
. ,
National Library I* of Canada

Bibliothrnue nationale
du Canada

Canadian Theses Service Services des theses canadiennes

Ottawa, ~ a i a d a
K1 A ON4

' ,

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to ensure the highest quality of reproduc-
tion possible.

9

La qualit6 de cette mjcrofiche depend grandemmt de la qualit4
de la these soumise au microfilmage. Nous avons tout fait ~ u r
assurer une qualit6 superieure de reproduction. --

If pages are missing, contact the university which granted the S'il manque des pages, veuillez communiquer avec I'unrver.
degree. sit6 qui a confer6 le grade. -

Some pages may have indistinct print especially if the original. La qualit6 d'impression de certaines pages peut laisser B
pages were typed with a poor typewriter ribbon or if Jhe univer- desirer, surtout si les pages originates ont Bt6 dactylographibe:
sity sent us an inferior photocopy. d ('aide d'un ruban us6 ou si l'universrte nous a fait parvenir

une photocopie de qualit6 inf6rieure 1

Previously copyrighted materials. (journal articles, published Lesdocilments qui font d6jA I'objet d'uhdroit d'auteur (article:
tests, etc.) are not filmed. de revue, examens publi6s, etc.) ne sont pas microfilm&.

f
~e~roduct ion in frill or in part of this film is governed by the La reproduction, mgme partielle, de ce microfilm est soumise
Canadian Copyright Act, R.S.C. 1970, c. C-30. d l d ~ o i canadienne sur le droit d'auteur, SRC 1970, c. (3-30

r

f THIS DISSERTATION .ti LA THESE A ETE

HAS F E N MICROFILMED M~CROFILMEE TELLE QUE
EXACTLY AS RECEIVED NOUS L'AVONS RECUE

I

ELFS: ENGLISH LANGUAGE FROM SOL

by
I

I

-
J I

stephen C. Klos-t$r - --

B.A., Luther College, 1965
. -

M.A., University of California, 1967
I

7

.
Ph.D., University of Iowa, 1971

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF - -
THE REQUIREMENTS FOR THE DEGREE OF

1

MASTER OF SCIENCE '

I in the Department

Computing Science .

@ Stephen C. Kloster 1985 .'
e

SIMON FRASER UNIVERSITY

September 1 985 \
1.

- A

*\

All rights reserved. This thesis may notlbe
reproduced in whole or in part, by

or other means, without permission of '.

1

P e r m i s s i o n h a s b e e n g r a n t e d L ' a u t o r i s a t i o n a' E t E a c c o r d g e
t o t h e N a t i o n a l L i b r a r y o f 3 l a . B i b l i o t h s q u e n a t i o n a l e
C a n a d a t o m i c r o f i l m t h i s d u C a n a d a d e m i c r o f i l m e r
t h e s i s a n d t o l e n d or s e l l , ce ' t te t h h e e t d e p r E t e r o u

, c o p i e s , of t h e f f ' l m . d e v e n d r e d e s e x e m p l a i r e s d u
f i l m . 3

T h e '>,;uthor (c o p y r i g h t o w n e r)
h a s r e s e x v e d o . t h e r

. .
p u k ~ l i c a t i o n . . r i g h t s , a n d

- n e i t h e r t h e t h e s i s n o r
e x t e n s i v e e x t r a c t s f r o m i t
may be p r i n t e d or o t h e r w i s e
r e p r o d u c e d w i t h o u t h i s / h e r
w r i t t e n p e r r q i s s i o n .

L ' a u t e u - r (t i t u l a i r e d u d r o i t
d ' a u t e u r) s e r s s e r v e l e s
a u t r e s . d r o i . t s d e , , p u b l i c a t i o n ;
n i l a t h G s e n i d e l o n g s
e x t r a i t s d e c e l l e - c i n e
d o i v e n t E t r e i m p r i m g s o u
a u t r e m e n t r e p r o a u i t s s a n s s o n
a u t o r i s a t i o n G c r i t e .

ISBN

Name: S teve Klos te r

Degree: Master of Science

T i t l e of t h e s i s : ELFS: Engl i sh Language From $QL

Examining Committee:

Chairman: Dr. Tiko Kameda

~r ': WO% hun- Luk
Sen ior Superv i sor

D r . Nick CGrcone

(i n absen t i a)
Dr. Veronica Dahl

D-Q. James P. Del rande B
Eqte rna l Examiner
school of Cornput ing Sc ience
Simon F ra se r Univers i4p

,
- - 2 9 August 1 9 8 5

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o S lmon Fraser ~ n l v n r s l t ~ < i ~ h t t o lend

my t h e s i s , proJect o r extended essay (The t i t l e o f which i s shown below)
' l

t o users o,f t h e Simon Fraser U n i v e r s i t y L i b ra ry , and t o make p a r t i a l ,or

s i n g l e cop ies o n l y f o r such users o r i n response t o a request from t h e

l i b r a r y o f any o t h e r university, o r o t h e r educat iona l i n s t i t u t i o n , on

i t s own behal f o r f o r one o f I t s users.' . I f u r t h e r agree t h a t peqmission

f o r m u l t i p l e copying o f t h i s work f o r s c h o l a r l y purposes may be granted

by me o r t h e Dean o f Graduate Studies. I t i s qnderstood t h a t copy ing .

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l not be a l lowed

w i t h o u t my w r i t t e n permis,sion.

T i t l e o f Thes3is/Project/Extended l Essay

ELFS: ' ~ n g l i s h Language From SQL'

Author :

(s i g n a t u r e)

Steve Kloster

(name)

16 September 1 9 8 5

(d a t e)

ABSTRACT

iB
we describe a system which, when given a query in a SQL-like

relat ion21 database language, will display its meaning ifi clear, is kt.

unambiguous natucal language. The translation mechanism is .P

A. &
independent ,of the applicdtion domain. The system has direct L

applications in the design of computer-based SQL tutorial
* 1

"Lystems and program debugging systirns. The research results
-ti_

*btaike,d , in the thesis will als+be useful in query optimization
- C ,*r : I

an8 the yesign of a front-end which will be more user-friendly
ct &- & thdfik.sQL: .- . ,

ACKNOWLEDGEMENTS

of t h e a s s i s t a n c e he I would l i k e to t h a n k Wo-Shun Luk f o r all

h a s g i v e n me.

TABLE OFiCONTENTS - I

Approval .. i i

... Acknowledgements iv .
CHAPTER I Introduction 1

CHAPTER I 1 ELFS (English Language From SQL) 1 1

CHAPTER 1 1 1 Query Transformer (QT) 1 4

............... Queries without .'EXIST' i 17

Queries with 'EXIST', 27

............... CHAPTER IV NaturaJ Language Generator (NLG) 36

CHAPTER V Implementation 0.f ELFS 4 1 . -

CHAPTER VI Applications 50 ..
- * .

... CHAPTER VII Conclusion and Prospects for the Future :... 56

CHAPTER I

INTRODUCTION

This thesis describes a system named ELF'S (English - - Language

From SQL), which is capable of constructing an English - -

translation'of an SQL-like query. Given a query written in SQL,

English sentence will produced which equivalent the

query. Our main concern is to unravel the obscure,

hard-to-understand structure of an SQL query imposed by the

current SQL syntax. The basic approach adopted in this rzsearch

is to analyse all SQi queries up to three leveis deep, and' then

classify them into different types of queries.

The.ELFS systerc has two major ~omponen~ts: (i) the Query

Transformer (QT) and (ii) the Natural Language' Generator ~ N L G) .

The Query Transformer transforms complicated queries into

pseudo-SQL queries. Simpl'e queries will be left alone. In the

NLG phase, the application-sensitive portions of the query,

e.g., attribute names, relation names and constant values which

have been left unchanged in the first phase, will be

interpreted. Tables, similar to those found in [Codd78], are

supplied by the users which contain phrases to express the

zssociation of two attributes in a relation. An English sentence

tnat is equivalent to the query is then generated from the

pseudo-SQL query with the help of these user-supplied tables.

\ SQL i s one of t h e c u r r e n t d a t a b a s e language;. A d a t a b a s e

an i n t e g r a l p a r t of a d a t a b a s e mi@agement System

p r o v i d e s t h e u s e r w i t h an i n t e r • ’ a c e t o t h e s y s t e m ' s

i n t e r n a l f u n c t i o n s . Some d a t a b a s e l anguages a r e h i g h - l e v e l

nonprocedura l query languages which a l l o w nonprogramming u s e r s

t o e x p r e s s t h e i r d a t a b a s e p r o c e s s i n g r e q u i r e m e n t s i n

E n g l i s h - l i k e q u e r i e s wi thou t s p e c i f y i n g how t h e d a t a i s t o be

r e t r e i v e d . ' ~ m o n g a l l mainstream d a t a b a s e models , t h e r e l a t i ~ n

model i s most amenable t o t h e use of a query language a s a

?a -abase language . SQL (S t r u c t u r e d Query Language) i s p e r h a p s

t h e most popular query language f o r r e l a t i o n a l d a t a b a s e sys tems .

Two well-known r e l a t i o n a l d a t a b a s e s y s t e m s , IBM's SQL/DS and '

3 R A C L E C o r p ' s ORACLE, employ SQL e x c l u s i v e l y , e i t h e r i n

s t a n d - a i o n e mode'or embedded i n a p r o c e d u r a l l a n g u a g t , t o

p rov ide d a t a definition, m a n i p u l a t i o n , and c o n t r o l f a c i l i t i e s .
0

Many DBMS's des igned f o r microcomputers use SQL t o o . A l t h o ~ l g h

SQL i s more than a query language f o r d a t a b a s e a c c e s s i n g , t h e

focus in t h i s t h e s i s i s t h e d a t a r e t r i e v a l p o r t i o n o f SQL.

Vers ions of SQL have been i n e x i s t e n c e s i n c e t h e e a r l y 7 0 ' s

u n 5 e r t h e t h e name SEQUEL. The development of SEQUEL, i n t u k n ,

v i s an e v o l u t i o n a r y refinement of DSL ALPHA, a p r e d i c a t e

b + z a l t u 2 u s - b a s e 3 query language proposed by Codd a s p a r t o f t h e - -
r e l a t i o n a l model [Codd'O]. I n between ALPHA and SEQUEL was t
SQUAI?E, a query language which e l i m i n a t e d t h e need f o r

q u a n t i f i e r s and bound v a r i a b l e s r e q u i r e d by ALPHA. To improve on

SQUARE, SEQUEL r e p l a c e d t h e c o n c i s e ma themat ica l n o t a t i o n o f

FROM-clause, yields either a 'TRUE' or 'FALSE' value.
-

Recursively, a predicate can contain many predicates connected -
by logical connectives, i.e., 'AND' and 'OR'. In SQL, a w

predicate can contain another SELECT-FROM-WHERE block. We call

this type of predicate a complex predicate. A predicate which is
8

free of any nested SELECT-FROM-WHERE blocks is'a simple

predicate. In the above example, the last line contains a simple
. 8

predicate. The predicate in the firsTWHERE-clause is a complex

predicate, as it contains anqther query block. We call this
>&$

query block a second level query block. Each query block returns

a set o$ values. Blocks may be nested to arbitrary depth. We use

the terms 'query block' and 'query (or subquery)'

interchangeably. The query itself can be-considered as a query

block at the first deyel. he query block at the second or loier
leveliCan be considered as a subquery.

-
We adopt the version of SQL syntax as stated in Bradley

[~rad82]. This syntax is a .simplified version of SEQUEL I1

syntax [Cham76], for. the purpose of illustrating the essential

features of SQL. While it retains the structural complexity of

SEQUEL 1 1 , it ignores minor details. For example, it allows the

SELECT-FROM-WHERE blocks to be nested to arbitrary depth, but it

does not specify, as SEQUEL I 1 syntax does, the types and the '

fcrinats of the constants it will accept. Since the current

version of SQL is not identical to SEQUEL 1 1 , there. are minor

differences between IBM's SQL syntax and Bradley's own syntax.

The most important difference is perhaps the 'CONTAIN' function,
\

which was dropped'during the modification o.f SEQUEL 11. Because

of this, it has been claimed (in [Kimb@2]'f, that~the current
- version of SQL does not implement the division operation.

-"However, as will be shown below, the 'CONTAIN' function may be

emulated using the 'EXIST' and 'NOT EXIST' functions available
SF * *

in SQL. On the othsr hand, the 'EXIST' function, which is not

fourrd in Bradley's syntax, c a q emulated by using 'DOES NOT

CONTAIN' and the null set. Below we present the SQL Syntax

according to [Brad82]:

SELECT [UNIQUE] attribute-1, attribute-2, ...
FROM relation-1 [label-11, relation-2 [label-21, ...

[WERE requirement]

[GROUP BY (attribute) HA-VING requirement]

1 . The requirement clause has the form

1 . 1 . requirement {AND, OR] requ2rement

1 .2. .log.ical-relat ion

2. The logical-relation clause has the form

2.1. attribute (- = , = , > , < , {constant,
L

attribute]

2.2. attribute {IN, NOT IN] { ~ ~ ~ - e x ~ r e s s i b n , set,

SET (attribute)]

2.3. {SQL-expression, set, att attribute)), {CONTAINS,

DOES NOT CONTAIN, - = , =) ((SQL-expression),

set, attribute)]

?P

Consider the' following scenario for retrieval of information'
by the user. The user has a.request for information from the*

database. This request either exists in the user's mind, or is
>+

physically recorded on some medium. A query, in our case an SQL

query, is formulated based on the given request. This query is

input to the database system which.subsequently produces the

answer to th'e query. There are two translations involved in this

process: from request to query, and then from query to answer.
t9

We assume throughout that the latter translation is always

correct, i.e., the.software/hardware system is bug-free. We

explain below how the answer to an SQL query is derived. Of

interest to us is the oftefi imperfect process of query

formulation.

We need a precise nption of incorrect transladon from a

request to a query. Let us first define query equivalence. Two

queries are the same if they retrieve the same answer frm every

possible database that the database definition (i.e., database

schema) permits. .Conceptually, a request for information by the
i /---

user can be treat d as a irtual) query. An SQL query y - 2
constructed for a request for,information is incorrect i f there

is at least one valid database that will yield an answer for

that query which does not match the request.

We now describe how the answer to an SQL query is obtained

strictly according to the syngax of SQL. We use Example 1 to

.illustrate this process. For each tuple of PART, the
I

WHERE-clause must yield a 'TRUE' value in order that the value
> *

of PNAME for that be included in the answer set. To

process the WHERE- the query block at the secbnd level

 must^-first be proce sed to yield a set of P#'s. To do so, each' 4 4

tup%e of the relatio SHIPMENT is retrieved to examine whether
I i"

the WHERE-clause 58='J2' is satisfied. I f that tuple has a value

of 52 for the attribute J#, the P# of the tuple will be included-

ifi the answer set for the query block. When all the tuples of

SHIPMENT b v e been examined, the answer of the query block is
rl

obtained. Then this answer is searched to determine whether the

P# of the PART tuple is found there. When all the tuples of PART

have been processed in'this way, we have a set of PNAME values
L

'\

as the answer of the query. This answer will represent ail the
- -

names of the parts that are used for project 52.

Queries such as Example 1 can be very easily understood by *
someone with some exposure to the SQL language. However, there

'\ are other SQL queries that are not so English-like. Many of
w

these queries are useful in that they represent non-trivial

requests for information from the database, but they are not .

easily accessible because of their hard-to-comprehend formats.

Paradoxically, the evolution from DSL ALPHA to SQL was driven by

the rationale that the databas,e language should cater to users

in the non-programming community. However, at least as far as

SQL is concerned, the gain in ease of use may come at the

expense (avlbeit a small one) of reduced power in retrieval.

There is a certain limit to how far software designers can push

t

e - . -
for user-friendliness. Several human factors-studies .reveal that

<

every English may not besthe ideal way to communicate with

computers [Shne78]. The universal quantifier is-present in

ALPHA., but not in SEQUEL (SQL). I t is debatable -whether the

eiimina~ion of some mathematical (or logical) notation will help

t h e user to formulate the que.ry. We shall illustrate this point

by considering the following request: "find' the projects located ,

in those ci*ties which manufacture only red parts". One can

express the query in ALPHA as follows:

retrieve J# %here V P (IF PCITY=JCITY THEN PART.coLoR=RED)

Note that we modify the syntax <lightly for readabifity (i.e. IF
\

A THEN B is to be interpreted as - A OR B) . The equivalent query r
in SQL will be:

Example 2: -- -

SELECT J#
FROM PROJECT
WHERE JCITY NOT IN

(SELECT PC1 TY
FROM PART
WHERE PART.COLOR7='RED')

The universal quantifier in the ALPHA query is disguised under

the form ('NOT' ' - ' I in SQL. It is hard to understand this query

wi t h d t knowing how this form of. 'double negation' is

transformed into a universal quantifier. What may be more
--

isniusing is the fact that such a trans-formation is not always
P

v a l i d . Consider another request: find the suppliers which,supply

only red parts. At first glance, i t seems the S Q ~ ' q u e r y can be

written as follows:

Example - 3: -

SELECT S#
FROM SHI PMENT
WHERE P# NOT IN

(SELECT PP
FROM PART
WHERE PART. COLOR? = ' RED,')

1. C

However, this query willnot retrieve the required infsrmation.

Instead, it w i l i get suppliers which supply - at,least one red -
part in addition to parts of any other colo'rs. The correct query

for this seemingly simple request takes on a rather formidable

form:

SELECT St
FROM SHI PMENT SHI PMENTX
WHERE NOT EXIST

4
(SELECT P$
FROM. PART
WHERE PART.COLOR7='RED')
AND P# IN

(SELECT P #
FROM SH3 PMENT

% WHERE SHIPMENT.S#=SHIPMENTX.S#)

There are actually two features in this query contributing to

its opaqueness. The first 'is 'double n'egation', i.e., "NOT

EXISTn and "PART.COLOR~='RED1". The second has to do with the

interblock reference 'SHIPMENT.S# = SHIPMENTX.S#'.

Senior undergraduate computer science majors in an

introductory database course find that it is difficult to '

understand queries like the ones above, and even more difficult

to construct them. Moreover, the students lack confidence in the

correctness of the queries they construct themselves, since a

slight displacement of a keyword may change the query to an
,

J

I

inequidalent one. For example, it has been pointed out in

[~ i m ~ 8 2] that the following two queries are not equivalent:

a) SELECT SNAME b) SELECT SNAME
FROM . SUPPLIER FROM SUPPLI E R ~

- W E & E .S# NOT IN WHERE S# IN
(SELECT S # (SELECT S#
FROM SHi PMENT FROM SHI PMENT
WHERE P#='P*I I) 'WHERE P#-='PI')

Query a p l k g t r i e v e . the names of suppliers which do not
i

supfly part PI, whereas query b) will retrieve the names of , r

/ = / those suppliers which sum-some part other than PI (but may
i* _- /- -

supply PI as well). -- --
-L - - - - - - -

This thesis is organized as follows. Chapter 2 contains an

overview of ELFS with emphasis on the - two important- modules of,

. the system, i.e., the Query Transformer (QT) and the Naeural

Language Generator (N L G) . Chapters 3 and 4 are devoted to QT and

NLG respectively. Chapter 5 describes the implementation of the"-
J --

ELFS program. In chapter 6 we outline some applications of our

research results presented here, We give the conclusions and

prospects for 'the future iat chapter 7. . ,

CHAPTER I 1

4

We have implemented a system, called ELFS, which is capable
* .

of producing an English sentence equivalent to a given SQL

query, This system has two major components: (i) Query
, *. - -

Transformer (QT) and (i i) Natural Langua,ge Generator (NLG). The

input into ELFS is an SQL query formulated according to the SQL

syntax as specified above.

To describe the division of labor between QT and NLG, let us

analyse the contents of an SQL query. To understand an SQL C

query, we need two types of knowledge: the structure and the
a

context of the query. It is presumed that the two are

independent of each other and thus can be handled by QT and NLG
. "

respectively.

The structure of a query is independent of the attributes

and relations which may vary from one application to another,.

although i t is necessary for QT to know whether an attribute is

a key or not. ~asically, given the 'shell' of the query, QT

determines whether the structure of the query is simple enough

that NLG is capable of* interpreting it and producing an English

sentence equivalent to the query. I f , in QT's judgement, the

structure is too complicated, QT will transform it into a -

pseudo-query and pass it onto NLG. We define extended SQL to

contain these pseudo-queries in addition to usual SQL queries.

The task of NLG is to mechanically translate the output of QT in

an English sentence(s). Example 1 illustrates the type of query

that QT will pass onto NLG without transformation. The output of

NLG will be: "Select names of the parts which are shipped to
' .

project 5 2 . " I f the WERE-clau~e in the query block at the

second level were instead to read: S#='SZt, then the phrase

"shipped to project 5 2 " would be changed to "supplied by

supplier S2". These phrases are constructed on the basis of the

knowledge of the application which must be provided to NLG in
> ..

some appropriate format.

The majority of querie~~are, of course, not so simple.

Translating them literal-ly without transformation will result in

'bad' English, or worse, generate misleading sentences. Consider
b ~

Example 3. The query cZn be translated without transformation to

read: "Select the S#-values of suppli.ers who ship parts not

belonging to the set of parts which are not red." This is rather
\

unclear. I t certainly requires more effort to understand than
F$-

the following: "Select the S#-values of suppliers who ship at

least o'ne red part(s)." There is a more important reason why

literal translation would not work for somem queries. Example 2

is a case in point. This query can be translated without

f l tran3forrnation to read: "Select the J#-values of ~rojects not
i

located in those L ities which do not produce-red parts". The
output of this translation is defiaitely confusing. I f one reads

rt this sentence carefully, he will arrive at a wronq

interpretation of the query!! The output indicates that projects
I

located in cities which produce no red -part will be excluded

from the answer. In other words, projects located in cities

which produce - at least one red part and possibly parts - of other

colors will be include-d in the answer. In fact, the true

interpretation is quite different: "Select J#-values of. projects

located in those cities which'=produce only red parts."

In the folJowing chapters, we discuss in detail the

functions performed by QT and NLG respectively.

the WHERE-clause of a query block refers to attributets) of a

relation in a FROM-clause outside the query block. Most of the

predicates beginning with 'EXIST' or 'NOT EXIST' will contain

interblock references. I t is particularly difficult to

understand the query when the relations in the FROM-clauses of

two nested query blocks are essentially the same, s ~ c h as ,the

clause in Example 4, 'SHIPMENT.S#=SHIPMENTX.S#', where SHIPMENTX

is an alias of SHIPMENT.

?

Guided by the above analysis, we now classify queries into

various categories and develop a transformation scheme for each

category of qu.eries. Before we do so however, we have to define

the scope of the queries we are prepared to deal with. In this

thesis, we restrict ourselves to those queries with up t~ three

levels of query blocks. Some support for this restriction can be
P

found in the fact no query in Date's book [~ate81] has more than

three levels. We hope the reader will understand the essence of
4

our interpretation scheme and share our belief that there will

not be any major conceptual difficulties when we relax this

restriction, although %greater number of classes of queries

would have to be handled.

We present an outline form of the master plan for QT,which

shows how the queries are classified and what tra.nsformation

method is used for each class. Part of the classification

depends on where the negations occur. For example, we use the

notation ' (+ , -) ' to denote a nested query in which the outer

blocG is positive, and the inner block is negative.

1 . No 'EXIST' occurs in the query

a. No interb'lock references: NtoP Rule ,(theorems 1 and.2)

b. Interblock references-

1) Adjacent blocks

a) Different relations: NtoP ~u1.e

b) Identical relations .

i) ('+ ,+) : always true

ii) (- , +) : always false

iii)(+,-1: 'AT LEAST ONE' d

2) Non-adjacent blocks: analysis by case

2. 'EXIST' occurs

a. Double negations: theorems 3 and 4

b. Single negations or no negations: translate directly

The primary division classifies queries into two large

groups: the group of queries without any occurence of 'EXIST'

(or 'NOT EXIST'), and the other group in which there is such an

occurence.

Queries without 'EXIST1-

N t U P Rul e -- ,
-/

, Fundamental to t e processing of the query at this stage is
P 8 -

a transformation rule which converts a negative predicate into a

positive onecby 'passing on' the negation to the predicate one

level below. Hence we call this transformation rule the NtoP

Rule. This transformation rule is justified by the following two

theorems.

These theorems concern two different cases. The first case

occurs when the link attribute is unique, and the second occurs

when it is noteunique. In the unique case, the negation can be

'passed on' in a simple way. This'is done in theorem 1'. The

non-unique case is not so simple, and leads to the introduction

of the quantifier 'FOR ALL'. Examgle 3 illustrates the unique

case, and Example 2 illustrates the non-unique case.

Theorem - 1 : I f the link attribute L is unique in the relation R,

and R has no null values, then all instantiations of the forms
5

a) and b) below are equivalent as WHERE clauses in any query:

a) ' L NOT IN b) L IN
(SELECT L (SELECT L
FROM I? FROM R
WHERE COND) , WHERE -COND)

Proof: Let Ll,L2, ..., Ln be the- attributes of R and suppose that
L is the first attribute, L1. &t R(LI,L2, ..., Ln) denote the

\

proposition which asserts that the n-tuple (Ll,L2, ..., Ln)
belongs the relation R. The proposition is true when the n-tuple .

belongs-to the relation, and fglse when: the n-tuple does not.

Clause a) asserts that L iB not in the set S, where

S={LI: exists L2, ..., Ln (R(LI,L~, ..., Ln)&COND)].
This is equivalent to asserting that L is in the complement of

S. Denoting the complement by COMP(S), we have COMP(S)
- -

={Ll: f o r all L 2 , ..., Ln (R(L1, ...,Ln)->9CO~D)].
But now since L1 is unique in R, all the values for L2, ..., Ln
are determined by L1, so we don't need the universal quantifier.

COMP(S) is

Since there are no null values, for each value of L1, there

exist L2, ..., Ln such that R(Ll,L2, ..., Ln). Thus COMP(S) is

{LI: ~COND)].

This set is the one described by clause b), completing the

proof.

Theorem - 2: If the link attribute NU is not unique in the

relation R, and R has no null values, then all instantiations of

the forms a) and b) below are equivalent as WHERE clauses in any

query :

a) NU NOT IN b) NU IN
(SELECT NU (SELECT NU
FROM R I 'FROM R x.

WHERE COND) WHERE FOR ALL X IN RX
(RX.NU=R.NU ->-COND))

Proof: Let L1,L2, ..., Ln be the attributes of R, .and for the sake
of argument, suppose that NU is the first attribute, L1. his

18

will not affect the nature of the proof.) Clause a) asserts that
C

NU is not in the set S where

S={L~: exists L2 ,... ,Ln (R(LlfL2, ..., L~)&COND)).
This is equivalent to asserting that NU is in the complement of

S. Denoting the complement by COMP(S), we have COMP(S)

=$LI: for all ~ 2 , .. .,Ln (-(R(L1, .. . ,L~)&coND)))

={L1: for all L2 ,... ,Ln (-R(LI ,..., Ln) or ~coJ'JD)],
by De Morgan's law. Using the definition of implicatioh, this

can be written as

iL1:- for all L2 , . . . ,Ln (R(LI ,..., Ln)->-COND)).
To assertthat NU js in this set is equivalent to saying

This set is the one described .bye clause b) , thus compl$ting the

proof of theorem 2.
"

We have seen that form b) arises in a natural way from the

proof. However, it does contain some information which is

redundant. Form c) below is more compact.

c) NU IN I

(SELECT NU
FROM R
WHERE FOR ALL R 'COND)

We extend SQL so that WHERE clauses of the form

FOR ALL R COND

are allowed. All queries of form c) will be included in this

"extended SQL". ~h'i's form is utilized'to construct the-

translation of the query.

The universal quantifier "FOR ALL X" in form b) ranges over
a

the set of all n-tuples of the relation R. Note that RX is just

an&her copy ~ ? f the relation R. The WHERE clause in&) asserts :?'

phat i f we take any n-tuple X of RX, if the NU-attribute has the ,. .

specified value R.NU, then -.COND holds'. I f there are any
1

interblock references in COND, they are treated as constants.
a

Now we describe how the NtoP Rule is applied to the negation

of a predicate. The first s t e p is to remove the 'NOT' from the
-

predicate, then negate the
>

one level below. I f the

link in the subquery one level below is non-unique,

add the keyword 'FOR ALL' before the predicate at that level.

~ypically, the transformation rule is applied to the query

repeatedly from the first level until the only possible negative
@

predicate in the entire query is at the bottom level. No

transfornation is needed for a positive predicate, except that

I • ’ th? attribute in a clause of the predicate can have multiple

v a l u e s associated with one value of'the link attribute, we, must

a 3 3 the phrase 'AT LEAST ONE' before the clause.

Let us give some examples showing how the NtoP Rule is

, . 3;;A~ed. Recall that in Example 2

ZCTT 7 NOT IN
(SELECT PC1 TY
FROM PART
WHERE PART. COLOR7= ' RED'

(

the WHERE claus& is
Y

By theorem 2, this can be transformed to

JCITY IN
(SELECT PCI TY
FROM PART
WHERE FOR ALL PARTS PART.COLOR='RED')

8 -
In the relation PART, the attributes P# ; PNAME, COLOR, and

- WEIGHT are considered as variables which are free to vary over

the tuples of PARTS. The effect of the condition

'PARTF.PCITY=PART.PCITY' in form b) is to fix the value of '

PCITY. One translation of this clause would be "cities having

the pro'perty that for all parts p, if p is made in the city,

then p is colored red". The advantage of translations like the

above'is that they can,be used for a large class of queries. The

disadvantage is that the output is not as~clear as it could be.
4

A simpler translation is "citiesmaking only red parts". In the
\

next example, the WHE:RE clause is the conjunction of two

conditions.

Example. - 6 :

PCITY NOT IN*
(SELECT PCITY
FROM PART
WHERE PART.COLOR7='RD,D'
AND PART.WEIGHT=SO)

By theorem 2, this is equivalent to

PCITY IN
(SELECT PC1 TY
FROM PART
WHERE FOR ALL PARTS
(PART.COLOR='RED1 OR PART.WEIGHT7=20))

Tnere is a choice of translations in this case. One possibility

is "cities having the property that for all parts p, i f p is

made in the city, then p is colored red or p does not weigh 20

lbs." Another possibility is "cities having the pr0pert.y that '

all parts made in the city weighing 20 lbs. are red."
, A .- I

The WHERE clause above is a conjunction of the form -C1 AND

C2. For theorem 2 we need the-kegation of this, which is C1 OR
\

-7C2. This can be expressed as C2 - > C1, and leads us to the

second translation above. To decide which translation is easier

to understand could be a topic for further research. It seems to

i .
us, however, that reducing the number of negations to the

minimum produces the most understandable result. For instance,

i f the WHERE clause has the form

and there are no nggations in the C ' s , then the negation of the
.

clause could be expressed as

Ci+l & . . . & Cn -> C1 OR C 2 OR OR Ci.
This form has no negations, and we expect that it would be the

most understandable form - which is logically equivalent to the

original:

For the rest of this thesis, predicates with negative as
'.

well as pokitive clauses are considered as negative predica ? es
, -i

and they will be processed in the manner as des~ribe@~ab&.

Q u e r i e s w i r h o u r ' E X I S T ' - a n d wi r h o u r l n r e r b l o c P H c . f r r t . n r u s
1

,---- --
W& -- are now ready to describe the algorithm to transform

queries in the class mentioned in , the heading. Fdr a query block

- i with positive predicates, the phrase 'AT-LEAST-ONE' is inserted L

before-t?reepredicate - - i f the link attribute is not unique. For
, -

I

query blocks with negative predicates, application of the NtoP

Rule alone is sufficient. A 3-leve.1 query with an even number of

negative predicates will. become a positive query. Otherwis~, the
'S

transformation will result in-a negative predicate at the bottom.

level. Let us denote eight possible combinations of

positive/negative predicates according to the level it occurs.

by + + + + + - , and - - The NLG is c e r t a i d .

capable of translating cases such as (- , + , +) or (+ , - , +) without

-transformation at this stage. The output might perhaps be

improved . byJusing NtoP Rule. For simplicity, we adoptphe method

of "pushing" all negation to the lowest level possible.

Q u e r i e s wi r h o u i ' E X I S T ' --- b u r w i t h I n ! e r b l o c k R e f e r e n c r . ~

First, we consider the type of interblock references where -7

the predicate of' a subquery refers to an attribute of a relation

in che query block immediately above the subquery. A typical

query is shown below:
r(

SELECT *
FROM R 1
WHERE ~ 1 2 (NOTI I N

SELECT L?
FROM R2
WHERE L23 {-3= Rl.Ll3

The itemsflin curly brackets may or may not be present. This

query implies a match (or mismatch) of two relationships: L12-L2

in R1 and L23-L13 in R2. Should we treat these relationships as

identical, even when they are in different contexts (i.e.

different relations)? T.he answer to this question invo1ves.a

much larger issue: khe universal relation assumption (u R S) and

the controveries surrounding it ([,~itze82] and [~llm82]). We have
'

avoided this issue so far and now,explain the issue in the

?; context of this research.
* - n -.

There are several versions of URS, with subtle differences

i ",
=%

among them. Two of them concern us here. One of them presumes

the uniqueness of the meaning of the attribute within the entire

schema. In other words, the meaning of the attribute is

identical in whatever relation it appears. The other version

presumes the uniqueness of r,elationship of each pair of

attributes within the entire schema. Our position concerning

these assumptions is that the user is the one to decide whether
F

h any of these assumptions is valid and he can communicate his

decision through the tables for attribute associations which

will be used by NLG to produce a sentence. For simplicity, we
'7

have adopted the assumption of uniqueness ,of meaning of an

attribute within the entire database schema. ~owever,'it can be

seen that the theorems do not rely on this assumption, so are

still-valid without it. In our database, PCITY, JCITY and SCITY

all mean cities and as such are used as link attributes in

subqueries. It seems very awkward to have to refer to PCITY as

"cities where parts are produced" all the time. h

- - I= .. , , - 8

-*

On the other hand, we assume the relationships are different>

i f the relations are different. Therefore there will be no extra

meaning beyond the simple value mat.ching of the two

relationships. For example, let R~(EMPLOYEE, EMPLOYEE) and

R~(EMPLoYEE,EMPLOYEE) be the two relations in the above example.

We shall assume the relationship EMPLOYEE-EMPLOYEE in R1 to be

different from the relationship EMPLOYEE-EMPLOYEE in R2. For

instance, the former could be father-son and the latter

foreman-worker. The query then requests information about

foremen who have their sons working,under them. Thus, for this

type of query, we shall first apply the NtoP Rule and then

transform it into another type of pseudo-query, such as the

following: t

SELECT *
FROM R1 R 2 '
WHERE FOR Rl.Ll2 = R2.L2

(FOR ALL or AT-LEAST-ONE) R2: R2.L23 { - I = R1.Ll3

I f R1 and R2 are identical, then the two relationships will

be treated as identical relationships, and therefore a different

tansformation method must be used. Instead of value matching, .
,

each of the four possible cases, i.e. + + - (- , +) , and .

(- , -) is to be i n t e r p r e t e d ~ . d i f f e r e n t l y . . I- The (+ , +) and (- , +)

W
Z
P
:

J
O

W

W
a

x

m
c

4
3

blocks. A typical query is shown below:

SELECT *
FROM R 1
WHERE L 1 2 {NOT) IN

SELECT L 2
FROM R2
WHERE L 2 3 {NOT] IN

SELECT L 3
FROM R 3

\

WHERE L 3 1 { - I = R 3 . L l 3 \

v,

The approach to transform this type of-query is almost identical

to the one for the type of queries with two neighbouring query

blocks referring to each other. Hence, we shall not describe it

here. It suffices to say that the pseudo-queries after

transformations will have no interblock references, just as

other pseudo-queries we have created.

~ueries with 'EXIST'

We shall first show that all occurrences oflEXIST' c.an be

eliminated by transforming the query to one which uses

'CONTAINS'. This transformation is valid for queries of

arbitrary depth. I f a query has n occurences of 'EXIST', the
*-

transformation will be applied n times, and the rehlt will not

contain any 'EXI.ST'S.
\,,I

This general scheme has the drawback that the resultant

query may not have a very natural direct translabion. (A n

example is given below.) he or em 3 provides us with an

improvement over the general scheme. In.!-hcorem 3 , we show.that.

a-pair of 'NOT E X I S T S ' can be transformed to a single 'CONTAINS'

which provides a more natural interpretation.

I f ' E X I S T ' occGrs in a WHERE clause, it must occur either

positively or negatively. The positive, for,fi may be written as
[.%

follows:

EX1 S T
(SELECT *

FROM R
WHERE COND)

This.--ca~ be transformed to

EMPTY SET
DOES NOT CONTAIN

(SELECT *
, FROM R

WHERE COND)

Here EMPTYSET denotes the empty set. I t can be define3 in any

database. One definition would be

(SELECT *
FROM R
WHERE FCOND)

where FCOND is always fwlse.

The negative form of ' E X I S T ' may be written as follows:

NOT EX1 ST
(SELECT *

FROM R
WHERE COND)

This can be transformed to

In the above discussion, the predicate COND was allowed to

contain nested queries. Let us define a simple predicate to be

one which does not contain any nested query. In this- special
/

- ,

case, a simpler transformation can be given. I f COND i-s a simple ,

predicate, consider any quefy of the form below:

SELECT A
FROM R1
WHERE EXIST

(SELECT * F'
FROM R2
WERE 'COND)

EMPTYSET,
CONTAINS ,'

(SELECT *
FROM R
W H E R ~ COND)
- - ?'

I f COND does not have any reference to any attribute of R 1 , the

query is superfluous because either all or none of A-values of

R1 will be retrieved. On the other hand, i f CONB takes the form:

'R2.B = R1.B1, then the query can be reduced to_one with no

' EX1 ST' :

SELECT A
FROM R1
WHERE R 1.. B=R2. B

We give an example of a query which contains several

'EXIST'S. (This is example 7.26 in [Date81])

Example - 9:

SELECT J#
FROM SH I PMENT SHI PMENTX
WHERE NOT EXIST

(SELECT *
FROM SHI PMENT SHI PMENTY
WHERE EXIST

(SELECT *
" FROM SHI PMENT
WHERE S#='Sll
AND P#=SHIPMENTY.P#)

AND NOT EXIST
(SELECT *
FROM SHI PMENT
WHERE S#='Sll
AND P#=SHIPMENTY.P#
AND J#=SHIPMENTX.J#))

I f we were to transform this using the EMPTYSET transformations,

we would end up with the following:

*SELECT J#
FROM SHI PMENT SHJ PMENTX
WHERE EMPTY SET

CONTAI NS
(SELECT *
FROM SH I PMENT SHI PMENTY
WHERE EXIST

(SELECT *
FROM SHIPMENT
WHERE S#='Sl1-
AND P#=SHIPMENTY.P#)

AND EMPTY SET
CONTAI NS
(SELECT *
FROM SHIPMENT
WHERE S#='Sl1 '
AND P#=SHIPMENTY.P#

I AND J#=SHIPMENTX.J#))

This query is

Queries 1

queries which
, A

+

still very hard to understand.

i
ike Example 9 arise when one wants to express

involve universal quantification in a version of

SQL which does not have 'CONTAINS'. Then one must resort to

~rsing'a double 'NOT EXIST'. Theorem 3 shows that those queries

which use a double 'NOT EXIST' to express universal

qua.ntification can be mechanically transformed into queries

using 'CONTAINS'.

Theorem - 3: All instantiations of forms a) and b) below are

equivalent as WHERE clauses in any query.

. a) NOT EXIST b) (SELECT A
(SELECT * FROM R2
FROM R1R1Y WHERE COND2)
WHERE COND1 CONTAI NS
AND NOT EXIST (SELECT A

(SELECT * FROM R I Y
FROM R2 WHERE CONDI)
WHERE COND2
AND R ~ . A = ~ ~ Y . A))

Proof: We assume that the clause R2.A=RlY.A is the only clause

joining the two blocks (i.e., joining R2 to R1Y.J (If there were

other clauses, we could treat A as a tuple, and the proof would

be generalized.) Notice that in b) COND2 comes before COND1,

Also, the clause joining relations R1 and R 2 is not needed in

b).

Clause a) asserts the following:

NOT EXIST A,Y2, ..., Ym {Rl(A,Y2, , ..., ~m.) AND CONDl

AND NOT EXIST X2, ..., Xn (R2(A1X2, ..., Xn) AND COND2)).
We assume that R1 is an m-ary relation and R2 is an n-ary

relation, .and that the joining attribute A is the first

attribute-in both relations. We indicate the fact that the

.b

relations are joined on this attribute by using the variable A

in both relations. The above condition is equivalent to

FOR ALL A,Y2, ..., Ym -{Rl(A,Y2, ..., Ym) AND COND1
\

\
AND NOT EXIST X2, ..., Xn (RZ(A,XZ, ... \,Xn) AND COND2)).

\
By De Morgan's law, this can be written '

FOR ALL A,Y2, ..., Ym {7(Rl(A,Y2,...,Ym) AND CONDI)

OR EXIST X2, ..., Xn (R~(A,XZ, ...,~n-) AND COND~)).

~quivaJently,

FOR ALL A , {NOT EXIST Y2, ..., Ym (R1(AIY2, ..., Ym) AND C d vD1))
OR {EXIST X2, ..., Xn (R ~ (A , X ~ , ..., Xn) AND COND~)).

O r

r

FOR ALL A, {EXIST Y2, ..., Ym (R1(AIy2, ..., Ym) AND CONDI))

-> {EXIST X2, . . . , Xn (R ~ (A , X ~ , ..., Xn) AND COND~)).
This last condition is exactly what clause b) asserts, .and this

completes the proof.

We now apply theorem 3 to Example 9. When matching this

example to the form a) , we see that R2 is 'SHIPMENT', R1 is

'SHIPMENT', and R1Y is 'SHIPMENTY'. Only one clause joins these

relations, and that is 'P#=SHIPMENTY.P#'. Thus the attribute A
b

is ' P # ' , and COND2 is "S#='SIT AND J#=SHIPMENTX.J#". Note that
b

i ,n the original query, the,clauses which form COND2 may be
/~

separated by the join clause. ~.fter applying theorem 3, the

query is transformed into the following query:

SELECT J# -. ..

FROM SHI PMENT SHI PMENTX . j

WHERE (SELECT P#
FROM .- SHIPMENT

' . W H E R ~ s#='sir
AND J#=SHIPMENTX.J#)
C O N T ~ N S
(SELECT P#
FROM * SHI PMENT SHI PMENTY
WHERE EXIST

(SELECT *
FROM SHI PMENT
WHERE S#='Sll
AND P#=SHIPMENTY.P#))

This query still contains one 'EXIST', but it occurs with a

predicate that refers to the attribute P#. According to the

analysis given just before the statement of Example 9, the

entire predicate from 'EXIST' to the end of the query can be

replaced by one single predicate, "S#='Sll" . Using the
\

transformation for this special case, we obtain

SELECT J#
FROM SHI PMENT SHI PMENTX
WHERE (SELECT P#

FROM SHIPMENT
WHERE S#='Sll
AND J#=SHIPMENTX.J#)
CONTAINS
(SELECT P#
FROM SHIPMENT
WHERE S#='Sl1)

The subquery situated above the word 'CONTAINS' selects

those parts supplied to project J# by S1. The subquery below the \

word 'CONTAINS' selects all the parts supplied by S1. This

transformed query, after being passe on to the NLG, would be t S

trdnslated as follows: k
"Select the Jg-values of projects satisfying the following

--
conditions: if part Pi is supplied by S1, then S1 sent a

L

shipmenr of part P- to project J#." The translation Dat,e gives

for this query is -
"Get 27 Tlalues for projects supplied by supplier St with all

' p r t s : h a t supplier S 1 supplies".
\ ' 7

The next theorem is similar to Theorem 3, and is useful for

qveries like Example 4. I t permits us to eliminate a double

negation.

Theorem - 4: All instantiations of the forms a) and b) below are

equivalent as WHERE clauses in 'any query.

a) NOT EXIST
(SELECT A
FROM R1
WHERE NOT COND1,

, AND A IN
(SELECT A
FROM R2
WHERE COND2)

b) (SELECT A
FROM R1
WHERE COND1)
CONTAINS
(SELECT A
FROM R2
WHERE COND2)

Proof: Analogous'to theorem 3. '

When we apply Theorem 4 to Example 4, we obtain

SELECT Sf;
FROM SHI PMENT SEI PMENTX
WHERE

(SELECT P=
FROM PART
WHERE PART.COLOR='RED')

CONTAI NS
(SELECT ~ ; t

FROM SH I PMENT
WHERE SHIPMENT.Sh=SHIPMENTX.S$)

i

The translation of this query is "Select the S#-values of
0

suppliers who supply only red parts."

CHAPTER IV
,I

NATURAL LANGUAGE GENERATOR (N L G)

The%method used by NLG is based on the tables approach +
i

originating from Codd's work on the RENDEZVOUS project. The aim

of Codd's project was to allow users to use English to
, .

interrogate a database. 'The initial input was an English,

' sentence, which was translated internally into a query in

DEDUCE. This was then translated back into English and - ,

displayed. The user could then either confirm thati+-captured

his intention or request a dorrection. The translation back into

English was called the generation step, and it is this step v

which is similar to our work. However, Codd did not develop his

system to the point where it cobld handle universal

quantification, the general use of negation, or the use-of 'OR'

and 'AND'. Our system will handle all of these features, and
b

-thus extends Codd's work. Some new ideas were introduced; for

example, recursion was used-he 'OR' case. Codd's

translation was from DEDUCE into English, while ours is from SQL

into English. There are many database systems which use SQL, and

our program could easily be adapted to be used 'with them.

Another difference between our system and odd's is that

Codd combined nouns and adjectives in the same table. Since a

no& phrase may c,ontain any number of adjectives, but may only

- have one noun, it is advantageous to keep the table for the

adjectives distinct from the one for the nouns.

One oL the advantages of the table method is that all of the

domain specific information is located' in a small nupber of

tablps. When changing from one domain to another, the tables can

be changed in a straightforward manner. Below we consider a

sample query and show how the table method is used. This example

should make it clear how the domain specific informatign t can be

ideas, let us consider the following example

put into a table.

To discuss our

of an SQL query:

SELECT J#
FROM% SHI PMENT
WHERE S#='Slf

Qur translation of this query will be: "Select the J#-values of

projects. supplied by supplier Sl." Our method of translation
I

involves setting.up tables for each of the relations. Here, for

example, is the table for the 'SHIPMENT' relation:

denote the complete WHERE clause. In our case, COND is

"SHIPMENT.S#='SI'". The tablc is'scanned sequentially. Whenever

one of the attributes in the left column occurs in COND, we

output the phrase to the right. (This phrase needs to be

completed, and this is done by another table.) In our case, P#

and QTY do not occur in COND. However, the attribute S# does

occur, so 'by' is output. The, completion of this phrase,

'supplier Sl', is provided by a table for the S relation:

A s another illustration of the table method, let us consider

the following query: a +

SELECT J #
FROM SHI PMENT
WHERE S#='S1' AND P#='P3'

Again, the S ~ E C T clause contains J # , so we go to the bottom

four rows of the table. We must use the phrase across from the

asterisk, and so we get 'supplied',. This time COND is "S#='S1'

AND P#='P3'". The attributes given in the remainder of the table

are P#, QTY, and Sf+, in that.order. We examine COND, looking for

each attribute in turn. Since P# occurs in COND, output 'with'.

Next we output 'parts P 3 ' , since that is the value given in

COND. Then we go looking for 'QTY' in COND. I t does not occur,

so the phrase 'in a quantity' is not output. Finally, we get to

the last line of the table, which concerns ' S # ' . I t does occur

@J in COND, and we get 'by' as in the example. I n

addition, we also get 'supplier S1'. Putting eyerything
,fu

together, the irans-Yation is: "Select the ues of projects

supplied with parts P3 by supplier S1."

Tables can be extended so as to take care of single
i

nagations, but not double negations. When a double negation is ,

encountered, we invoke the query transformer (QT) . The query is
transformed into an extended SQL form, which is passed on to

NLG. NLG is able to translate this extended SQL form in a

straightforward way by making use of the existing tables.

CHAPTER V

IMPLEMENTATION OF ELFS

One impjementat ioq of ELFS was done i n PL/ I , and one was

done i n P-rolog. The P r o l o g program i s g iven i n t h e Appendix.

F i r s t we d e s c r i b e e x a c t l y what i n p u t s a r e a l lowed t o t h e
Lwd

program. Then we proceed t o d e s c r i b e t h e d e t a i l s of t h e

a l g o r i t h m s used.

The program can hand le q u e r i e s of t h e f o l l o w i n g form:

\
1 . ' ~ n y l e v e l 1 que ry o f t h e form below:

SELECT A
FROM R
WHERE COND

2 . Any l e v e l 2 query of t h e form below:

SELECT A
FROM R
WHERE B { N O T) I N

'(SELECT B
FROM R 2
WHERE C O N D ~)

The c u r l y b r a c k e t s a round t h e ' N O T ' i n d i c a t e s t h a t i t may be
*

e i t h e r p r e s e n b o r no t p r e s e n t . Both s i n g l e and doub le n e g a t i o n s

a r e a l l o w e d . A n y number of ' A N D ' S and ' O g ' s a r e a l l o w e d in t h e

-WERE c l a u s e s . A t p r e ' s e p t , i n t e r b l o c k r e f e r e n c e and ' E X I S T ' a r e

no t a l l o w e d . The 'CONTAINS' and ' G R O U P - B Y ' c o n s t r u c t s a r e not
I

implemented.

The basic translation algorithm used by NLG is given below. --
Any level 2 query can be put in the same form as the level 1

query above i f we allow COND to contain a query. We will allow

this in the following discussion. Let LOGICOP bk' the major

connective in COND. If LOGICOP='AND1, or i f COND has oply one

condition, we use this translation scheme: -

1 . "Select ~~~"+NOUNS(A)+PREP(A)

2. TRANS(A,O,COND)

I f LOGICOP='OR', (which means that COND can be written 'PI OR

P2'), we use the following alternate scheme:

1 . "Select ~~~"+NouNs(A)+PREP(A)+NOUNS(R(A))

2 . "satisfying the following conditions:"

3. "they ~ ~ ~ " + T R A N s (A , O , P ~)+TABLES(R,O,PI,R(A))

4. LOGICOP

5. "they ~ ~ ~ " + T R A N S (A , ~ , P ~) + T A B L E S (R , O , P ~ ~ R (A)) - , d

-

These algorithms use four subroutines: NOUNS, PREP, TRANS,

and TABLES. TRANS invokes a fifth routine called MOD.

NOUNS simply translates the' attribute A into the

corresponding noun. Thus SNAME gives "names", SCITY gives

"cities", and so on. This routine is domain-dependent.

PREP selects the proper preposition to use fo"r the attribute

A. For example, for SNAME, we should use "of", but we should not

%

use "of" for SCITY. A translation like "Select the cities of

suppliers who sent a shipment to London" is a bit awkward. A

better translation is "Select the cities with suppliers who sent

a shipment to on don". This rou'tine, lik<@OUNS, is

domain-dependent.

The pufpose of TRANS is to find a complete noun phrase.

TRANS takes 3 arguments, A, NOT, and COND. NOT is a boolean

vari3Q: which indicates whether or not negation is in effect.

The value 0 indicates that no negation is involved. The

,translation schemes given above use the va,lue 0 in the top level

calls to TRANS and TABLES. TRANS is quite simple, as it contains

only two steps:

The function R (A) finds the relation to which the attribute A

belongs.

MOD is a ,routine which finds all the modifiers of A in the

condition COND. Since a noun phrase may contain any mber of T~
modifiers, the MOD routine must have a recursive nature.' Notice

that MOD does not have to concern itself with finding the noun;

that is the job that TRANS is responsib1,e for. Although MOD must

refer to some domain-dependent files, we have succeeded in

keeping it domain-independent. It takes 3 parameters as input:

A , NOT, and COPD. MOD consists of the following 5 steps:

1 . Check for the occurre&, of 'FOR ALL' and process
\

'L

accordingly.
i
\

i -
,'

2. I f COND includes an 'IN' ftorm like -
.' /'

A NOT^) IN /'
/' .

(SELECT A /

FROM R2
WHERE COND2) ,

\ 1

:then: a. call MOD(A,NOT+NOT~,COND~)-

b. I f R2 ,is multi-dimensional,

-. - C~~~/'TABLES(R~,NOT,COND~,R(A)).
I i

/

L

\ i:
.\..-/ I

3. I f COND includes an equality, 'R.A = A-constant',
I

output A-constant.

/'
4. I f COND has major connective LOGICOP,

1

the$: a. call MOD(A,NOT,PI), a
i

1 b . output LOGICOP('NOT),

c. call MOD(A,NOT,P2), and return.

We should output LOGICOP only i f both MOD'S return
-7

non-empty -strings.

5. F ind t h e t a b l e f o r t h e r e l a t i ~ n R (A) and g o through
\
1 t h e a ' t t r i b u t e l i s t .

a . S e t B t o t h e f i r s t a t t r i b u t e of t h e t a b l e .

b . I f t h e r e a r e o c c u r e n c e s of R . B i n COND, t hey

shou ld be of t h e form ' R . B OP X ' . ,

C a l l P R I N T C ~ M P (O P , X) .

c . Move t o nex t t h e next a t t r i b u t e B and go t o s t e p b

above .

PRINTCOMP s t a n d s f o r " p r i n t compar ison" . For example,

PRINTCOMP(<,~O) w i l l g i v e us t h e E n g l i s h p h r a s e " l e s s than 3 0 " .

The TABLES r o u t i n e pe r fo rms t h e t a s k of scann ing t h e

mul t i -d imens iona l t a b l e s of t h e d a t a b a s e . (I n our sample

d a t a b a s e , t h e o n l y such t a b l e i s t h e one f o r SHIPMENT,) TABLES

t a k e s f o u r p a r a m e t e r s : R , NOT, COND, and A . I t h a s 3 s t e p s .

1 . I f OP is 'a$, output B-constant.
/. -

2. I f OP is I-=', output "other thanw B-constant.

3. Else use column COMPCOL

Let us give some complete examples to show how the routines

of NLG work.

Example - -1 8:

SELECT S#
FROM SHI PMENT
WHERE (SHIPMENT.J#='JV

OR SHIPMENT.J#='J~')
AND P# IN

(SELECT P#
FROM PART
WHERE PART.COLOR='RED1) ;

The translation for Example 10 comessout to be: "Select the

S# values of suppliers who sent a shipment of parts colored red

to project J1 or project 52." -

Even though this is a level 2 query, we can put it into the
,

general form given fpr a level 1 query by taking A to be S#, R
a

to be SHIPMENT, and COND to be everything after the first

"WHERE". Note that the major connective in COND is "AND", so we

use the simpler translation scheme.

According to step 1 , we.must find NOUNS(S#) and PREP(S#).

NOUNS(S#) is "S#-values", and PREP(S#) iso"ofw. Thus the output

from step 1 is the phrase "Select the S#-values of".
--

*

, . I c step 2, we obtain TRANS(S#,COND). Now NOUNS(R(S#))=

N O U ~ ~ S (S U P P L I E R) = " S U ~ ~ ~ ~ ~ ~ ~ " . MOD(A,NOT,COND) turns out to be the

empty phrase, so step 2 gives us "suppliers".

In step 3 we must find TABLES(SHIPMENT,NOT,COND,SUPPLIER),

where COND is

(SHIPMENT.JP='JV
OR SHIPMENT.Jt='J2')

P# IN Q2 ' A N D

and the subquery Q2 is

(,SELECT P$
FROM PART
WHERE PART.COLOR='RED1) ;

The table for the relation SHIPMENT was given"in chapter 4.
a

The rows correspondLng to "SUPPLIER" are those in the middle

third of the table. Fir-st we get the ~nglish phrase "who sent a
f:

shipment", by step3a of the TABLES routine. Going down the
P!

table, we come to Pf. We see that P# does occur in COND, so
I

output "of". The phrase in COND containing P$ is "P# IN Q2". To

complete this phrase, we cail TRANS(P#, 0, P # IN
r

\

Q 2) . This produces "parts", and a call to MOD(P#~ 0, P# IN Q2). .
Looking at how MOD works, we see that this make9 a call to

MOD(Pt, 0, PART.COLOR='RED'). The output from MOD is "colored

red".

Back in the table, we go to the next line, containing J#.

N o w J# occurs in COND, so output "to". Call TRANS(J#, 0,

SHIPMENT.J-#='JI' 06 SHIPMENT.J#='J2'). NOUNS gives us

"projects". Call MOD(J#, 0 , SHIPMENT.J#='Jl' OR

SHIPMENT.J#='J2'). Since the major connective is "OR", we call

MOD(J#, 0, SHIPMENT.J# ='J1'), output "OR", and c ~ ~ ~ - M o D (J # , 0 ,

&IPMENT.J#=' ~ 2 ' 1 . The first MOD gives "project J1"-, and the t

second gives "pro@CZ 52". /
Example - 1 1 :

SELECT S# .
FROM SHI PMENT -1- -

WHERE J# IN
(SELECT J#
FROM PROJECT
WHERE PROJECT.JCITY='L'ONDON'
OR PROJECT.JCITY='PARIS~)

AND P # I N
(SELECT PX
FROM PART
WHERE PART.coLoR='REO');

For this example, the translation will be: "Select the
L', -

SF-values of suppliers who sent a shipment of%parts colored red

to projects located in London or located in Paris."

Here A is St, R i*s SHIPMENT, and COND is everything after
B

the first "WHERE". Again we use the simpler translation scheme.
4

Step 1 gives us "Select the S+-values of", step 2 gives us

"suppliers", and step 3 gives us "who sent a shipment of parts

colored red to projects located in London or located in Paris'!.

CHAPTER VI

APPLICATIONS

-
We stated earlier that the objecti,ve of this thesis is to

present a method to interpret an SQL query and translate it into

natural language. At first, this may seem a bit odd, in view of

the current trend of translating natural language to a database

language such as SQL. In this chapter, we .

applications of our research results as

previous chapters.

(i) s ~ ~ ~ d u t o r i a l s : Consider. the design of a computer-based

tutorial system to teach programmers and users how to use SQL to

interact with the databasesystem. Most likely there Jill be a

drill sepsion following a brief introduction to the essential
/

features of the language. The trainee will be given a sample

database schema such as our Part-Supplier-Project schema, Then
t;

for each request of information, such as "find all suppliers who
i

supply at least one red part", the trainee is asked to formulate

an SQL query correctly. The least the tutorial system should do
?T

is tb determine whecher the submitted query is syntactically ,

correct, a task an SQL interpreter/compiler must be able to

periorm. Thus, we cao assume the syntax of the query is correct.

A highly desirable feature of such a tutorial system is to

provide feedback to the trainee regarding the correctness of the

q u e r y , i.e., whether the query will do what,it is supposed to

d o , h e possible Fay of providing such a facility is to have the

50

tutorial system use the query to retrieve information from a

sample database and allow the trainee to check the,answer by

examining the entire sample database. One of the p.itfalls.of

this approach is that the answer might be'correct even i f the

query is incorrect, which may happen i f the sample database is

very small. he alternative is to make use of our proposed

system to inform the trainee of the English translation of.the

query in a clear and unambiguous way. To take this approach one

step further, it is possible to expand our system into an expert

system which can diagnose a submitted query and suggest ways to

nodify the query.

(if) SQL Proqramming kid: The same feedback mechanism described

above will also be helpful to experienced end-users and
FY: ,

programmers who want to exploit the full retrieval power of SQL.

This mechanism can be embedded into the database system as an

option for debugging purposes. Experience has shown that most

o b s z ~ r e pr.ogram bugs occur because the program neglects to

hancle "boundary" conditions properly. Example 9 will illustrate

r . l , r ,,_ soint here. After the interpretation of QT, we obtain the .
fclloxing psuedo-SQL query:

SELECT J #
FROM SHI PMENT SHI PMENTX
WHERE (SELECT P#

FROM SHI PMENT
WHERE S#='Sll
AND J#=SHIPMENTX. J#
CONTAINS
(SELECT P#
FROM SHIPMENT
WHERE S#='Sll)

-

The "boundary" condition of this query is the condition that Sf

supplies no parts to any projects. When this condition is true,

which means the 'CONTAINS' predicate is always true, all J#'s

will be retrieved as the answer. This boundary condition can be >

detected by our system and displayed to the programmer as part

of the feedback. In this case, the sentence "...or S1 supplie's

no parts to any projects" is appended to the normal output.

I a
(iii) Syntactic Query Optimization: his is -in contrast to

semantic query optimization [~ing81], which makes use of

knowledge of data semantics to speed up query processing. he

latter is very dependent on the application domain because the '

semantic knowledge is expressed in the form of semantic

integrity constraints of the database, such $s "Every project

in London must be supplied by local suppliers".

query optimization has been suggested BP' by other

&:abase researchers. [~ i m ~ 8 2] , for example., proposed some rules
-1

b y r h i c h certain types of queries can be transformed into other
4 -.

\

queries and showed the transformation can reduce processing

time. The rules we have proposed for,the QT can be applied with
. . -

s : ~ , : i a r results. For example, the conversion of double 'NOT

EXIST' into TONTAINS~ reduces the number of levels of the query

by one. Still greater savings can be obtained by interpreting
Ah

queries. Example 7 is a case in point. To retrieve the answer to
4.

this, query, we need only to 1-ook for tuples with the same value

of S# but different values of J#. Thus onehpass of the relation

SHIPMENT wil1,be sufficient. A secondary index on S# or sorting
4

the tuples by S# will help, but neither of them is strictly

necessary. To further illustrate this approach, consider the

following complicated query:

SELECT S#
FROM SHI PMENT SHI PMENTX
WHERE S# NOT IN

(SELECT .S#
FROM SHI PMENT -

WHERE J # IN 7--' ,
(SELECT J#
FROM SHI PMENT j

.- WHERE P# - = SHIPMENTX.P#))

After the processing by QT, this query becomes a psuedo-SQL

query 3s follows:
-- _ i

FROM SHI PMENT SHI PMENTX
, * WHERE S # I N

(SELECT S #
FROM SHI PMENT
WHERE FOR ALL SHIPMENT: J # IN . '.

I (SELECT J#
FROM SHI PMENT '
WHERE FOR ALL SHIPMENT:P#=SHIPMENTX.P#))

(or equivalently, NUMBER(P#)=~)

The translation of this query is: "Find suppliers such that each -
project such a supplier supplies uses only one part". Of course,

our proposed system can identify this query by its syntax,

without actually deriving its meaning, which is application

t

dependent. I,n fact,this query belongs to the category of

queries without 'EXIST', ha5 interblock reference, and is of the

type (- , + , -) in terms of negation by levels. For this class of

queries, there will be a predetermined search strategy with the

attributes involved (in this case S#, J# and P#) as the input

parameters. In order to estimate the processing time of this

strategy, we assume the relation SHIPMENT is sorted by St and

then by J#. Since the primary key of the relation consists of

S # , J#-and P # , any two tuples with the same value of S# and J#

must have different values under P#. Thus for a value of S # to

be'included into the answer, all J#'s associated with this value

of S# must be different from each other. Again, one pass of the

refation SHIPMENT will yield the answer.

(iv) 'Extended' - SQL: We have loosely defined Extended SQL to

incl.dde all forms of transformation output by the QT and, of

course, SQL itself. It is not the intention of this thesis to .

present a precise definition of Extended SQL, but we belleve it
&

could form the basis of an improved language interface. The

advantages are obvious. I t allows the users to use more

~nglish-like queries to retrieve a greater variety of

information without having to modify the SQL language processor.

While we are'aware SQL not a perfect database language (as

L e already plenty of existing [~ate84] points out) ther

database systems that are using SQL or SQL-like languages. For

these systems, a front-end can be written tg accept psuedo-SQL

queries and then transform them into a form accepted by the SQL

language processor of the database system. In fact, a future

research direction is to pursue,the idea of extending SQL to 'i

bring it is as close to natural language as possible, while

keeping its characteristic of application indepqndence intact.

CHAPTER ' V I I -

CONCLUSION AND PROSPECTS FOR THE FUTURE

The ELFS system is based on Codd's work with tables, but we

have made several extensions. The idea of a Query Transformer is

a new contribution. The transformations we discovered are new,

and we were able to prove seve.ra1 theorems which rigorously

established the correctness of these transformations. The ELFS

system goes beyond previous work in its ability to handle
/

universal quantification, the general use of negation, and t e 2'
use of 'OR' and 'AND'.

~lthough SQL is rapidly becoming the - de facto standard

data language- for relational database systems, it has many

shortcomings. [~ate84] has presented* a critique of the language.

Our concerns here focus on the untapped power of the database

language for casual users. Even for simple, day-to-day and

uncontrived requests for information, one ha,^ to resort to

complex, unnatural, and therefore hard-to-understand queries.

These concerns have motivated us to develop a system to

translate an SQL query into natural language. The obvious

applications of this system will be found when developing

computer-based SQL tutorial systems and SQL debugging aids.,

During the process of translation', knowledge about. the syntax of

the query is acquired, which will be useful in.query

optimization. The whole exercise described in this thesis could

lead to construction of a more user-friendly, testricted natural

5 6'

e-
language front-end to the existing SQL language, which can

easily migrate from one application domain to another.

$

An interesting topic for further research would be to see

how easily one could transport the ELFS system to a different

database. Also, tools could be developed to aid in the

construction of ELFS systems for different applications..There

should be a systematic way of generating the tables used in the

translations. There is much more work that could be done on the

algorithms for QT and NLG. In addition, ELFS could be

generalized to include interblock reference. Finally, one could

investigate queries with more than three levels.

References

' [~tze82]
Atzeni, P. and D.S. Parker, "Assumptions in ~elational'
Database Theory", Proc. of ACM Symp. on Principles on
Database Systemsw,-1982, ~ p . 1-9

I

[~rad82]
Bradley, J., "File and Data Base Techniques', Holt, Rinehart
& winston; New York, 1982

[Codd70]
.. Codd, E.F., "A ~elational Model of Data for Large Shared.

Data Banks", Comm. ACM, No. 6, Vol. 13, 1970, pp. 377-387

[~odd78 1
Codd, E.F. et. al., "Rendezvous Version 1: An Experimental
English-Language Query Formulation System for Casual Users
of Relational Data Bases", Research Report RJ2144, IBM
Research Lab., San Jose, Calif., 1978

[Cham761
Chamberlin, D.D. et. al. "SEQUEL 2: A unified Approach to
Data Definition ~anipulation, and Control", IBM 3. @search
& Developments, Nov. 1976, pp.560-575

[Date811
Date, C.J., "An Introduction to Database Systems",
Addison-Welsey, Readings, Mass., 1981

[Date841
Date, C.J., "A Critique of the SQL Da'tabase Language", ACM
SIGMOD Record, No: 3, Vol. 14, 1984

[KimW82] -
Kim, W. "On Optimizing an SQL-like Neste'd Query", ACM TODS,
Na. 3, -Voi. 7, 1982, pp.443-469

/

[King81 1
King, J . , "QUIST: A System for Semantic Query Optimization
in Relational Databases", Proc. of VLDB, 1981, pp. 510-517

[~hne78]
Shneiderman, B., "Improving the Human Factors Aspect of
Database Interactions", ACM TODS, No. 4, Vol. 3, 1978,
pp.417-439 h

[i711m82]
Ullman; J.D., "The U.R. Strikes Back", Proc. of ACM Symp. on
Principles of Database Systems, 1982, pp. 10-22.

Appendix : Prolog program.
P

We give a listing of the Prolog program,-which includes some
comments. In this program, the relations of the sample database
were given the shorter names S, P, J, and SPJ. A t the end, a

- sample of the output is given. *

We can make some'comparisons bet'ween the Prolog prograrCr and
the PL-/I program. Many string manipulation routines had to be
written in PL/I which are already built-in in Prolog. If' we f

exclude all these utilities from the PL/I program, it is still
about four t,imes asjlong as the Prolog program. The
pattern-matching facilities of Prolog eliminate a whole series
of IF-THEN-ELSE clauses i'n the central routines of -ELFS. There
was some concern that Prolog might not be fast enough, but this
proved to be unfounded. For our sample database, the processing
time was under 1 second per query.

/

/* This part contains some of the simple functions. * /
/* These are domain dependent. * / /*********************** .

/* ATOREL finds the rela
i

/* RELATION is true i f its argument i s a relation of the * /
/* database, * /
/* ATTRIB is true i f its argument is an attribute. */

j* RELNOUNS provides the noun corresponding fo a relation. * /
/* NOUN provides the nouns for attributes and for the keys * /
/* of relations. * /

/* utilities * /

ALTER performs the basic translation algorithm of NLG. * /
I t can handle both leve3 1 and level 2 queries. * /

ALTER(SELECT.*A.FROM.~RLIST.WHERE.*COND,*OUT~
ATTRI (*A) & NOUN(*A,*NOUN)
m o m t (*A, *RA) & RELNOUN(*RA,*RNOUN) & /
NEWLI NE h

PRINT(.Start .of .new.query.' *L) & NEWLINE &NEWLINE
PRINT(~U~~~.~S.SELECT.*A.FR~M.*RLIST.WHERE.*COND)
MOD(*RA,*COND,*MOD)
TABLES(*A,*RLIST,*COND,*TABLE~)
A P P E N D (S ~ ~ ~ C ~ . ~ ~ ~ . * N O U N . O ~ . * R N O U N . N I L , *MOD, *0LJT1)
AP~END(*OUTI,*TABLES,*OUT)
NEWLINE &~f?INT(~ranslat~on.is.:.NIL) & NEWLINE
PRINT(*OUT)
NEWLINE & NEWLINZ. +

MOD(*RA,*COND,*MOD) * /
returns in *MOD a lisi of all modifiers of RNOUK " ,'
in *COND. * /

)*'1t calls MODA for each possible attribute of that noun. * /
1

/ * Check for occurenc-e of a "FOR ALL". * /

MOD(*R,FOR.ALL.X.IN.*RX.*RY.*BY.=.*RZ.*B.IMPLIES.*C~ND~*~UT~
< - NOUN(*B,*NOUN) & AT~REL(*B,*RB) & RELNOUN(*RB,*RNOUN)

& MOD(*RB,*RB.*B.=.*NOUN.NILI*MOD1?
& MOD(*RB,*COND,*MOD~)

. & APPEND(having.the.prop.that.for.all.*RNOUN.x.if.x.is.NIL,
*MOD~,*OUT~) < .

h APPEND (t heck+. i s .NIL , *MOD2, *MOD22 f
: & APP'END(*OUT~,*MOD~~,*OUT).

B
r(

/ * Break up the AND'S. * /

MOD(*RA,*C~.AND.*C~,*MOD)
< - MOD(*RA,*CI ,'*MI)

& MOD(*RA,*C~,*M~)
& APPEND(*M~,*M~,*MOD).

& j
i

,,,* Now *COND should conta2,ti only a single condition. * /
,, - --/'

M~D(S,*COND,*MOD)
< - MODA(s , *CONS,*S) 9

& MODA(SNAME, *COND,*SN) -=-.

& MODA(STATI+,*COND,"ST)
& MODA(SCITY, *COND,*SCITY)
& APPEND(*S,*SN,*L~) & -
& APPEND(*L~,*ST,*L~) & APPEND(*L~,*SCPTY,,*MOD).

/* MODA " g o e ~ into' any IN-clause. * /
A

MGDA (3 ,*.s.=.*s.NIL, *%NIL).
>MODA(SNAME, *.SNAME.=.*SNAME.NIL, named.*SNAME.NIL).
M O D A (S T A T U S , * . S T ~ T U S . = . * S T A T ~ S . N I L ~ ~ ~ ~ ~ ~ ~ . ~ . S ~ ~ ~ U S . * S T A T U S . N I L ~ .

MOD (SCITY, *.SCITY.=.*SCITY.NIL, located.in.*SCITY.NIL). 1. .

MODA

MODA
MODA
MODA

. MODk

MODA\(g. ,*.P.=.*P,NIL, *P.NIL).
MODA(COLOR, *.COLOR.=.*C.NIL,

' MODA(PNAME, *.PNAME.=.*PN.NIL,
MODA(WEIGHT,*.WEIGHT.=.*WT~NIL,

(PCITY,

J , *.J.=.*J.NIL, *J.NIL).
JNAME, *,JNAME.=.*JNAME.NIL,named.*JNAME.NIL).
JCITY, *.JCITY.=.*JCITY.NIL,located.in.*J~ITY.NIL).
,,NIL).

>
/* Distribute TABLES over the relation list. * /

TABLES(*A,*R.*REST,*COND,"T)
< - TABLE *A,*RrkCOND,*~l~

& TABLES *A, *REST, *COND, *T2)
& APPEND(*T~,*T~,*T).

PJ ta5le (domai~ dependent) * /
J* *MP contains the modifiers for P. * /
/* *NPP is t h d 6 u n phrase. * /

TABLE(S,SPJ,*COND,*TABLE)
<- QTY(*COND,*QTY)

\

& MOD(P,*COND,*MP) & P(S,*MP,*NPP)
& MOD(J,*COND,*MJ) & J(*MJ,*NPJ)

/* & PRINT(MODP.=.NIL) &PRINT(*MP) &NEWLINE
& PRINT(MODJ.=.NIL) &PRINT(*MJ) &NEWLINE

C & PRINT(*NPP) & NEWLINE
& PRINT(*NPJ) & NEWLINE * /

& APPE~~(who.sent.a.shipment.NIL,*~~~,*OU~l)
& APPEND(*OUT~,*QTY,*OUT~)
& APPEND(*OUT~,*NPJ,*TABLE). ?

/ * &PRINT(*OUTI) & NEWLINE
&PRINT(*OUT~) & NEWLINE. * / - - *

-
- -

< - QTY(*COND,*QTY)
& MOD (S, *COND, *MS) & s (*MS, *NPS)
& MOD(J,*COND,*MJ) & J(*MJ,*NPJ)
& APPEND(supplied.NIL,*QTYl*OUT1)
& APPEND(*OUT~,*NPS,*OUT~) - & APPEND(*OWT~,*NPJ,*TABLE).

I* S I P and J tables .,. are NIL

/* The -F,J table calls the functions below to form noun * / <

/* phrases from the modifiers it has found. * //
I

1

/* level 2 example

/* end of the Prolog program. * / B~

Here is the ouitput produced by the above program.

- Start of new query -
Query is :
SELECT S FROM SPJ.NIL WHERE P IN SELECT P FROM SPJ.NIL
WHERE SPJ S = S1

Translation is :
Select the S values of suppliers who sent a shipment of parts
supplied by suppliers S1

