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Rotor resistance identification has been well recognized as one of the most critical factors affecting the theoretical study and
applications of AC motor’s control for high performance variable frequency speed adjustment. This paper proposes a novel
model for rotor resistance parameters identification based on Elman neural networks. Elman recurrent neural network is capable
of performing nonlinear function approximation and possesses the ability of time-variable characteristic adaptation. Those
influencing factors of specified parameter are analyzed, respectively, and various work states are covered to ensure the completeness
of the training samples. Through signal preprocessing on samples and training dataset, different input parameters identifications
with one network are compared and analyzed. The trained Elman neural network, applied in the identification model, is able to
efficiently predict the rotor resistance in high accuracy. The simulation and experimental results show that the proposed method
owns extensive adaptability and performs very well in its application to vector controlled induction motor. This identification
method is able to enhance the performance of induction motor’s variable-frequency speed regulation.

1. Introduction

The key on vector control for induction motor lies in
the magnetic field orientation, but one of the important
factors affecting the field orientation is the accuracy of rotor
parameters. While an AC motor is running, its parameters
may change with the influence of inner and outer conditions.
The changes of the motor temperature and slip frequency
can affect rotor resistance value; it may increase 50% with
the temperature rise and enhance a few times with the skin
effect if the rotor current frequency is high. Also, the rotor
inductance will change with magnetic saturation. It is a
nonlinear relationship between this change value and the
magnetic saturation degree; then, the rotor time constant
will vary with the conditions. When the rotor time constant
deviates from actual value largely, the decoupling conditions
of the flux and torque control are destroyed; thus, the dynamic
performance of the system depends on the rotor resistance’s
online identification and adjustment [1, 2]. In order to
improve the performance of induction motor vector control

system, it is necessary to introduce the motor parameter
online identification.

There are three main categories on the online parameter
identification: spectrum analysis technology, the observer-
based technology, and the model reference adaptive iden-
tification technology. Spectrum analysis adopts the motor’s
response of the injected signal or the harmonic characteristic
information on the normal voltage and current signal. The
required parameters can be obtained by the spectrumanalysis
on the stator current or voltage signal. As mentioned in
[3], based on 𝑑-𝑞 model in frequency domain, the 𝑞 axis
component into the negative sequence signal remains zero,
so that the motor torque is not disturbed. The fast Fourier
transform is used to analyze the fundamental component of
current and voltage as well as the samples spectral values,
and the results were used to determine the parameters of the
motor.

In the observer-based technology, themotor’s parameters
are processed as the system extended state.Themainmethods
are the extension of Kalman filter (EKF) and the extended
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Luenberger observer (ELO).With the condition of the induc-
tion motor normal operating, the extended motor model
and the EKF method on the motor parameter estimation
are described in [4]. This method requires the motor end
signal and rotor speed measurement. Reference [5] adopts
the wideband harmonic contained in the PWM inverter
output voltage to estimate the rotor time constant with EKF
algorithm. The extended Luenberger observer for estimating
the critical state and parameters in the motor is described in
[6–8].Themain problemof EKF andELO is the calculation of
strength. The more the numbers of parameters estimation of
the expansion are, themore the strength calculation increases
rapidly.

The characteristics of the model reference adaptive iden-
tification technique are simple, but its accuracy depends on
the accuracy of the model. The method based on reactive
power is not sensitive to the variation of stator resistance,
which is the most common model reference adaptive control
method [9, 10]. In order to reduce the change of other
parameters of the sensitivity, it is better to estimate some
other parameters during the adaptive adjustment. When
the condition of the magnetizing inductance variation with
the degree of saturation of the motor is considered, the
identification accuracy of the stator and the rotor resistance
are further improved [11–13].

Additionally, online identification of rotor resistance for
vector controlled induction motor has been focused on more
and more. A time-varying parameter estimation algorithm
is presented in [14], which is simple and easy for online
estimation of the rotor resistance for induction motor with
the rapidly convergence in spite of measurement noise,
discretization effects, parameter uncertainties, and modeling
inaccuracies. The parametric model is deduced by the trans-
fer function based on the stationary state, and a calculating
is built to a plurality of motor parameters calculation [15]. A
fuzzy logicMRASmethod with realization forms is proposed
in [16], in which the reference and adaptive models are
deduced from different models, and they all depend on
Popov’s hyperstatic theory, but the acquisition of reference
model always has difficulties. A MRAS system composed of
rotor voltage and current model is provided by [17], in which
a PI regulator is used and also suitable for the system with
sensor only.

Artificial neural network is increasingly used for param-
eter identification in recent years. It is illustrated system-
atically that the neural networks are applied to electrical
drive systems in [18] and give valuable instruction of their
online and offline realization. The implementation of rotor
resistance online identification with BP neural network is
explored in [19], which provides an effective method. A
parameter identification method based on Hopfield neural
network is presented in [20], which also gives sufficient
condition of correct identification with sensor signal delay.
Besides, there are also neural network schemes combined
with wavelet transformation [21] and Kalman filter method
[22]. These studies proved neural network’s applicability to
motor parameter identification theoretically, with simulation
and in practice.

The model of rotor resistance identification based on
Elman neural network is proposed in this paper. Elman
neural network is a kind of recurrent network, which can
approximate any function with any preciseness theoretically.
A context layer to the forward network is added as a delay
factor to memorize history state. So this model has the abili-
ties of adapting to time-variable characteristic, reflecting the
dynamic characteristics of system directly, and the stronger
calculation. With the simulation and experiments, Elman
neural network is proved to be suitable to resolve the problem
of motor parameter identification.

2. Models of Induction Motor

The equations of induction motor in the 3-phase static
coordinate, after 3/2 transform, can be obtained in the 2-
phase stationary coordinate system of equations; also after
2𝑠/2𝑟 transformation, it can be measured in 2-phase rotating
coordinate system on any mathematical model.

At first, the mathematics model in the 2-phase syn-
chronous rotating coordinate system of the induction motor
is presented. The 2-phase synchronous rotating coordinate
system is a special case of two arbitrary rotation coordinates
rotating in synchronous speed, also known as the MT
coordinate system. Mathematical model equations with this
system of the induction motor are shown as follows.

Voltage equation is given by
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Flux equation can be written as
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Torque equation is as follows:
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Motion equation can be expressed as
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Secondly, the vector control of inductionmotor according
to rotor flux oriented is described. When the rotor flux
orientation is used, 𝑀 axis coincides with the rotor flux 𝜓

𝑟

axis. Since the 𝑇 axis is perpendicular to the 𝑀 axis, 𝜓
𝑟
on

the 𝑇 axis component is zero, namely, the rotor flux uniquely
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generated by current component on the 𝑀 axis. So the flux
equations are shown as follows:
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The above equations are converted to the torque equation.
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The voltage equation of rotor flux oriented 𝑀𝑇 coordi-
nate system is given by
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The induction motor can measure voltage vector, current
vector and controlled variable stator; therefore, it is required
to find the relationship between each component and other
physical measurements of stator side value:
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The three equations consist of the basic control equations
of induction motor vector control system. Also, the realiza-
tion of control scheme needs motor parameters including
𝐿
𝑚𝑑

, 𝐿
𝑟𝑑
, and𝑇

𝑟
, which are closely related to the performance

level and accuracy parameters of induction motor control.

3. Rotor Resistance Influence Factors Analysis

Main affecting factors to rotor resistance can be regarded
as rotor current, running time, frequency, and ambient
temperature and can be express as

𝑅
𝑟
= 𝑓 (𝐼, 𝑡, 𝑓, 𝑇) , (10)

where 𝑅
𝑟
is the rotor resistance, 𝐼 is the rotor current, 𝑡 is the

running time, 𝑓 is the frequency, and 𝑇 is the temperature.
Heating is a dynamic and high inertia nonlinear pro-

cess; the larger the current and slip frequency are in the
longer working time, the more the heat generated. And the
temperature caused by this reason combined with ambient
temperature determines the rotor temperature. If working
time is selected as an input variable, when the motor
reaches heat balance, it has no more effect on the rotor
resistance change, the 4 factors decrease to 3, and the other
one becomes a disturbance; thus, the accuracy cannot be
guaranteed. Considering the rotor resistance change is simply
from the temperature rise, winding end temperature can be
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Figure 1: Copper wire’s resistance change rate with temperature.

selected as a comprehensive input. It also can be used as an
important reference of motor fault diagnosis and to realize
state monitoring while implementing identification.

The relationship between rotor resistance and tempera-
ture is as the following equation:

𝑅
(𝑇)

= 𝑅
20

× (1 + 𝛼
20

(𝑇 − 20)) , (11)

where 𝑅
20

is copper resistance when ambient temperature
is 20
∘C, 𝑅
(𝑇)

is the resistance at temperature 𝑇, and 𝛼
20

is
the temperature coefficient at 20∘C, which is 3.93 × 10

−3 for
copper. Its change rate with temperature is shown in Figure 1.

When the transient value of winding end temperature is
constant, rotor resistance also can be affected by other factors,
in which the most evident one is slip frequency. When the
motor is in stable running state, rotor current’s frequency is
basically slip resistance, its value is about 1–3Hz, and the skin
effect caused by this reason is very small and can be neglected.
When motor is in starting or heavy load process, the skin
effect’s influence is rather significant, usually 2-3 times of the
normal value. According to [23], rotor resistance’s change rate
with slip frequency can be overfitted with square function as
the following equation:

𝐾
𝑅
𝑠

= 0.0009𝑠
2

+ 0.0264𝑠 + 0.8435. (12)

Thus, rotor resistance’s change rate with slip frequency is
shown in Figure 2.

4. Elman Neural Network Setup and
Parameters Design

For a given problem, which network structure is selected
for its fastest training speed and better output effect is very
difficult to predict. It depends on many factors, including the
input and output variables, the number of training samples,
error target, and the mapping relationship between them.
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Figure 2: Rotor resistance change rate with slip frequency.

4.1. Affiliation Network Structure. The basic Elman neural
network structure is shown in Figure 3. Its expression in
nonlinear state is
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where 𝑖, 𝑗, 𝑘 is number of input variables, hidden layer
neurons, and output layer neurons, respectively; 𝑃, 𝑇 are
input and output vectors. 𝐼𝑊1

𝑖𝑗
, 𝐿𝑊2
𝑗𝑘
, and 𝐿𝑊

1
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represent the

weights between the number 𝑖 input and number 𝑗 hidden
layer neuron, the weight between the number 𝑗 hidden
layer neuron and number 𝑘 output layer neuron, and the
weight feedback to the number 𝑗 hidden layer neuron. TF1,
TF2 are transfer functions of hidden layer and output layer,
respectively. 𝑏1

𝑖𝑗
, 𝑏
2
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are bias of the inputs of different layers.𝑂1

𝑗
,
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are output vector and context layer’s feedback state vector.
Weights adjustment function of Elman network has slow

convergence speed and may be trapped at local minimum
values, and, for specific problem, its default algorithm should
be modified; one of the optimized algorithms can be written
as
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where Δ𝑊
(𝑛) is revised value at 𝑛 iteration, 𝜂 is acceleration

factor, and 𝛼 is momentum factors. According to research,
when 𝜂 = 0.2–0.5, 𝛼 = 0.9–0.98, the algorithm has better
convergence speed and can avoid beating back and forth
when error curve face is long and narrow.

Since the input data fluctuation range is very large,
when they are used as input directly, the larger input data

often blurs smaller input data, which causes training time to
increase greatly while precision of the network output drops.
Therefore, in order to avoid the inherent characteristics of
data loss, it needs to have the input normalized for the
sake of better training and simulation performance. Training
performances of the network before and after normalization
are shown in Figure 4.

Figure 4(a) shows that, before normalization, error drops
quickly in the first 100 epochs, but its change rate becomes
very slowly; thereafter, its error failed to reach 1% at max-
imum points of 1000 epochs. Figure 4(b) shows that, after
normalization, training speed of the network increases signif-
icantly and reaches the training goal of 0.1% accuracy at epoch
102. It is clear that a reasonable normalization parameter is of
great influence on the convergence rate and the training time.

4.2. Training Data Processing. The complexity of motor
parameters identification is determined because of the multi-
variable, nonlinear, and strong coupling characteristics of its
mathematical model. The relationship between the parame-
ters to be identified with the motor running state variables is
difficult to be expressed by functions, some influence factors
even not to be fully studied. So it is started with factors that
have clear relationship with the input variable, and, after its
effects are compared and verified, other potential influence
factors may then be gradually added and analyzed.

In order to ensure neural network’s better response
to various inputs, the completeness of training samples is
required. Samples data acquirementmust be in consideration
of various operation conditions of the motor in actual
circumstances, and its capacity should be large enough to
include all the characteristics of the target system.

Here, winding end temperature 𝑇, slip frequency 𝑆, and
rotor current 𝐼 are selected as the main conditions, and, after
variables combination of the input, abundant motor running
state is covered.

In the classical or improved motor parameter testing
method, acquisition of training data and network validation
data is very time consuming and almost cannot be completed.
Some methods can be applied to maximize the use of
limited data. A reliable way is to obtain a batch of training
samples with the traditional methods, and then a reference
rotor resistance model is set up according to the data. In
MATLAB/Simulink, there are several parameters that can
be set in 3-phase asynchronous motor model; thus, a lot
of network training data can be acquired in simulation
combining with the established rotor resistance model.

At moment 𝑖, rotor resistance is not only affected by the
external environment and internal factors, but also affected
by history value, such as the value at moment 𝑖 − 1, 𝑖 − 2, . . .,
and 𝑖 − 𝑛. If the past 𝑁 data are used to observe the value in
the future𝑀 times, the𝑁 adjacent samples data are selected
as the sliding window and mapped to 𝑀 values. A certain
overlapping samples data segment is designed. Its principle
is in Figure 5.

In the process of normalization, maximum value selec-
tion is involved. Temperature value can be selected in refer-
ence to motor’s insulation class detailed in Table 1.
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Table 1: Motor’s insulation class and maximum degree rise.

Insulation
class Y A E B F H C

Max. degree
rise 90 105 120 130 155 180 220
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Table 2: Training steps of different hidden layer neurons.

Hidden layer neurons 5 6 7 8 9
Training steps 180 138 120 137 141

Usually the maximum current of induction motor
appears in starting state, and the biggest starting current is
about 4–7 times of its rating value. Maximum slip frequency
usually appears at startingmoment that is a transient process,
so maximum slip frequency during motor running process is
selected. Here the normalized parameter for temperature is
50, slip frequency is 25, and rotor resistance is 5.

5. Rotor Resistance Identification with
Elman Neural Network

At first, the rotor temperature and slip frequency are used as
the input parameters of Elman neural network to check up
the effect of this network. Then, the rotor current is added as
the input parameter to make sure whether the identification
results have improved or not with this network, and the
number of input parameters in this network is determined
at last.

For prominent influence factor, its inner nonlinear map-
ping relationship is strong, number of Elman hidden layer
neurons may be small, and the relationship between it and
training steps is shown in Table 2.

As the number of hidden layer neurons increases, the
training steps have not been reduced, but reduced to a certain
point in which these steps have a tendency to increase.
A reasonable explanation is that, after the structure of the
network completes the nonlinear mapping from input to
output, the increase of the neurons number leads to increase
of the weights and feedbacks need to adjust. In order to
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Figure 7: Rotor resistance 3 input network simulation curve.

achieve the same error level, quantity and complexity of
the calculation increase dramatically, so it needs more steps
to adjust. The increased neurons are redundant in some
degree, though robustness of the network increases, but it is
not desirable for the contemporary processor and electronic
devices realization. Here, 2-7-1 network structure is selected.

In Figure 6, it shows that the constructed network has
good performance to the input, and the error in most data
points is below 1%. At the last 5 points, the error increases. In
particular at point 50, it reaches 2%, which is large enough to
have certain effect on the high control performance, but these
data points represent transient starting period, and its error
is acceptable to the overall control performance.

When current is added as input, the nonlinear mapping
relationship between input and output becomemore compli-
cated, and network size should be increased. Started with 7 as
hidden layer neurons and with comprehensive consideration
of train performance, the hidden layer neurons number is
selected as 10. As shown in Figure 7, error levels at most data
points are bigger than ±1%, and beyond 3% at the last several
points.

6. Simulation and Experiment Results Analysis

An experimental platform is built and shown in Figure 8.
The rotor resistance parameter identification based on Elman
neural network is applied to the induction motor inverter.

In this platform, the parameters of asynchronous motor
are 𝑃
𝑁

= 4 kW, 𝑈
𝑁

= 380V, 𝑁
𝑝

= 2, 𝑅
𝑠
= 1.405 𝜔, 𝑅

𝑟
=

1.395 𝜔, 𝐿
𝑠
= 5.83mH, 𝐿

𝑟
= 5.84mH, 𝐿

𝑚
= 172mH, and

𝑇
𝑟
= 0.138.
At first, the simulation platform is designed with MAT-

LAB/Simulink. The motor parameter 𝑅
𝑟
(rotor resistance)

is identified with the traditional offline method and Elman
neural network online method, respectively. The comparison
with the two methods is shown in Figure 9.
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Figure 8: Induction motor inverter experimental platform.

It is obvious that the identification result with traditional
offline method cannot adapt to the temperature rise and
the slip frequency change. Its ability is not enough to adapt
to the requirement of high performance of the control
system.However, Elman neural network online identification
method is a very good solution. It also has the similar results
for the parameter 𝑇

𝑟
identification.

The simulation for the variation of motor parameters is
accomplished with the Simulink-based motor model, shown
in Figure 10. The cures of the flux linkage and torque are
obtained before and after the parameters’ change. Curves
show that parameters’ change has a great influence on
the performance of motor control system based on the
steady-state mathematical model. If these motor param-
eters can be updated real-time and used in the control
system, the control accuracy will be improved to a large
extent.

It can be seen from Figure 10 that the torque estimation is
to reach a stable value about 0.4 secondswith the given torque
starting in 50. When the calculation model is corresponding
to motor actual parameters, torque ripple initially reaches
around 200%, but it soon becomes normal value and more
smooth. However, if the torque estimation model parameters
are different from the motor parameters, namely, these
parameters change during motor running process and the
estimation model fails to update them, the torque reaches
more than 450% with large fluctuation. Moreover, even if it is
stable at last, there is still big fluctuation about the true value
of 15%.

In Figure 11, it shows that the motor rotor resistance
change has effect on the flux observation. When the obser-
vation model adopts the accurate motor parameters, the
observed flux and the measurement output are almost the
same, which is better to tracking the motor flux. When the



8 Mathematical Problems in Engineering

20 25 30 35 40 45 50
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Id
en

tifi
ca

tio
n 

re
su

lts

The traditional offline method
Elman NN online method

Temperature rise (20–50), slip frequency fluctuation (0–5)

Figure 9: Identification results comparison with traditional offline method and Elman NN online method.

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

300

350

400

Time (s)

To
rq

ue
 o

ut
pu

t

Torque output without identification
Torque output with identification

−50

Te setting

Figure 10: Torque output before and after parameter change.

rotor resistance value is double, the observed flux has large
fluctuation at the motor starting, which is beyond the exact
value of nearly 200% and tends to accurate value at the speed
stability with small fluctuation. When the rotor resistance
value is triple, the fluctuation of the observed flux is still
large; it is obvious at stable phase, about 3.5%.When the rotor
resistance value is increased 5 times, the observed flux has the
obvious fluctuation that reaches about 6.7%. This error is a
great obstacle to improve the precision of the control system.

In Figure 12, the experimental results are shown including
inverter output voltage and current with rotor resistance
parameter identification. From these results, it is obvious
that the accuracy of the motor parameter identification plays
an important role to improve the performance in adjustable
speed drive system.

7. Conclusion

In this paper, a method on inductionmotor parameter online
identification based on Elman neural network is proposed.
As a feedback neural network, its abilities of nonlinear
function approximation and time-varying adaptivity are
used to resolve the rotor resistance identification problems.
According to various running conditions with the realistic
environment, the influence factors of this parameter are
analyzed to ensure the completeness of the training samples.

Simulation and experimental results show that this
method has the higher applicability of identification of induc-
tion motor parameters. With the experiment of the variation
of rotor resistance, the torque curves of the before and
after parameter changes are obtained, which show that the
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Figure 11: Rotor flux comparison with different rotor resistance values.

(a) Output voltage waveform (b) Output current waveform

Figure 12: Experimental outputs including rotor resistance identification.

performance of vector controlled induction motor with the
steady-state mathematical model is influenced by parameter
changes remarkably. The output voltage and current curves,
which were obtained from the experimental platform, show
that the vector control with rotor resistance identification has
improved performance.
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J. C. Vannier, “An online simplified rotor resistance estimator
for induction motors,” IEEE Transactions on Control Systems
Technology, vol. 18, no. 5, pp. 1188–1194, 2010.
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