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Abstract. In this paper our aim is to estimate integrals of the form [,"if} = J~...f(ei9)dl-£(8) where

1-£ is, in general a complex measure. We consider quadrature formulas like [n if} = L:7=1 Aj,nf(xj,n)
with n distinct nodes Xj,n on the unit circle and so that [,"if} = [n{f} for any f E 'Rn (a certain
subspace of Laurent polynomials with dimension n). Under appropriate assumptions on the func
tion f we show that such quadratures are immediately related to the estimation of the so-called
Riesz-Herglotz transform of the measure 1-£. Results concerning the rate of convergence of these
quadratures are also given.
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1. Introduction

In the approximate calculation of definite integrals,

b

1 f(x)w(x)dx
(1)

where [a, b] is a finite interval and w a complex function, by a linear quadrature for
mule with coefficients or weights Aj and nodes Xj, j = 1,2, ... , n, it is fundamental
that f can be uniformly approximated by polynomials on [a, b]. Thus the coeffi

cients and nodes will be chosen so that the corresponding quadrature L:j=l Aj f(xj)
integrates exactly polynomials up to a certain degree as large as possible. When
w( x) ;::: 0, the well known Gauss-Christoffel formulas arise. See e.g. [13] for a survey.
When w is in general a complex function, not so many results are known. Orthogo
nal polynomials with respect to complex measures play now a crucial role. A recent

contribution in this matter is the paper by Gonzalez-Vera et al [16]. (See also, [25]
and [1]).

On the other hand, the estimation of integrals not in the form (1) but now on
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the unit circle, that is
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(2)

and related topics such as Szego polynomials and the trigonometric moment problem
have recently received much attention as a result of their application in the rapidly
growing field of digital signal processing ([3, 11]) and in operator theory [15, 22].
In such cases J.L in (2) used to be a finite positive Borel measure on [-11",11"] and the
concept of "Szego quadrature formula" appears as an anologue on the unit circle to
a Gaussian qaudrature formula on an interval. It was formally introduced by W.B.
Jones, O. Njastad and W. Thron in [21], (see also [26]). Results concerning the error
and convergence for such formulas were given in [5]. As for numerical results see
[18].
Finally, the extension of these quadratures to certain spaces of rational functions
with prescribed poles not on the unit circle were first introduced in [4]. (See also
[6, 7] with an application to the Poisson integral).
Next, some remarks on notation are given. For every pair (p, q) of integers, where
p:::; q, we denote by t!,.p,q the linear space of all Laurent polynomials (L-polynomials)

q

L(z) = LCjZjj
j=p

Cj E C.

We write t!,. for the linear space of all L-polynomials, II for the space of all polyno
mials and IIn (= t!,.O,n) for the space of all polynomials of degree at most n. We shall
also write T = {w E C : Izi = I}, D = {w E C : Izi < I} and E = {z E C : Izi > I}
for the unit circle, the open unit disk and the exterior of the unit circle. Finally, let
us remark that as for quadratures on T, L-polynomials play the same role as the
usual polynomials when quadratures for integrals (1) over an interval are considered.
This fact is basically motivated by the following

Theorem 1 ([27, p. 39J) Let C be an arbitrary Jordan curve of the finite z-plane.
Then, any function f( z) continuous on C can be uniformly approximated on C by
the sum of a polynomial in z and a polynomial in z.

As an immediate consequence, we have

Corollary 1 If f is any continuous function on T, then f can be uniformly approx
imated on T by L-polynomials.

2. Preliminary results

Let X = {Xj,n}, n E N, j = 1,2, ... , n be a triangular table of nodes, Xc T. In
order to construct quadrature formulas not involving values of derivatives, we shall
assume that Xj,n 1:- Xk,n if j 1:- k. Thus, for a given integral IJ1.{f} on the unit circle
(2), where J.L is always allowed to be a complex measure, we shall be concerned with
its estimation by using a formula of the kind,

n

In {J} = LAj,nf(xj,n)
j=l

(3)
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such that II' {f} = In {f} for any f E 'Rn, which, as will be established later on,
represents a certain subspace of 6..

Let G be domain of the complex z-plane (i.e., a closed and connected point set),
which contains the unit circle T but not the origin. Let r be the boundary of G
which is assumed to be a union of Jordan curves and let f( z) be a function which is
analytic in G. Then, from Cauchy's Theorem

_1_ r Zo + z f(z)dz = -2zof(zo)27ri Jr Zo - z
(4)

whenever Zo is in the interior of G. Now, setting g(z) = - f(z)j(2z) (which is also
analytic in G), it follows that

1 1ZO+Z
f(zo) = -. --g(z)dz.

27r~ r Zo - z

From (5) and Fubini's Theorem, the following holds,

(5)

(6)

where FI'(z) = J~7f:~:~~dJ.t(e) represents the well-known Herglotz-Reisz transform
of the measure J.t, which is an analytic function outside T.
Let fn(z) denote a certain rational approximant to FI'(z) with n distinct poles Xj,n,
j = 1, ... , n on T. That is,

n

Pn(z) = II(z - Xj,n)
j==l

For such rational functions, one has the decomposition,

n

fn(z) = An + L Aj,n Xj,n + Z
j==l Xj,n - Z

and it can be written (again by (5)) as

(7)

1 1 1 ~ 1Xj,n + z ~-. fn(z)g(z)dz = -. L..- Aj,n . g(z)dz = L..- Aj,nf(Xj,n) = In{f}.
27r~ r 27r~ . r Xj n - Z .J==l ' J==l

(8)
In other words, when replacing in (6) FI'(z) by a certain rational approximation, say
fn(z), a quadrature formula In {f} of the desired form (3) is obtained.

In order to provide an explicit representation of coefficients {Aj,n} in such a
formula, we can write
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with Qi = ai - aObi; i = 1,2, ... ,n. Thus, fn(z) = ao + Rn-1(z)/Pn(z), where
En-I E IIn-l' Setting, (by simple partial fraction decomposition)

n

En-l(Z) = L~. '
Pn(z) . Z-X)n)=1 '

yields

j = 1, ... ,n (9)

n

( ) _ '" Xj,n + Zfnz ->'n+L.JAj,nx. '
j=1 ),n

where >'n = ao - 2::7=1 Bj /2xj,n and

Aj,n = -Bj/2xj,n' j = 1, ... ,n

smce

(10)

1 1 [z + Xj n ]
----- ' -1

Z - Xj,n - 2xj,n Z - Xj,n .

As for the error in the numerical quadrature (8), from (6) and (8) one immediately
gets,

En{!} = Ip.{f} - In{f} = -~ r (Fp.(z) - fn(Z)/(Z) dz (11)2wz~ 2z

and it follows trivially that:

IEn{!}1 ~ ~ max{lf(()/(1 : ( E r} r IFp.(z) - fn(z)IIdzl. (12)4w Jr
Equation (12) clearly implies that rational approximants {fn(z)}, converging lo
cally uniformly on C - T to Fp.(z), can be "good candidates" to provide "suitable
quadrature formulas".

In the sequel, we shall assume that, in order to compute (2) with J.L a complex
measure, the integrals

(13)

exist and are known for k = 0, ±1, ±2, ... (Actually, it is sufficient to assume that
r:7r IdJ.L(8)I ~ M < +00.) Furthermore, it can be easily checked that Fp.(z) admits
the expansion (around Z = 0 and Z = 00):

ex>

Lo = J.Lo+2LJ.LkZkj Izl< 1
k=1

ex>

Lex> - -J.Lo - 2 L J.L_kZ-kj Izl> 1.
k=1

(14)

Until! now, for a fixed n, nothing has been said about the approximation of Fp.(z)
by fn(z). Thus, let us assume that fn(z) satisfies

ex>

Lo - fn(z) = L J.Ljzj = O(Zp+l), p;::: 0
j=p+l

(15)
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00

L l1-"-jZ-j = O(zq+1), q 2: o.
j=q+l

Now, if we write (from (7))

5

(16)

Izl-+ 0

and

n 00 ( n )
fn(z) = An - L Aj,n - 2 L L Aj,nxj,n z-kj Izi -+ 00,

j=l k=l j=l

then, from (15) and (16), one first gets

n

An +L Aj,n = 11-0
j=l

n

and An - L A~n = -11-0,
j=l

which implies An = o. On one hand, we. have from (15)

n

In {z-k} = L Aj,n/xj,n = I1-k= IJ.<{z-k},
j=l

and, on the other, from (16),

(z = eiS),

n

In{zk} = L Aj,nxj,n = l1--k = IJ.<{zk}, 0:::; k :::; q.
j=l

As a result, the following Proposition has been proved.

Proposition 1 Let n, p and q be nonnegative integers (n 2: 1) and fn (z) a rational
function (7) satisfying (15-16). Then, An = 0 and the formula (3) with weights given
by (10) and as nodes the poles of fn(z), is valid in /'::;._p,q,that is, In{!} = IJ.<{J},
\/f E /'::;.-p,q.

We see that when formulas (3) valid in subspaces of /'::;.(see Corollary 1) are re
quired, so that conditions (15-16) are satisfied, then this clearly leads to the concept
of two-point Pade-type approximant ([12, 17]) (As for two-point Pade approximants
see, e.g. [23, 20].) Thus, in general, let Land L* be two formal power series of the
form

00

L = LCjZj,
j=O

00

and L* = ~ c* ·z-jL -) ,
j=O

k and n nonnegative integers such that 0 :::; k :::; n. Let Pn(z) be an arbitrary
polynomial of degree n, satisfying Pn(O) oj: O. Under these conditions a unique
polynomial Qn E TIn exists so that (see [12])
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The rational function Qn/ Pn is said to be a "two-point Pade-type approximant"
(2PTA) of order (k, n - k + 1) to the pair (L, L*). According to our purposes (see
(15) and (16» 2PTA's with k > 0 will be used on the sequel. This means that we
shall deal with 2PTA's to the pair (14) and order (p + I, q + 1) with p + q = n - 1.
Such approximant will be denoted, in short, by

(p/n)Lo,Loo = Qn(z)/ Pn(z)j 0 ~ p ~ n - I, (q = n - 1 - p)

Remark 1 A reciprocal result to Proposition 1 also holds. Indeed, let In {f} =
2.:j=l Aj,nf(xj,n) be a quadrature formula with distinct nodes and valid in tl_p,q

(p+q = n-l). If Pn(z) = TIj=l(Z - Xj,n) is the nodal polynomial, then the rational
function given by

n

'"""" A. Xj,n + Z~ "n
j=l Xj,n - Z

represents a 2PTA to (La, Leo) of order (p + 1, q + 1) with denominator Pn(z). For
further references concerning connections between rational funcions and quadrature
formulas in a rather general framework, see the paper by Njastad and Thron [24].

Remark 2 In order to give a more compact formula for such 2PTA, it will be
convenient to recall (see [5]) that a formula (3) is valid in tl_p,q with p + q = n - 1,
if and only if In{J} = IJL{Rp,q}, where Rp,q is unique function in D._p,q satisfying
the interpolation conditions Rp,g(xj,n) = f(xj,n), j = 1,2, ... , n.

On the other hand, one has also,

Proposition 2 Let us consider g( x, z) = ~ as a function in the variable x, Z being

a parameter. Let Rp,q be the L-polynomial in tl_p,q, (p + q = n - 1) interpolating

g(x, z) at distinct gives nodes Xj,n, j = 1, ... , n (Xj,n i- 0), then

Rp,q(X) = 1+ ~ (1 _ zP Pn(x»)X - Z xP Pn (Z ) ,

n

Pn(z) = IT (z - Xj,n)
j=l

(17)

Proof. Since Xj,n i- 0 and Pn(Xj,n) = 0, Rp,g(x) given by (17) clearly fullfils the
interpolation conditions. Furthermore, if we write,

we see that the expression in brackets is a polynomial in the variable x of degree
n - 1 at most. Therefore, factor x-p makes the resulting function belong to D._p,g

and the proof follows by virtue of the unici ty property for such interpolating Laurent
polynomials. 0
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(18)

Remark 3 The above result is also valid when not necessarily distinct nodes are
used. In that case, Hermite interpolation should be considered.

Thus from Proposition 2 and remarks 2-3, one has

Corollary 2 Let Pn(z) be a polynomial of degree n such that Pn(O) ::/= 0, p and q

nonnegative integers with p + q = n - 1. Then, the 2PTA with denominator Pn to

F,..(z) (or equivalently to the pair (Lo, Loo)) and order (p + 1, q + 1) is given by

Qn(z) { 2z ( zP Pn(Z)) }(p/n)(Lo,L~)= Pn(z) =1,.. 1+ z-z 1- zpPn(z) .

Furthermore, the following formula holds for the error

_ Qn(Z) _ 2Zp+l j'Jr e-ip9 Pn(ei9)F,..(z) ( ) - () '9 dJ1.({}).Pn Z Pn Z -'Jr e' - Z

It results from (18) that the numerator Qn in this approximant, equals

Qn(z) = I,.. {Pn(z) + ~ (Pn(Z) - zP Pn(Z)) }z-z zP

which yields

(19)

o ::; p ::; n - 1. (20)

(21)

Finally, the following integral expression for coefficients Aj,n will be used in Section
4.

Proposition 3 If In {J} = 2:7=1 Aj,nf(zj,n) is a quadrature formula valid in !c!._p,q,
(p + q = n - 1), then

_ p { z-p Pn(z) } . _Aj,n-zj,nI,.. (_ ')P'(.)' J-l, ... ,nz ZJ,n n zJ,n

where, as usual, Pn(z) = TIj=I(Z - Zj,n)'

Proof. Let Rp,q(z) be the interpolating L-polynomialin !c!._p,qsatisfying Rp,q(Zj,n) =
f(zj,n), j = 1, ... , n, f being a given function on T. Set

L.()- p -p Pn(z) '-
J Z - Zj,nZ ( .) I ( . )' J - 1, ... , n.Z - zJ,n Pn zJ,n

Then clearly Lj E !c!. _p,q and Lj (Zk,n) = bj k; 1 ::; j, k ::; n. Therefore,
n

Rp,q(z) = :L Lj(z)f(zj,n)
j=1

Now, since In{J} = I,..{Rp,q}, the proof follows. o

Until\ now our starting point has been a triangular table X of distinct nodes on
T such that for each fixed n a formula (3) valid in 6_p,q (p + q = n - 1) can
be constructed. In the next sections we are concerned with choices of nodes {Zj,n}
which will give rise to easy computations and which result in sequences of quadrature
formulas that are convergent for a class of functions as large as possible.
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3. Positive measures: Szego formulas

As an illustration, we consider in this section the usual case of a finite positive Borel
measure /-£. By introducing the inner product,

(22)

a monic sequence of polynomials {Pn}, (deg(Pn) = n) can be uniquely determined
so that (Pn, zm) I' = 0 for 0 :S m :S n - 1 and (Pn, Pn) I' > O. {Pn} is called the
sequence of Szego polynomials with respect to the measure /-£. Such polynomials
have been extensively studied. (See e.g. [21] for a survey and references found
there.) Furthermore, as is well known [14, 19], the zeros of the Szego polynomials
all lie inside the unit disc D. Hence, such zeros can not be used as nodes in our
quadratures. In order to overcome such drawback, W.B. Jones et al. introduced in
[21] certain polynomials with orthogonality properties w.r.t. /-£ whose zeros lie on T
and are distinct. Indeed, set p~(z) = znpn(1/z) and define Xn(z) = Pn(x)+WnP~(Z)
with Wn E T, then the following holds (see Th. 6.1 and Th. 6.2 in [21].

Proposition 4 Let {wn} be a given sequence of complex numbers satisfying Iwnl = 1
for n ~ 1 and let Xn(z) be as defined above. Then:

(i) (Xn, 1)1' =F 0, (Xn,zm)1' = 0,1:S m:S n - 1, and (Xn,zn)1' =F 0
(ii) The n zeros of Xn(z) are simple and lie on the unit circle T.

(Polynomials satisfying conditions in (i) are called para-orthogonal.)
For a fixed sequence {wn} C T, let ;I;j,n, j = 1, ... ,n, be the zeros of Xn(z),

n = 1,2, .... We now investigate, from our approach, the corresponding quadrature
formulas based on such nodes or equivalently the 2PTA's with denominator Xn(z).
Thus, set

R~(z) = Q~(z)/ Xn(z) = (p/n)Lo,L~, 0:S p:S n - 1.
Formula (19) and orthogonality properties for Xn(z) allow one to show easily that,
independently of p,

FI'(z) - R~(z) = O(zn) and F!"(z) - R~(z) = O((I/zt). (23)

From (23) and Proposition 1, we have

Corollary 3 Let /-£ be a positive measure on [-71",71"]. Let {Xj,n}j=l be the zeros of

Xn(z) as defined above and In{J} = I:j'=l Aj,nf(;I;j,n) the corresponding quadrature
formula valid in /:)._p,q, (p + q = n - 1). Then, it holds

(24)

(25)

Thus, we see from (24) that the so-called Szego formulas arise, [21]. As for the
weights Aj,n in those formulas, from (21) and taking p = 0 (recall that p can be any
integer with 0 :S p :S n - 1), it follows that

Aj,n = II' { Xn(Z~ } = II' {1_Xn_(z) _12} > O.(z - ;I;j,n)Xn(Xj,n) (z - ;I;j,n)X~(Xj,n)

The last equality in (25) is a consequence of the orthogonality properties for Xn(z).
(For more details, see [21, pp. 134-135].)
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Remark 4 For the numerator Q~(z) of the 2PTA R~(z), from (20) and Proposition
4, (i) (take into account that I",{zPx-P Xn(x)} = zP (Xn, xP) '" = 0, 1 ::; P ::; n - 1
with x = eiO), the following holds

P _ {X + z ( zP ) }
Qn(z) - I", - Xn(z) - -Xn(x) ,

X - Z xP
l::;p::;n-l.

(Compare with relation (5.6) in [21, p. 127].) Furthermore, if we take p = 0 in (20),
we can also write

Thus, by taking <Pn(z) as the corresponding orthonormal polynomials of degree n

and with leading coefficient Qn > 0, then

where Xn(z) = <Pn(z) + wn<P~(Z) and <Pn(z) orthonormal.

To end this Section, a result concerning convergence is stated.

Theorem 2 (Convergence of Szego formulas) Let {wn} be a given sequence of

complex numbers satisfying Iwnl = I, for n :::: 1. Let In{J} be the sequence of

quadratures (Szego formulas) based on the zeros of Xn(z) = Pn(z) + wnP~(z), n =
1,2, .... (The {Pn} are the monic Szego polynomials.) Then, liffin~oo In {J} = I", {J}
for any integrable function f on T w.r.t. the measure J-L.

Proof. By (11) and Th. 7.3 in [21, pp. 135-136] convergence is first guaranted for f
being analytic in D. Corollary 1 and (25) allow to extend convergence to the class
of the continuous functions on T. Finally, paralleling rather closely the arguments
given in [10, pp. 127-129], one can show that Theorem 2 is also valid for integrable
functions, because of the fact that any sequence of integration rules with positive
weights, which converges for all continuous functions, converges for all integrable
functions w.r.t. a finite Borel measure J-L on [-'/r, '/r]. 0

Remark 5 For an alternative proof of this Theorem see [5]. However, it should be
clear that boundedness (12) and relation (19) are valid only for analytic functions
f·

4. Complex measures. Choice of nodes and convergence

Let J1. be a complex measure on [-'/r, '/r], so that nothing, can be said in general,
about the location of the zeros of the corresponding Szego polynomials w.r.t. an
inner product (', .)", (22) which is not Hermitian. As a result, for a given sequence of
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para-orthogonal polynomials (in case they exist), their zeros do not necessarily lie on
T and cannot be used as nodes in a quadrature formula (3). Therefore we describe
a method by which easily computable nodes can be selected such that, convergence
of the quadrature process is assured. Let us first consider the "natural" selection of
equally distributed nodes {Xj,n} on T; that is,

n

Pn(z) = II(z - Xj,n) = zn + Wn, Iwnl = 1, n = 1,2, ... (26)
j=l

Let {p(n)}f and {q(n)}f be two arbitrary sequences of nonnegative integers with

p(n) + q(n) = n - 1 and liffin-+oo ~ = r, 0 < r < 1. We consider the sequence of
quadrature formulas (3) with nodes given by (26), so that for n ~ I, In{t} is exact
in .6.-p(n),q(n)' One has,

Theorem 3 Let In {f} and J1. be as in the preceding paragraph. Let f be an analytic

function in a domain G such that T C G and 0 tJ. G. Then, liffin-+oo In{t} = I",{t}.
Furthermore,

(27)

where'Y = max{'Yb'Y2} with 'Yl = max{lzlr : z Ern D} and 'Y2= max{lzI1-r : z E
r n E}, r being the boundary of G.

Proof. By (12) it suffices to prove that the sequence of 2PTA's of order (p(n) +
I, q(n) + 1) with denominators (26) converge locally uniformly to F",(z) outside T.
Indeed, for any z tJ. T, (19) yields,

(28)

Now, if zED then liffin-+oo IPn(z)11/n = 1. Therefore, from (28)

(29)

Next, let us assume that z E E, that is Izl > 1. Since

then clearly liffin-+oo IPn(z)11/n = Izi for any z E E, which implies

Hence, by (29), (30) and (11) the proof follows.

(30)

o

In order to study other selections of nodes {Xj,n} C T, it is helpful to recall that
for integrals (I), interpolatory quadrature formulas based on zeros of orthogonal
polynomials w.r.t. a positive measure on [a, b) have been largely considered in recent
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years (see e.g. [2]). Accordingly, for a given positive measure ex on [-7r, 7r], we let
{X~} be a sequence of para-orthogonal polynomials, that is

{4>n(z, a)} being the monic Szego polynomials w.r. t. a. Thus quadrature formulas

(3) based on the zeros of X~(z) to estimate II-'{J} could provide good results. Im
mediately, a question arises: Which measure a should be chosen?

By taking da(8) = d8/(27r) (Lebesgue measure), then 4>n(z, ex) = zn and X~(z) =
zn +wn. Thus, the case of equally distributed nodes on T is now contemplated. We
can also think of measures induced by the Poisson kernel, that is

1 1- Irl2 i9

da(8)=-1 ,~d8, z=e and rED.27r z - r (31)

(Observe that when r = 0, the Lebesgue measure is recovered.) We now find
4>o(z,a) = 4>o(z,a) = I, 4>n(z,a) = zn - rzn-1, 4>~(z,a) = 1 - 1'z, n ~ 1 and
for the para-orthogonal polynomials [26],

X;::(z) - zn - rzn-1 - wn1'z + Wn. (32)

From (32) z = 1is a zero iff r E Rand Wn = -I, and z = -1 iff Wn = (_I)n-1.
When, for simplicity, we choose Wn = I, n ~ I, all other zeros come in conjugate
pairs whenever r is real, 0 < r < 1. (Take into account that the more general case
rED can be easily reduced to this one.) In any case, for large n-values, the zeros
of (32) must be computed numerically. As for the convergence of the corresponding
sequence of quadrature formulas based on polynomials (32), one has: for any given
sequence {wn} C T and zED,

lim IX;::(z)11/n = 1.
n~<XJ

(33)

Furthermore, X~(z) = wnznT;:(I!z), where T;:(z) = 4>n(z,a) + wn4>~(Z,a). Hence,
for any z E E, it results

lim IX;::(z)11/n = Izi.
n~<XJ (34)

Thus, from (33-34), Theorem 3 remains still valid when replacing polynomials (26)
(r = 0) by polynomials (32) (r E D). Hence, from the point of view of the rate of
convergence for the sequence In {f}, measures (31) do not seem to provide relevant
contributions. Certainly the problem of choosing the most appropriate measure is
an open question and much more work could be done on this in the future. To end,
the extension of Theorem 3 to the class of continuous functions on T is studied. By
Corollary I, this extension would be a simple matter, provided that the sequence

Sn = 2:7=1 IAj,nl is bounded. As usual Aj,n are the weights in formula (3); that is,
(recall (21)),

i9z-e
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On the other hand, if Pn is para-orthogonal W.r.t. a positive measure a supported

in [-?r, ?r], the weights ).,j,n in the Szego formula (Section 3) are given by (25):

The measure a is also assumed to be normalized, i.e. J da(O) = 1. So, we have

n

(35)

Now, let us assume that da(O) = a'(O)dO, a'(O) > 0, a.e. in [-?r, ?r], dJ.£(O)= w(O)dO
and,

j?\" Iw(OW dO = K < +00.a'(O)-?\"

Then, making use of the Cauchy-Schwartz inequality, we can write (z = ei6):

(36)

with K 1 = KIJ2. Therefore, by using again the Cauchy-Schwartz inequality, we get

(37)

Remark 6 Under the above conditions, for a positive measure a, we have in general

the inequality I:j'=1[).,j,nj1J2 ::; Vii which turns out to be an equality when taking
the Lebesgue measure, i.e. da(O) = dO/2?r, because then ).,j,n = l/n, j = 1,2, ... ,n.
(See, [26] and [8].)

As is seen from (37), we cannot in general conclude that the sequence {Sn} is
bounded; thus additional assumptions on the function J are required. For a contin
uous function Jon T, one can write

J(ei6) = h(8) + ih(8), 8 E [-?r,?r] (38)

where h (8) = Re (J( ei6)) and h (8) = 1m (J( ei6)) are 2?r-periodic continuous func
tions on [-?r, ?r]. Let us introduce the modulus of continuity for the function J,

w(J,8) = max{IJ(ei') - J(eit)1 : Is - tl < 8}, -?r < s, t < ?r.
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Let C27f stand for the space of continuous 271"-periodic functions with supremum
norm. For 9 E C27f, we write

n

1'n(g) = min max Ig(8) - .2.)ak cos k8 + bk sin kB)l, ak, bk E R.a••,h 0 k=l

For our purposes, the following result will be needed,

Theorem 4 (Jackson's Theorem III, [9] p. 144)

Now, we are in a situation to prove the following:

Theorem 5 If f is a continuous function on T, then there exists En E ~-n,n such
that,

max lJ(z) - Rn(z)1 :s 2w (f, _71"_) .zET n + 1

Proof. Let En,j(8), j = 1,2 be the real trigonometric polynomials satisfying

with 1;(8), j = 1,2 given by (38). Set Rn,l(8) = ReRn and En,2(8) = ImEn, i.e.,

z = eiO (39)

Then, En E ~-n,n' Furthermore, since

it follows that,

w(fj,5):S w(f,5); j = 1,2.

Thus, by Theorem 4 and (38),

(40)

o

It follows that, if f is a continuous function on T with w(f, 5) = O(5P) with p > 1/2,
then by Theorem 5 and (37), constants A, Band C indenpendent of n exist so that
for sufficiently large n, one gets

In other words, the following Theorem has been proved.
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Theorem 6 Let f be a continuous function on T with modulus of continuity w(J, 6)
O(6P) (p> 1/2) and, for n = 1,2, ... , let {Xj,n} be the zeros of the para-orthogonal
polynomials X;:(z) w.r.t. a positive measure a supported in [-7r,7r]. Then, if the

measure J1. satisfies (36), the sequence of quadrature formulas for J1. with nodes {:Z:j,n}
converges to II'{f}.

Corollary 4 Under the conditions of Theorem 6, the sequence In {J} of quadrature
formulas (3) with equally distributed nodes on T, converges to II'{f}.

Remark 7 Note that Theorem 6 holds for any function f satisfying a Lipschitz
condition of the form:

(p> 1/2);
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