbar\omega + \hbar V(r_{ab}) = 2\hbar\omega_L$ \Rightarrow transition $|gg\rangle \leftrightarrow |ee\rangle$ resonant

At interatomic distances where the antiblockade is effective, the internal eigenstates $|\chi_i(r_{ab})\rangle$ present strong nonuniform variations which induce large artificial magnetic fields.

Conclusion

We have shown that the combination of atom-atom and atom-field interactions in a uniform laser field gives rise to nonuniform artificial magnetic fields. These fields are maximum where atom-atom and atom-light interactions are of the same order of magnitude. See [2] for more details.

References

- [1] M. Kiffner et al., J. Phys. B: At. Mol. Opt. Phys. 46, 134008 (2013).
- [2] A. Cesa and J. Martin, Phys. Rev. A 88, 062703 (2013)
- J. Dalibard et al., Rev. Mod. Phys. 83, 1523 (2011).
- [4] A. Gaëtan et al., Nature Physics 5, 115 (2009).
 [5] C. Ates et al., Phys. Rev. Lett. 98, 023002 (2007).