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Abstract— Nonminimum phase zeros are known to cause
fundamental performance limitations in the system transient
response, particularly undershoot and overshoot. Much of
the available literature deals with scalar-input scalar-output
systems. In this paper we consider the role of nonminimum
phase zeros on the transient response of multivariable systems.
We explore via examples the extent to which such zeros may
imply undershoot or overshoot in the transient response.

I. INTRODUCTION

The role of system zeros on the control systems perfor-

mance of linear time-invariant (LTI) systems has been studied

for many decades. Numerous studies have reported funda-

mental performance limitations arising from nonminimum

phase (NMP) zeros. A recent comprehensive survey of the

impact of system zeros on control system performance was

given in [2].

Much of the existing literature on overshoot and under-

shoot is concerned with single-input single-output (SISO)

systems. [8] showed that an LTI SISO continuous-time

system has an undershooting step response if it contains at

least one real nonminimum phase zero. A lower bound for

the size of the undershoot was also given, and this result

was extended in [4] where SISO systems with two real

nonminimum phase zeros are considered and a lower bound

for the minimum undershoot is given.

Papers offering analytic results on the system overshoot

include [6], which considered third-order continuous-time

SISO systems, and gave necessary and sufficient conditions

in terms of the closed-loop poles for which the step response

would be nonovershooting. In [14] it was shown that for a

continuous-time SISO system with two nonminimum phase

real zeros (right-hand complex plane), the step response must

overshoot if the settling time is sufficiently small.

In contrast with the extensive literature for SISO systems,

to date there have been few papers offering analysis or

design methods for undershoot or overshoot in the step

response of multi-input multi-output (MIMO) systems. The

paper [3] considered MIMO systems subject to dynamic

output feedback, and gave a lower bound on the system

undershoot and interaction for systems with at least one real

NMP zero. A recent contribution offering design methods

for MIMO systems is [10], which gave a state feedback

controller to yield a nonovershooting step response for LTI
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MIMO systems; the design method was applicable to some

nonminimum phase systems, and could be applied to both

continuous-time and discrete-time systems. Very recently it

was shown in [11], [12] how the method could be adapted

to obtain a nonundershooting step response. The design

method given in both these papers makes use of the classic

eigenstructure assignment algorithm of [9].

In this paper we review a number of classic results

indicating the effect of nonminimum phase zeros on the

system transient response for SISO systems, and consider

the extent to which these effects must also be observed for

MIMO systems with nonminimum phase zeros. The methods

of [10]-[12] will be used to obtain the examples.

II. PROBLEM FORMULATION

We will consider LTI MIMO systems with state space

representation

Σ :

{

ẋ(t) = Ax(t) +B u(t), x(0) = x0 ∈ Rn,

y(t) = C x(t) +Du(t),
(1)

where, for all t ≥ 0, x(t) ∈ R
n is the state, u(t) ∈ R

m is

the control input, y(t) ∈ Rp is the output, and A, B, C and

D are appropriate dimensional constant matrices. We assume

that B has full column rank and C has full row rank. System

Σ is also assumed to be right invertible, stabilizable and has

no invariant zeros at the origin.

The following method for designing a tracking controller

for a step reference signal r ∈ Rp is standard: choose a

feedback gain matrix F such that A + B F is stable. Two

vectors xss ∈ Rn and uss ∈ Rm exist that satisfy

0 = Axss +B uss (2)

r = C xss +Duss (3)

for any r ∈ Rp. Applying the state feedback control law

u(t) = F
(

x(t) − xss

)

+ uss (4)

to (1) yields x converging to xss and y converging to r

as t goes to infinity. We say that the transient response

overshoots (respectively, undershoots) if it exhibits overshoot

(or undershoot) in any one of the output components.

In this paper we are concerned with the system invariant

zeros, which we define as follows:

Definition 2.1: [7] Let

PΣ(s) :=

[

A− s I B

C D

]

(5)
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denote the system matrix pencil. The z0 ∈ C is an invariant

zero of Σ if rankPΣ(z0) < normrankPΣ(s)
It is interesting to consider how many zeros Σ has, in

general. Since Σ is square, the number of invariant zeros

is n − p + rankD. Hence, if D is of full rank, system Σ
has n zeros. Alternatively, if Σ is strictly proper (D = 0)

and CB is nonsingular, then Σ has n− p zeros [7]. We say

that Σ is a minimum phase system if it has either no zeros,

or else any zeros lie within the left-hand complex plane.

Zeros lying in the right-hand complex plane are referred

to as non-minimum phase zeros of Σ. There are numerous

classic SISO results in the literature that link the presence of

real nonminimum phase zeros with the transient behaviour of

the step response. In this paper we investigate the transient

behaviour of MIMO systems with real nonminimum phase

zeros. The papers [10]-[12] gave methods for designing the

gain matrix F to avoid overshoot and undershoot, and in

this paper we will use these methods to obtain closed loop

systems that exhibit the desired transient response.

III. NONOVERSHOOTING STATE FEEDBACK CONTROLLER

DESIGN METHOD OF SCHMID AND NTOGRAMATZIDIS

We now briefly describe these design methods. Applying

the control law (4) to Σ and changing coordinates with

ξ(t) := x(t) − xss yields

Σhom :

{

˙ξ(t) = (A+B F ) ξ(t), ξ(0) = x0 − xss

y(t) = (C +DF ) ξ(t) + r

In terms of the distinct closed-loop eigenvalues λ1, . . . , λn

and eigenvectors v1, . . . , vn, the error term ε = r − y is

ε(t) =

n
∑

i=1

(C +DF ) vi αi e
λi t

where [α1 α2 . . . αn]
⊤ = [v1 v2 . . . vn]

−1(x0 − xss). If

we can obtain closed loop eigenvectors vi satisfying

(C +DF ) vi =

{

ei i = 1, . . . , p
0 i = p+ 1, . . . , n

where {e1, . . . , ep} are the canonical basis vectors for Rp,

then

ε(t) =

n
∑

i=1

(C +DF ) vi αi e
λi t

=

p
∑

i=1

eiαie
λit

=











1
0
...

0











α1e
λ1t+











0
1
...

0











α2e
λ2t+. . .+











0
0
...

1











αpe
λpt

If each λi ∈ R− for i ∈ {1, . . . , p}, then since each

component of ǫ(t) contains only one exponential, ǫ(t) cannot

change sign in any component, and hence y tracks r without

overshoot from all x0.

Theorem 1 [10]: Assume Σ is square (m = p) and has at

least n− p distinct invariant zeros in C−. Let {λ1, . . . , λn},

{v1, . . . , vn} and {w1, . . . , wn} be such that

1)

[

A− λi I B

C D

] [

vi
wi

]

=

[

0
ei

]

(6)

where λi ∈ R
− is not a zero of Σ, ∀ i ∈ {1, . . . , p} and

{e1, . . . , ep} are the canonical basis vectors for Rp.

2)

[

A− λi I B

C D

] [

vi
wi

]

=

[

0
0

]

(7)

∀ i ∈ {n− p+ 1, . . . , n} since λi coincide with zeros

of Σ;

Assume {v1, . . . , vn} is linearly independent. Let

F = [w1 . . . wn ] [ v1 . . . vn ]
−1

Then, the output y(t) obtained from applying u(t) =
F x(t) + (uss− F xss) tracks r without overshoot from any

x0 ∈ Rn.

Remark 3.1: As the λi for i ∈ {1, . . . , p} can be chosen

to be any distinct stable real numbers (provided they are

distinct from the zeros of Σ, and that {v1, . . . , vn} is linearly

independent), the rate of convergence of y to r can be made

to be arbitrarily fast. F is independent of both r and x0.

Hence, the same F can be used to achieve nonovershooting

convergence for any r and any x0. We say that in this case

F achieves a globally nonovershooting response. The values

of r and x0 enter the control law u only through xss and

uss.

The assumption of n − p invariant zeros in C− is quite

strong, and [10]-[12] explored several ways to weaken this

assumption. For Σ with at least n− 2p distinct finite stable

zeros, the above method can be used to constrain the output

to have 2 modes per component:

ǫ(t) =











α1,1 e
λ1,1t + α1,2 e

λ1,2t

α2,1 e
λ2,1t + α2,2 e

λ2,2t

...

αp,1 e
λp,1t + αp,2 e

λp,2t











As the sum of two modes can change sign, it is clear

that this time overshoot can be avoided only for some x0.

More generally, for systems with fewer invariant zeros in

C−, the eigenstructure approach could be used to constrain

the outputs to be the sum of three or more exponentials.

Since overshoot corresponds to the error terms having a real

positive root, [10] gave necessary and sufficient conditions

under which sum of two or more exponential functions of

the form

f(t) = α1e
λ1t + · · ·+ αne

λnt

would have a root, in terms of the αi and λi. Similarly

undershoot corresponds to the error term returning to its

initial value at some t > 0, i.e. the existence of a t̄ > 0
such that ǫ(0) = ǫ(t̄). The papers [11]-[12] gave necessary

and sufficient conditions under which such t̄ would exist.

Thus the design method for obtaining the gain matrix F

to avoid overshoot and/or undershoot for a given x0 and r

can be summarized as

1) Choose a set of candidate closed loop poles L, consist-

ing of all the available invariant zeros from C−, and
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the remaining modes selected from within a desired

interval [a, b] ⊂ R−.

2) Solve pencil matrix equations (6)-(7) to obtain eigen-

vectors V . Check that V is linearly independent.

3) For given x0, obtain coordinate vector α = V −1(x0 −
xss) and hence the error term ǫi(t) in each output

component as the sum of real exponentials.

4) For each component of the error term, apply the tests

to the corresponding αi and λi to see if overshoot or

undershoot occur.

5) Keep searching [a, b] until a satisfactory set L is

obtained that avoids overshoot/undershoot in all output

components. Then the feedback (4) law using the gain

matrix F associated with these L will yield the desired

step response transient behaviour for the given x0 and

r.

The conditions on overshoot and undershoot are independent

of one another, and thus if only avoiding overshooting is im-

portant, we may apply only the tests applicable to overshoot;

alternatively we may seek to avoid undershoot only. The

design method searches for suitable L and V , but there is no

guarantee that they can always be found, for any given x0 and

r, even if [a, b] = (−∞, 0) is chosen. Nonetheless in practice

the search algorithm provides an effective tool for obtaining

a nonundershooting (or nonundershooting) linear controller

when they do exist, due to the simplicity of the output

function. Also the mathematical tests by which candidate

sets of closed loop poles may be tested for suitability are

computationally very tractable, allowing for a large number

of candidate sets of poles L to be tested in an efficient

manner. Very recently a public domain MATLAB R© toolbox,

known as NOUS, (NonOvershooting and UnderShooting)

has been developed to implement the search method of

papers [10]-[11]; see [13].

IV. NONMINIMUM PHASE ZEROS AND UNDERSHOOT

In this section we note several results relating real NMP

zeros to the transient performance of SISO systems, and

employ the above design method to investigate the whether

such relationships must also hold for transient behaviour of

MIMO systems with real NMP zeros.

Perhaps one of the best known classic results on the

relation between nonminimum phase zeros and the transient

response is the following:

Theorem 4.1: [8] Let Σ be an LTI stable strictly proper

SISO system with at least one real NMP zero. Then the step

response must exhibit undershoot.

A natural generalization of this SISO result is the following

conjecture for MIMO systems:

Conjecture 4.1: Let Σ be an LTI stable strictly proper

square MIMO system with p inputs/outputs, and p real NMP

zeros. Then the step response must exhibit undershoot in at

least one output component.

Clearly, the case p = 1 is given by Theorem 4.1. We show by

an example that this conjecture is false for MIMO systems,

in general.

Example 4.1: Consider the strictly proper system Σ1:

A = [0 -5 0 6 8 0;0 0 0 -2 0 0;

6 0 0 0 0 0;0 0 0 0 0 0;

0 -1 0 -6 3 0;0 0 0 6 0 9]

B = [1 0 0; 7 0 9; 0 4 -5;

0 0 7; 0 2 10; -2 -1 0]

C = [0 7 0 -2 -3 0;

0 0 -9 -1 0 0;

0 0 7 6 5 0]

D = [0 0 0;0 0 0; 0 0 0]

System Σ1 has n = 6 states, p = 3 inputs and outputs,

and p = 3 real NMP zeros, at 0.5551, 2.4547 and 9.0000.

We assume zero initial conditions and a step reference of

[1, 1, 1]T . Using the NOUS toolbox [13] to seek a non-

undershooting response, we obtained the gain matrix F as

F =

[24.1 -38.0 -20.9 27.5 2.1 -107.7;

-143.2 198.5 85.5 -264.3 66.3 681.7;

-88.0 111.9 45.9 -179.7 51.0 378.1]

so that the control law (4), with uss and xss obtained from

solving (2)-(3), yields transient response curves as shown in

Figure 1. The gain matrix F places the closed-loop poles
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Fig. 1. Outputs from System Σ1

at {−50, −47, −42, −40, −7, −6}, and naturally the

closed-loop system has the same zeros as the open loop

system, since state feedback has been used. Thus the closed-

loop system is stable, strictly proper and square, with p = 3
real NMP zeros. We see that with this control law, the step

response does not exhibit undershoot in any of its outputs,

indicating the conjecture is not valid in general. The authors

have also obtained examples to disprove the conjecture for

the cases p = 2, p = 4 and p = 5.
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V. NONMINIMUM PHASE ZEROS AND OVERSHOOT

Recently [14] established that an LTI stable strictly proper

SISO system with at least two real NMP zeros must exhibit

overshoot in its step response if the settling time is suffi-

ciently short.

Theorem 5.1: [14] Let Σ be an LTI stable strictly proper

SISO system, and assume Σ has two real NMP zeros at

s = z1 and s = z2 and any number of additional zeros

located anywhere in the complex plane. Let ts denote the

2% settling time, assume x0 = 0 and y∞ > 0. Then the

overshoot yos satisfies the lower bound

yos

y∞
=

(

0.98

ez2ts − 1

)(

1− z1ts

z1ts

)

− 1 (8)

For sufficiently small ts, the bound in (8) is positive, so the

step response necessarily exhibits overshoot. As ts → 0, the

bound tends to ∞.

We give an example to show that this does not generalize to

MIMO systems.

Example 5.1: Consider Σ2 with

A = [-4,5,0,0;-7,0,-5,0;

0,-10,4,0;-3,0,0,0]

B = [-2,0;0,-2;-4,-4;-1,0]

C = [0,7,0,5;-2,0,0,0]

D = [0,0;0,0;]

System Σ2 has two real NMP zeros at 1.7857 and 14. We

assume zero initial conditions and a step reference of [1, 1]T .

Using y∞ = 1, we solve (8) for the 2% settling time ts
subject to yos = 0. Since we may denote z1 and z2 to be

either of the two real zeros, we obtain two solutions, ts =
0.1131 and ts = 0.0636. By Theorem 5.1, a SISO system

with these two zeros must overshoot if the 2% settling time

is less than ts = 0.1131. Using the NOUS toolbox to seek

a nonovershooting response, we obtained the gain matrix F

as

F = [ -1465 -979 492 1376;

4765 596 -199 -8752]

so that the control law (4), with uss and xss obtained from

solving (2)-(3), yields a transient responses as follows as

shown in Figure 2. We see that both outputs are nonover-

shooting, and achieve a 2% settling time of considerably less

than ts = 0.1131. Thus the bound in [14] for SISO systems

with two real nonminimum phase zeros does not necessarily

apply to MIMO systems.

VI. NONMINIMUM PHASE ZEROS, LOCAL EXTREMA AND

ZERO CROSSINGS

In [1], the number of local extrema (turning points) in the

step response of a SISO system was linked to the number of

system zeros:

Theorem 6.1: [1] For an asymptotically stable, strictly

proper SISO system with only real poles and real zeros, the

number of extrema in the step response (not including t = 0)

is greater than or equal to the number of zeros to the right

of the right-most pole.

The transient curve is said to have a zero crossing if it

crosses the time axis at some t > 0. In [2] a simple proof
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Fig. 2. Outputs from System Σ2

was given to show that a SISO system with a NMP real zero

must have a zero crossing. More generally, [5] gave

Theorem 6.2: [5] For an asymptotically stable, strictly

proper SISO system with only real poles and real zeros, the

number of zero crossings is equal to the number of positive

zeros.

We give an example to show that both these results do not

generalize to MIMO systems.

Example 6.1: Consider Σ3 with

A = [0 0 -3 0;0 0 0 4;0 6 -10 0;0 -10 0 0]

B = [-5 -5; -5 0;0 -2; 0 1]

C = [-4 0 -5 0;-4 0 -4 0]

D = [0 0;0 0]

System Σ3 has two real NMP zeros at 12.8151 and 2.1849.

We assume zero initial conditions and a step reference of

[1, 1]T . Using the NOUS toolbox to seek a monotonic

response, we obtained the gain matrix F as

F =

[-6.11 23.14 6.16 -25.37;

9.24 -15.62 -0.75 18.84]

so that the control law (4), with uss and xss obtained from

solving (2)-(3), yields a transient responses as in Figure 3.

We see that with this control law, the step response

is monotonic in both outputs. The gain matrix F places

the closed-loop poles at {−41,−40,−35,−5} and thus the

closed-loop system is stable and strictly proper with only real

poles and zeros. This example shows that for MIMO systems,

the presence of real NMP system zeros does not imply the

outputs must exhibit local extrema or zero crossings.

VII. CONCLUSION

We have surveyed several results from the control sys-

tems literature on performance limitations arising from the

presence of real minimum phase zeros. Examples have been

given to show that these limitations can sometimes be cir-

cumvented for MIMO systems when a suitable state feedback

controller is used. The examples offer further insight into

the role played by real nonminimum phase zeros on the

transient performance of MIMO systems. Ongoing work by
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Fig. 3. Outputs from System Σ3

the authors is aimed at addressing the question of whether

a globally monotonic response can be obtained in terms of

structural properties of the system matrices (A,B,C,D).
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