
THE STEENROD ALGEBRA

CARY MALKIEWICH

The goal of these notes is to show how to use the Steenrod algebra and the

Serre spectral sequence to calculate things.

1. Brown Representability (as motivation)

LetX be a topological space. Suppose that we want to study the cohomology

groups H∗(X;G). A good way to understand these abelian groups is to

define additional algebraic structures on them, like the cup product.

We start this process by studying something that appears to be completely

unrelated. Let G be an abelian group. Let’s look for a space K(G,n) with

the property that

πi(K(G,n)) =

{
G i = n

0 i 6= n

Such a space K(G,n) is called an Eilenberg-Maclane space. Let’s assume

in addition that K(G,n) is homotopy equivalent to a CW-complex. It is

then not hard to show that K(G,n) exists, and in fact any two such spaces

are homotopy equivalent. Further, if we require that K(G,n) always comes

with a choice of isomorphism

πn(K(G,n)) ∼= G

then any two candidates for K(G,n) are related by a homotopy equivalence

that is unique up to homotopy. So it makes sense to talk about the Eilenberg-

Maclane space K(G,n), as long as we are working primarily with homotopy

classes of maps.

Let’s look at some examples:

K(Z, 1) = S1

K(Z/2, 1) = RP∞

K(Z, 2) = CP∞

Any space with contractible universal cover is a K(G, 1). This includes all

the compact orientable surfaces with genus g ≥ 1.
1
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In general, there is a somewhat geometric model for K(G,n) using configu-

ration spaces. We may describe K(G,n) as the space of all finite collections

of points in Sn − {∗}, together with a label of each point by some non-

identity element of G. The space is topologized so that points may collide,

and when they do we add their labels together. A point labelled with the

identity element promptly disappears, while a labelled point that travels to

the basepoint ∗ also disappears.

If X and Y are spaces, let [X,Y ] denote the set of homotopy classes of based

maps X −→ Y . Let ΩX = Map∗(S
1, X) denote the space of based loops in

X. Applying Ω shifts the homotopy groups down by 1:

πn(ΩX) ∼= πn+1(X)

By the uniqueness of K(G,n), we get a canonical homotopy equivalence

ΩK(G,n+ 1) ' K(G,n)

Every loop space ΩX has a multiplication that comes from concatenation

of loops. This multiplication is associative up to homotopy, and has a unit

and inverses up to homotopy. In addition, each double loop space

ΩΩX = Ω2X ∼= Map∗(S
2, X)

has a multiplication which is commutative up to homotopy. Therefore the

set

[X,K(G,n)] ∼= [X,Ω2K(G,n+ 2)]

is naturally an abelian group. This defines a functor which sends each space

X to the abelian group [X,K(G,n)]. It is a contravariant functor, so it

reverses the direction of maps:

X
f−→ Y  [X,K(G,n)]←− [Y,K(G,n)]

Cohomology is another such functor:

X
f−→ Y  Hn(X;G)←− Hn(Y ;G)

Surprisingly, these two functors are naturally isomorphic. In other words,

for each space X, there is an isomorphism of groups

[X,K(G,n)]
φ−→ Hn(X;G)

and each map X
f−→ Y gives a commuting square

[X,K(G,n)]

φ
��

[Y,K(G,n)]
−◦foo

φ
��

Hn(X;G) Hn(Y ;G)
f∗oo
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This is called Brown Representability.

Let’s look at the special case K(Z, 1) ' S1. Brown Representability gives a

natural isomorphism of abelian groups

[X,S1] ∼= H1(X;Z)

Geometrically, each map X −→ S1 sends each cycle in X to a cycle in S1,

which has a winding number. This gives a rule that associates each cycle

to an integer, which gives a cocycle on X, which gives a cohomology class.

Every degree 1 cohomology class arises this way.

One way to prove Brown Representability is to construct a fundamental

class

γ ∈ Hn(K(G,n);G)

which we expect to correspond to the identity map in [K(G,n),K(G,n)]. To

know which class to pick, we use the Hurewicz Theorem and the Universal

Coefficient Theorem to get a canonical isomorphism

Hn(K(G,n);G) ∼= HomZ(G,G) = End(G)

Then we pick the class γ that corresponds to the identity map G −→ G.

Next, we define

[X,K(G,n)]
φ−→ Hn(X;G)

φ(f) = f∗γ

In other words, given a map X
f−→ K(G,n), we pull back the fundamental

class γ along f to get a cohomology class of X. Then φ is clearly an isomor-

phism when X is a point. Both cohomology and [−,K(G,n)] satisfy a form

of excision, which implies that if X = A ∪ B is a CW complex with A and

B subcomplexes, then if φ is an isomorphism on A, B, and A ∩ B then it

is an isomorphism on A ∪B. Every finite complex is built inductively from

lower-dimensional complexes in this way, so we can show inductively that

φ is an isomorphism when X is a finite CW complex. To move to all CW

complexes we must compare the cohomology of X with the cohomology of

its finite subcomplexes. This step requires some care and we will gloss over

it in our quick treatment.

The point of the Brown Representability theorem is that K(G,n) is the

universal space on which cohomology classes live. Everything that can be

done with a degree n cohomology class with coefficients in G may be done

on K(G,n) first and then pulled back to any other space. To illustrate this,

consider K(Z, 1) ' S1. The fundamental class γ is one of the generators

of H1(S1;Z) ∼= Z. Note that γ ∪ γ = 0. This implies that any degree
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1 cohomology class α ∈ H1(X;Z) on any space X has the property that

α ∪ α = 0. The reason is that there is some map

X
f−→ S1

such that α = f∗γ, and f∗ preserves the cup product. One might expect

this to come out of the skew-commutativity of the cup product, but that

only gives the weaker statement

2α ∪ α = 0

In odd degrees higher than 1, only this weaker statement is true.

2. Definition of the Steenrod Squares

We want to understand cohomology. Brown Representability suggests that

we should try to understand “universal” cohomology, by which we mean the

cohomology of Eilenberg-Maclane spaces

Hm(K(G,n);G)

By Brown Representability, this group is naturally identified with

[K(G,n),K(G,m)]

and by the Yoneda Lemma this corresponds to the set of natural transfor-

mations

Hn(−;G) −→ Hm(−;G)

Each such transformation is called a cohomology operation. So when we com-

pute the cohomology of K(G,n), we are really enumerating the collection

of all cohomology operations.

This is all very interesting, but when we talk this way we are in danger of

making circular, content-free statements. We need to make a choice: should

we try to compute cohomology classes on K(G,n) first, or should we try to

define the cohomology operations first? We will do the latter.

Let’s restrict attention to G = Z/2. Then there is a particularly nice family

of cohomology operations called the Steenrod squares. Their construction is

rather technical, but the full details can be found in [1]. The end result is

the following:

Proposition 2.1. There exists for each pair of integers i, n ≥ 0 a natural

linear map

Sqi : Hn(X;Z/2) −→ Hn+i(X;Z/2)

called the ith Steenrod square, with the following properties:
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• Sq0 is the identity map.

• Sq1 is the “Bockstein homomorphism,” the connecting homomor-

phism in the long exact sequence that arises from

0→ Z/2→ Z/4→ Z/2→ 0

• Sqn(x) = x2. (Note that n is the degree of x.)

• Sqi(x) = 0 when i > n.

• Sqi commutes with the connecting homomorphism in the long exact

sequence on cohomology. In particular, it commutes with the sus-

pension isomorphism

Hn(X) ∼= Hn+1(ΣX)

• The Cartan formula:

Sqn(x ∪ y) =
∑
i+j=n

Sqi(x) ∪ Sqj(y)

• The Adem relations hold: when a < 2b,

SqaSqb =
∑
c

(
b− c− 1

a− 2c

)
Sqa+b−cSqc

where SqaSqb denotes the composition of the Steenrod squares. The

binomial coefficient in this formula is taken mod 2.

The Steenrod Algebra A is the free Z/2-algebra generated by the symbols

{Sqi : i > 0}, modulo the Adem relations. We can make A into a graded

algebra by declaring that Sqi has degree i. Then for any space X, the graded

abelian group

H∗(X;Z/2) =

∞⊕
n=0

Hn(X;Z/2)

is a graded module over A. The multiplication map

A×H∗(X;Z/2) −→ H∗(X;Z/2)

is generated by the action of the Steenrod squares Sqi.

Let’s do a simple example. Say that we know the cohomology of RP∞ as a

ring:

H∗(RP∞;Z/2) ∼= (Z/2)[α], |α| = 1

Then we can compute the action of the Steenrod squares as well. Using the

axioms above,

Sq0α = α

Sq1α = α2

Sq>1α = 0
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From this we can calculate Sqi(αn) using the Cartan formula. This is a bit

tedious, but we can take a shortcut if we define the operation

Sq := Sq0 + Sq1 + Sq2 + . . .

Now, technically, this isn’t an element of the Steenrod algebra. Only finite

sums are allowed. However, it still has a well-defined action on any one

cohomology class x, because only finitely many of the terms will give nonzero

results. Moreover, the Cartan formula is equivalent to the statement that

H∗(X)
Sq−→ H∗(X)

is a homomorphism of rings. (Here and afterwards we will continue to take

Z/2 coefficients, but we will drop them from the notation.) Therefore

Sq(αn) = (Sqα)n

= (α+ α2)n

=
n∑
i=0

(
n

i

)
αn+i

Then Sqiαn is the only component of this sum of degree (n + i), so we

conclude that

Sqiαn =

(
n

i

)
αn+i

This finishes our determination of H∗(RP∞) = H∗(K(Z/2, 1)) as a module

over the Steenrod algebra. Since this case is universal, we now understand

the action of the Steenrod squares, the cup product, and all combinations

of these things when they act on a cohomology class of degree 1. Our goal

now is to continue this calculation to H∗(K(Z/2, n)). For this task we need

more tools.

3. The Serre Spectral Sequence

Recall that there are two notions of “short exact sequence of spaces.” There

is the cofibration sequence

A −→ X −→ X/A

where X is (for example) a CW complex and A is a subcomplex. This gives

a long exact sequence of cohomology groups

. . . −→ Hn−1(A) −→ Hn(X/A) −→ Hn(X) −→ Hn(A) −→ Hn+1(X/A) −→ . . .

There is also the fibration sequence

F −→ E −→ B
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in which p : E −→ B is a fibration and the fiber is F = p−1(b0). Fibrations

are nice surjective maps in which nearby fibers have the same homotopy

type; they are rigorously defined by a lifting property. Notable examples of

fibrations include covering spaces, fiber bundles, and the path-loop fibration

ΩX −→ Map∗([0, 1], X) −→ X

In particular, there is always a fibration sequence

K(G,n− 1) −→ E −→ K(G,n)

in which E is contractible.

A fibration sequence does not give a long exact sequence on cohomology

groups (except in a stable range). Instead it gives a cohomology spectral

sequence

Ep,q2 = Hp(B;Hq(F )) ∼= Hp(B)⊗Hq(F )⇒ Hp+q(E)

For simplicity and ease of calculation, we will continue to take Z/2 coef-

ficients, and we will also assume that π1(B) acts trivially on Hq(F ). (In

particular, in all of our examples π1(B) = 0.)

To draw this spectral sequence, we put a grid of abelian groups on the xy

plane. For each pair of integer coordinates (p, q), we draw at the point (p, q)

the abelian group

Ep,q2 := Hp(B)⊗Hq(F )

This is a vector space over Z/2, whose dimension is the product of the

dimensions of Hp(B) and Hq(F ). In practice, H0(B) and H0(F ) will be

Z/2. Therefore, on the x-axis we write the groups Hp(B), and on the y-axis

we write the groups Hq(F ).

Next we draw some homomorphisms (called differentials) between these

abelian groups. Typically we don’t actually have an explicit formula for the

differentials; we just know that they exist. The differentials on the E2 are

all called d2 for simplicity. d2 takes each group on the E2 page to the group

that is one slot down and two slots to the right:

d2 : Ep,q2 −→ Ep+2,q−1
2

If we compose two differentials then we get zero. So we really have a collec-

tion of chain complexes

. . . −→ Ep−2,q2 −→ Ep,q+1
2 −→ Ep+2,q+2

2 −→ . . .

. . . −→ Ep−2,q−12 −→ Ep,q2 −→ Ep+2,q+1
2 −→ . . .

. . . −→ Ep−2,q−22 −→ Ep,q−12 −→ Ep+2,q
2 −→ . . .
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At each point in the plane, we take the kernel of the map going out, modulo

the image of the map coming in. This gives a new group Ep,q3 for each pair

(p, q). These groups form the E3 page.

Ep,q3 := ker dp,q2 /imdp−2,q−12

The E3 page has more differentials d3, which go 3 to the right and 2 down.

Taking homology of d3 gives the E4 page. This process has a well-defined

limit, called the E∞ page. Then the cohomology of the total space E is

simply the direct sum

Hn(E) ∼=
⊕
p+q=n

Ep,q∞

We’re interested in using this machine to calculate H∗(K(Z/2, 2)). We have

the fibration sequence

K(Z/2, 1) −→ E −→ K(Z/2, 2)

where E is contractible, and K(Z/2, 1) ' RP∞ has known cohomology.

Therefore the Serre spectral sequence has E2 page

Ep,q2 = Hp(K(Z/2, 2))⊗Hq(RP∞)

and converges to the cohomology of a point:⊕
p+q=n

Ep,q∞
∼= H∗(E) ∼=

{
Z/2 n = 0

0 n 6= 0

Therefore Ep,q∞ = 0 so long as (p, q) 6= (0, 0). So we know that everything on

the E2 page must eventually die. Elements die by landing inside the image

of a differential, or outside the kernel of a differential. Using the fact that

everything dies eventually, we can start with the known cohomology

H∗(RP∞) ∼= (Z/2)[α], |α| = 1

and reason out the unknown cohomology H∗(K(Z/2, 2)).

Start with α ∈ E0,1
2 . α must die, and the only thing that can kill it is d2.

Therefore

d2α ∈ E2,0
2
∼= H2(K(Z/2, 2))

is a nonzero element in the cohomology of K(Z/2, 2). Call it β. If there

were anything else in H1 or H2 of K(Z/2, 2), there would be nothing on the

E2 page to kill it, so there cannot be anything else:

H1(K(Z/2, 2)) = 0

H2(K(Z/2, 2)) = 〈β〉
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Since β and the fundamental class are both nonzero cohomology classes in

H2(K(Z/2, 2)), β must be the fundamental class.

We can now calculate what happens to all the monomials αiβj using the

Leibniz rule:

dn(xy) = (dnx)y + x(dny)

What do the products mean? On the E2 page, they are simply the cup

product on the cohomology H∗(F ) ⊗ H∗(B). The Leibniz rule guarantees

that this product induces a well-defined product on all subsequent pages.

So now we get

d2(α
2) = (d2α)α+ α(d2α) = 0

d2(α
3) = (d2α)α2 + α(d2α

2) = α2β
...

d2(α
n) = αn−1β n odd

0 n even

d2(αβ) = (d2α)β + α(d2β) = β2

...

d2(α
nβk) = αn−1βk+1 n odd

0 n even

Inspecting the family of elements αiβj , we see that they are all killed on

the E2 page except for the even powers of α, namely α2, α4, α6, etc. So we

haven’t captured everything yet.

The last chance for α2 to die is on the E3 page. So

d3(α
2) ∈ E3,0

3
∼= H3(K(Z/2, 2))

is a new nonzero cohomology class. I claim that it’s Sq1β. This is a result

of the following transgression theorem:

A transgression is a differential that goes all the way from the y-axis to the

x-axis:

dn : E0,n−1
n −→ En,0n

Note that E0,n−1
n is a subgroup of E0,n−1

2 , while En,0n is a quotient of En,02 .

If x ∈ E0,n−1
2 is in this subgroup, and its image under dn agrees with the

image of y ∈ En,02 , we say that x transgresses to y. Looking into the guts of

the Serre spectral sequence, the transgression is just the zig-zag

Hn−1(F )
δ−→ Hn(E,F )

p∗←− Hn(B, ∗)



10 CARY MALKIEWICH

which is also a homomorphism from a subgroup of Hn−1(F ) to a quotient

of Hn(B, ∗). But both maps in the zig-zag commute with Sqi. Therefore, if

x transgresses to y, then Sqix transgresses to Sqiy.

Since α2 = Sq1α, we conclude that α2 transgresses to Sq1β. Notice that Sq1

is the cup product square for α, but not for β; this is because α and β have

different degrees. We have now computed

H3(K(Z/2, 2)) = 〈Sq1β〉

We can continue to apply the Leibniz rule and the transgression theorem to

get more of the cohomology. It becomes hard to pin things down precisely,

but we start to observe that all the monomials βi(Sq1β)j seem to show up

on the x-axis and take care of all the powers αn where n is even but not a

multiple of 4.

After that, α4 = Sq2Sq1α transgresses to Sq2Sq1β, and we get all the mono-

mials in

β,Sq1β,Sq2Sq1β

That takes care of all the powers of α that are not multiples of 8. We can

start to guess where this is going. We expect all these cohomology classes

to be nonzero:

β,Sq1β,Sq2Sq1β,Sq4Sq2Sq1β,Sq8Sq4Sq2Sq1β, . . .

and we expect H∗(K(Z/2, 2)) to be freely generated as a commutative Z/2-

algebra by these classes.

4. Admissible Sequences

To verify our guess we need to talk more about the Steenrod algebra. Let

I = (i1, i2, . . . , ir, 0, 0, . . .) be any sequence of nonnegative integers which is

0 except for finitely many places. Then define

SqI = Sqi1Sqi2 . . . Sqir

Recall that the Steenrod algebra A is generated as a ring by the Sqi. There-

fore the SqI are an additive spanning set for A. However, they do not form

a basis. We still have the Adem relations: when a < 2b,

SqaSqb =
∑
c

(
b− c− 1

a− 2c

)
Sqa+b−cSqc
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By an inductive argument, we can use the Adem relations to take any mono-

mial SqI and express it in terms of monomials SqJ for which

J = (j1, j2, . . . , jr, 0, . . .)

j1 ≥ 2j2

j2 ≥ 2j3
...

Call such a sequence J admissible. So {SqI : I admissible} forms a spanning

set for A. By looking at K(Z/2, 1)n, it is possible to show that it is a basis.

This is called the Serre-Cartan basis for the Steenrod algebra A.

If I is admissible, define the excess of I to be

e(I) =
∑
k

(ik − 2ik+1) = 2i1 −
∑
k

ik

As the name implies, this is a measure of how much I exceeds the minimum

requirements to be admissible. We may sort the admissible sequences by

excess:

e(I) sequences with this excess

0 (0)

1 (1), (2, 1), (4, 2, 1), (8, 4, 2, 1), . . .

2 (2), (3, 1), (4, 2), (5, 2, 1), (6, 3, 1), (8, 4, 2), . . .
...

...

This table leads us to the following guess:

Proposition 4.1. • Let β ∈ H2(K(Z/2, 2)) be the fundamental class.

Then H∗(K(Z/2, 2)) is the free commutative Z/2-algebra on the set

{SqIβ : I admissible, e(I) < 2}

• Let γn ∈ Hn(K(Z/2, n)) be the fundamental class. Then H∗(K(Z/2, n))

is the free commutative Z/2-algebra on the set

{SqIγn : I admissible, e(I) < n}

Note that when n = 1 this gives

H∗(K(Z/2, 1)) ∼= (Z/2)[γ1]

as expected.



12 CARY MALKIEWICH

5. Borel’s Theorem

Now that we have made our guess in Prop. 4.1 above, we will verify that it is

correct. Here is the main step. Suppose that E∗,∗∗ is a multiplicative spectral

sequence of Z/2-modules that converges to H∗(pt). Let A = E0,∗
2 denote

the ring on the y-axis of the E2 page, and let B = E∗,02 denote the ring on

the x-axis. Suppose that A has a simple system of generators {x1, x2, . . .}.
This means that there are finitely many xi in each degree, and the set

{xi1xi2 . . . xir : i1 < i2 < . . . < ir}

forms an additive basis. Suppose finally that each xi transgresses to some

element yi ∈ B.

Theorem 5.1 (Borel). Under these assumptions, the obvious map

(Z/2)[y1, y2, . . .] −→ B

is an isomorphism of rings.

Note that the ring (Z/2)[α] has a simple system given by {α, α2, α4, . . .}.
More generally, (Z/2)[αi : i ∈ S] has a simple system {α2k

i }i∈S,k>0. In

our earlier calculation of H∗(K(Z/2, 2)), we have already observed that the

simple system {α2k} transgresses to Sq2k−1
. . . Sq2Sq1β, so Borel’s theorem

is enough to prove that our guess is correct.

Proof. (of Borel’s Theorem)

Let Λ = (Z/2)[x1, x2, . . .]/(x
2
1, x

2
2, . . .) denote the exterior Z/2-algebra on the

elements xi. Then there is an obvious map Λ −→ A that preserves addition

but not multiplication. This map is an isomorphism of graded Z/2-modules.

Let P = (Z/2)[y1, y2, . . .] denote the polynomial algebra on the yi. As we

have already seen, there is an obvious map of graded rings P −→ B, and

our goal is to prove that this map is an isomorphism.

Now Λ⊗ P is a bigraded ring. Let

δ : Λ⊗ P −→ Λ⊗ P

be the unique derivation with

δ(xi) = yi, δ(yi) = 0

In other words, we use the Leibniz rule to determine what δ does on every-

thing else. We may think of the bigraded ring Λ⊗P as simply a graded ring,
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by thinking of degree (i, j) elements as degree (i+ j). With this convention,

(Λ⊗ P, δ) is a chain complex. It is actually a tensor product over each i of

Λ[xi]⊗ (Z/2)[yi]

which has the cohomology of a point. By the Kunneth formula, the coho-

mology of (Λ⊗ P, δ) is also that of a point.

Now filter our chain complex (Λ⊗ P, δ) by

(Λ⊗ P )p :=
⊕
i≥p

Λ⊗ Pi

A filtered complex gives rise to a spectral sequence Ê. Since we know all the

generators, relations, and levels of the filtration, we can give this spectral

sequence and all of its differentials explicitly. The differentials on the Ê1 page

are trivial. The Ê2 page is the bigraded ring Λ⊗P , as we would expect. The

differentials agree with δ when this is possible, and when it is not they are

zero. The Ê∞ page has the cohomology of a point. Using this information,

it is straightforward to make an additive map of spectral sequences Ê −→ E.

In other words, every group Êp,qr maps to the corresponding group Ep,qr , and

the map commutes with all the differentials, though it does not preserve the

multiplication. Then we use the following lemma:

Lemma 5.2. If Ê −→ E is a map of spectral sequences, then if any two of

these are isomorphisms, so is the third:

• The x-axis Ê∗,02 −→ E∗,02

• The y-axis Ê0,∗
2 −→ E0,∗

2

• The last page Ê∗,∗∞ −→ E∗,∗∞

In our case, the y-axis and last page both agree, so the x-axis agrees as well.

By construction, this is simply the map

P = (Z/2)[y1, y2, . . .] −→ B

so we have proven that it is an isomorphism. �

We have finished checking Prop. 4.1 in the special case when n = 2. We

may do the general case now without too much more effort. Suppose that γn
is a degree n cohomology class and I is an admissible sequence. If e(I) > n,

then

SqIγn = Sqi1
(
Sqi2 . . . Sqirγn

)
= 0
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because the term in parentheses has degree

n+

(∑
k

ik

)
− i1 = n− e(I) + i1 < i1

Similarly, when e(I) = n, the term in parentheses has degree i1, so the

outside Sqi1 simply squares:

SqIγn =
(
Sqi2 . . . Sqirγn

)2
If (i2, . . . , ir) has excess n then we may reduce it further:

SqIγn =
(
Sqi3 . . . Sqirγn

)4
and so on until the remainder of I has excess less than n. So ifH∗(K(Z/2, n))

is the free commutative Z/2-algebra on

{SqIγn : I admissible, e(I) < n}

then it has a simple system of generators

{SqIγn : I admissible, e(I) ≤ n}

In the spectral sequence for

K(Z/2, n) −→ ∗ −→ K(Z/2, n+ 1)

this simple system transgresses to

{SqIγn+1 : I admissible, e(I) < n+ 1}

and so H∗(K(Z/2, n+ 1)) is the free commutative Z/2-algebra on this set.

Therefore Prop. 4.1 is true by induction.
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