

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.jss.2012.01.045

http://hdl.handle.net/10251/37458

Elsevier

Palanca Cámara, J.; Navarro Llácer, M.; Julian Inglada, VJ.; García-Fornes, A. (2012).
Distributed goal-oriented computing. Journal of Systems and Software. 85(7):1540-1557.
doi:10.1016/j.jss.2012.01.045.

Distributed Goal-Oriented Computing

Javier Palanca, Martí Navarro, Vicente Julian, Ana García-Fornes
DSIC - Universitat Politècnica de València

Camino de Vera s/n, 46022
Valencia, SPAIN

Abstract

For current computing frameworks, the ability to dynamically use the resources
that are allocated in the network has become a key success factor. As long as the
size of the network increases, it is more difficult to find how to solve the problems
that the users are presenting. Users usually do know what they want to do, but
they don’t know how to do it. If the user knows its goals it could be easier to
help him with a different approach. In this work we present a new computing
paradigm based on goals. This paradigm is called Distributed Goal-Oriented
Computing paradigm. To implement this paradigm an execution framework for
a Goal-oriented Operating System has been designed. In this paradigm users
express their goals and the OS is in charge of helping the achievement of these
goals by means of a service-oriented approach.

1. Introduction

The amount of developed software and its complexity has currently increased
so much that it has lead to discover that traditional paradigms of software
development are not enough to create complex software. That is why there is
a constant work on new paradigms, to improve the level of abstraction needed
to develop increasingly complex applications. Among these paradigms, we can
highlight the Service-Oriented Computing paradigm and Multi-Agent Systems.

Service-Oriented Computing (SOC) is a paradigm where the fundamental
component for developing applications is the service. Using single services or
service compositions it is possible to achieve solutions to problems in a decen-
tralized manner with a high degree of adaptability. This paradigm, coupled with
the cloud-computing one, is becoming very important at the present moment
because both paradigms allow us to develop applications based on platform-
agnostic, distributed and low-cost computational elements. The use of SOC in
multi-agent systems is endorsed by the proposal of achieving the agent goals by

Email addresses: jpalanca@dsic.upv.es (Javier Palanca), mnavarro@dsic.upv.es
(Martí Navarro), vinglada@dsic.upv.es (Vicente Julian), agarcia@dsic.upv.es (Ana
García-Fornes)

Preprint submitted to Journal of Systems and Software August 15, 2011

means of the invocation and composition of a set of services that are available
within the multi-agent system.

Dickinson and Wooldridge discuss at [22] different ways to consider the rela-
tionship between multi-agent systems and service architectures. As it is summa-
rized in that work, some authors propose that there is no conceptual distinction
between agents and services: both are active building blocks in a loosely coupled
architecture [3]. Another approach considers a bi-directional integration where
agents and services interoperate by communicating one to each other [7]. Fi-
nally, a third approach considers that agents are who invoke services [20]. In
this proposal, agents mediate between services and users.

Since agents are intelligent entities and have social capabilities, they fit prop-
erly in a service-based framework[15] where the goal-oriented computing ap-
proach is used. This approach is based on finding solutions to problems through
composition and execution of various services offered by different agents.

This goal-oriented computing paradigm suggests that agents provide services
in a ubiquitous environment and users only need to express their goals. Thereby
users can reach a solution by finding a plan which achieves the selected goal with
very limited and simplified user interaction.

This functionality should be provided to agents through a specific framework
that supports service composition and their subsequent execution. Agents are
providers and consumers of services in this framework, where agents use their
social capabilities to find a way to fulfill their own goals. These capabilities
should be provided to agents through a specific architecture that supports ser-
vice composition and their subsequent execution. This framework is presented
in this work as an execution module for a Goal-oriented Operating System. Cur-
rent operating systems (OS) are based on abstractions that have not evolved too
much since their first designs. However, the evolution of software engineering
poses the possibility of addressing the OS design from other points of view. The
Distributed Goal-Oriented Computing paradigm offers new ideas for the devel-
opment of more intelligent and effective OS’s, which would benefit the end-user
due to the advantages of both technologies.

In this work the Distributed Goal-Oriented Computing paradigm is pre-
sented. It is also presented an execution module for a Goal-oriented Operating
System which gives support to this paradigm following the requirements defined
in this work. Some of this requirements comprise how to define the properties
of a goal and the parameters that define how good is a plan. Some of the
parameters that involve the creation and selection of a plan are time and trust.

This paper is structured as follows: Section 2 presents a related work about
Operating System designs and trends. Section 3 presents the model and the
architecture of the Distributed Goal-Oriented paradigm used in this work. In
Section 4 we talk about the operating system deliberation engine and the various
components that comprise this engine. Section 5 presents the execution module
that interacts with the deliberation engine to develop the presented paradigm.
This module is the Runtime Engine. Section 6 presents a series of experiments
to show the functionality of this Operating System. Finally, Section 7 presents
the conclusions of this work.

2

2. Related Work

Operating Systems research is always trying to improve security, efficiency
and reliability of Operating Systems. This is one of the great challenges of
the current OS that remains to be overcome. Several studies have focused on
improving certain OS aspects as data access or the input/output (I/O) ab-
stractions, leading to propose new abstractions in this field (file, object, socket,
...)[16, 14, 18]. However, no significant progress has been made in implementing
OS execution models.

Nowadays, any operating system has multiuser, interactive and multipro-
cessor skills due to the evolution of computers, which made indispensable that
all the OS endure it. The interesting point is the vision of its purpose, due to
the important differences that lie on an operating system’s design depending on
what it was created for. It depends on how the device is going to be used for or
its specific functionality. The following is an updated classification that includes
the different OS differentiated by their architecture or purpose. This is not an
exclusive classification, since it represents the different approaches that can be
taken during the design of an OS. Several options can be taken simultaneously.
This makes possible the creation of, for example, a multiprocessor, extensible
and general purpose operating system.

• Mainframe operating systems: These are systems oriented to large
computers where the computing and the input/output (E/S) power are
important.

• Server operating systems: they are oriented to bring services across
the net as well as to process efficiently a large amount of requests per
second.

• General purpose operating systems: they were created for mass con-
sumption. Their only goal is to bring, with a simple and friendly interface,
the most common tools for the daily use of a personal computer.

• Extensible operating systems: Extensible OS give support to dynamic
loading of new features in the system as required for its purpose. These
new modules are loaded to extend the OS according to the needs of each
moment.

• Multiprocessor operating systems: A special OS is needed to handle
and share the jobs in computers with more than one CPU.

• Parallel operating systems: These are an extension to multiprocessor
systems where the need to run different applications on multiple processors
extends to a computer network or cluster.

• Distributed operating systems: Nowadays, there is a trend towards
distribution of the different services that an OS offers among a number of
computers making use of the network.

3

• Grid operating systems: These are an extension of distributed systems
where there is access to geographically distributed resources by all network
nodes in a heterogeneous grid.

• Real Time operating systems: These are OS for some very specific
applications where not only the result of an operation is provided, but also
the precise moment is important.

• Embedded operating systems: These systems run on control devices
which are not generally though as real computers and which do not accept
user-installed systems. Typical examples are microwave ovens, washing
machines, televisions, cars, etc.

On this list of operating systems we can distinguish several groups that will
outline the current trends in OS development. Thus, operating systems are
characterized as service-oriented (such as servers), those aimed at enhancing
performance or availability of the network (such as distributed systems, grid,
parallel, etc.), those systems oriented to a particular purpose (such as real-time
or embedded ones). Embedded systems become day to day more important due
to the increasingly massive introduction of mobile devices. Finally, the ever-
present general purpose operating systems, which are still very important given
the high penetration of personal computers in homes.

One reason why no significant progress has been made in the OS execution
model abstractions, such as the process, is that these abstractions are closely
tied to current hardware. Processors are designed to work optimally with pro-
cesses. Thereby, when adding improvements to the OS execution model, as well
as defining new execution abstractions (as proposed in this paper) would be
interesting to start thinking about adapting the hardware to such abstractions.

2.1. Three Modern Operating Systems
In this section three modern Operating Systems are presented and analyzed

in order to study the new trends in OS design and implementation. The OS
analyzed are Singularity (an experimental OS where have been tested new tech-
niques like code verification, contracts or modern VM-based languages), MINIX
3 (an evolution of the classic MINIX OS where the focus is on miniaturization of
the microkernel and embedded systems), and finally XtreemOS (a distributed
OS based on organizations and built on top of Linux). Some ideas about these
three OS are presented below.

2.1.1. Singularity
Singularity[10, 9] is an experimental OS developed by Microsoft Research in

2003. Its main objective is to achieve high reliability. For this reason they
have started the development of the OS from scratch. It has been possible to
experiment with new technologies and high-level languages to build the archi-
tecture of the OS, this way they’ve achieved a very robust and reliable system.
Therefore, one of its most critical abstractions are Software-Isolated Processes

4

(SIP), which represent Singularity processes. Any code running outside the ker-
nel is running in a SIP. The SIP is a way of encapsulating software into separate
and fault tolerant components.

2.1.2. MINIX 3
MINIX is one of the most popular microkernel OS still in development.

Originally designed by Andrew S. Tanenbaum as a study Operating System for
his students. Its design was a model for the construction of other Operating
Systems, while it has continued its own evolution, reaching in 2006 the third
version of the OS: MINIX 3[8].

The main objective of the third version of MINIX is reliability, devising
for it a self-reparable system. They have followed the design philosophy of
microkernel, leaving in protected-mode the minimal functionality and placing in
user-mode all the remaining functionality. Thus, the user-mode failures are not
critical for the system and also, due to a system called Reincarnation Server,
failing processes are self-reparable and can be relaunched in the same state they
have failed.

2.1.3. XtreemOS
XtreemOS[4, 11] is a Grid Operating System. The development of this sys-

tem is based on the Linux OS and its objectives are transparency and scalability.
Transparency is offered to both the user and the application, since the great ad-
vantage of XtreemOS is still offering a Linux interface despite the availability
of certain services and resources distributed on the network. Furthermore, this
transparency allows heterogeneity among the classic applications of Linux and
those found in the Grid.

XtreemOS uses virtual organizations (VO) to encapsulate the services and
resources in the Grid. A VO administrator is responsible for its creation, man-
agement and completion, whether it is static and dynamic.

2.2. Discussion
The biggest innovation in the field of operating systems has probably been

the introduction and expansion of the network. The leap from single centralized
computing in a distributed computing in all computers across the net, which is
called cloud, has emerged a complete redesign of the operating systems to adapt
themselves to this new technology.

The functionality that is demanded today from an OS has changed from what
was being demanded lately. Factors such as cross-platform, multi-processor sup-
port or concurrency ability do not pose a technological challenge today, as we
discussed earlier, and are in the vast majority of new developments in operating
systems. Key factors that make a difference in the new OS are related to the net-
work (such as being distributed, single image, access to services, transparency
...) and those related to security and integrity of information. Two other im-
portant factors remain the efficiency of the system (as much as you increase
the speed of the hardware it is still important that the OS interferes as little

5

as possible in the response time of applications), and one factor which becomes
more important every day because the increasing complexity of applications:
reliability.

Our proposal is to focus on major current challenges of computing sci-
ence that are not solved by existing OS: the presence in the network, service-
orientation and, of course, the three major design factors inherited from the
evolution of old OS: performance, security and reliability. For all this, our
proposal is oriented to increase the level of the abstractions provided by the
operating system and their services. This makes possible to offer an OS layer
integrated to the network, and security and reliability mechanisms not available
in lower levels of the architecture of the OS.

These changes begin by replacing the paradigm that is used. Changing
the abstractions that an OS uses is linked to the paradigm used. This new
computing paradigm is presented next.

3. Distributed Goal-Oriented Computing

In our work we define the concept of Distributed Goal-Oriented Computing
as the paradigm where heterogeneous agents can express their desires by using
goals. These agents can also fulfill the goals by using automatic composition of
services that are available in the cloud. In this section the Distributed Goal-
Oriented Computing paradigm is presented by means of showing the model that
defines it and the architecture that gives support to the related model.

3.1. Goal-Oriented Execution Model
The Goal-Oriented Execution model is inspired by the classic BDI agent

model presented in [17]. In this model there are included the abstraction of
agent, knowledge base, services, goals and plans (which are the service compo-
sitions) [5]. Its purpose is to define an execution support based on a different
computation paradigm that provides the features presented earlier in this doc-
ument. The execution model operates on an operating system kernel, which
provides the other necessary functionality of a common OS, such as memory
management, security, etc.

In the Goal-Oriented Execution model, an agent A is defined through the
following tuple:

A = {KB,SS,CP,GS} (1)

where:

• KB represents the agent Knowledge Base.

• SS represents a Set of Services offered by the agent. This services are used
by the agent to perform its goals, but they can also be offered to other
agents to help to achieve their own goals.

6

• CP represents a set of Compiled Plans provided by the agent to meet its
goals.

• SG represents the Set of Goals that the agent wants to achieve.

The services that the agent can offer in the Goal-Oriented Execution model
are OWL-S services. An OWL-S service is defined by the tuple:

Si = {SP,GR,PM} (2)

where SP is the Service Profile, GR the Grounding and PM the Process
Model of the service. The service profile defines what the service does. The
grounding defines how to interact with the service and the process model defines
how the service is used.

Moreover, OWL-S service process model can be composite processes and
atomic processes. A composite process is a set of atomic processes (which have
no internal structure and run in a single step) with an internal structure built
up by composite and atomic processes and a few control constructs (sequence,
if-then-else, choice, etc).

This kind of OWL-S service is a well-defined standard which provides this
model enough power to construct all the functionality provided by an agent.
The services that make up a plan are the real executable part of a plan. A
service Si is also composed of a pre-condition P , a post-condition Q and a set of
inputs and outputs. The pre-condition P is a prerequisite for the execution of
a service. The post-condition Q is the impact that will drive the execution of
the service S and it represents the Goal entity that the agent wants to achieve.
Both P and Q are defined in the functional aspect of the service profile.

3.2. Goal-Oriented Execution Architecture
Since a composition of OWL-S services is a composition of services, which

include both atomic and composite processes and control structs, we define a
Plan as a process model composed by one or more composite process models
(again, including composite services, atomic services and control structs). A
Plan defines the way to achieve some results or post-conditions by joining dif-
ferent OWL-S services which can be connected. Composite services or even
atomic services can be seen as very simple plans, but we also define a plan as
the result of joining different composite services in order to achieve a goal.

To give support to the model presented, a Goal-Oriented Execution architec-
ture has been developed. The architecture is composed by the next components
(Figure 1):

• Runtime Engine: The Runtime Engine takes the plans provided by their
planners and manages their execution by transferring the service execution
to the OS kernel. If necessary, the Runtime Engine invokes distributed
services provided by agents that are located in other hosts.

7

Deliberation Engine On-line PlannerCommitment Manager

Runtime
Engine

Knowledge
Base

Set of
Goals

Compiled
Plans

Set of
Services

Agent

Knowledge
Base

Set of
Goals

Compiled
Plans

Set of
Services

Agent

Knowledge
Base

Set of
Goals

Compiled
Plans

Set of
Services

Agent

OS
Knowledge

Base
OS GoalsOS Plan

Library
OS

Services

Comm Channel

make commitmentinv
oke

 se
rvi

ce

O
S

Ke
rn

el

Figure 1: Agent and execution module components

• Deliberation Engine: It is responsible for deciding how and in which
order plans are executed. This engine has the ability of negotiating with
the service provider agents that are offering the current plan. This engine
is permanently running in background evaluating the goals that the agents
want to fulfill and selecting them for its completion. This component
interacts concurrently with the Runtime Engine, and is composed by the
Commitment Manager and the On-line Planner.

– Commitment Manager: Service provider agents negotiate their
availability to execute the service with the commitment manager and,
if so, executing it within a time frame. To calculate this prediction
the agent needs to take into account some points like: (i) the cur-
rent workload, (ii) the availability of the service at the time of the
request and (iii) the availability of the needed hardware and software
resources to be able to run. For this work the agent needs the OS
assistance. The OS can help the agent to predict if he is going to
be able to satisfy the request in the defined temporal bounds, and
if so to establish a commitment with the Deliberation Engine. This
functionality is offered by the Commitment Manager.

– On-line Planner: it is able to repair or refine running plans. This

8

Goal is
possible

Goal is
consistent
with some
other goal

Select Plan

Run Plan

Check entailed
goals and

postconditions

Goal can't
be pursued

Run
Planner

Repair
Plan

[Goal not applicable]

[Goal inconsistent]

[Plan not found]

[Goal]

[Goal]

[Plan]

[Goal]

[Goal succeeds]

[Services
not available]

[Plan not available]

[Plan]

On-line Planner

Runtime Engine

Deliberation Engine

C
o

m
m

it
m

e
n

t
M

a
n

a
g

e
r

Query
Services

Availability

[Plan fails]

[Services
available]

Establish
Temporal

Commitment

[Temporal
Commitment]

Figure 2: Goal-oriented executive model

9

planner is executed concurrently inside the Deliberation Engine and
its task is to help the agents to reach a goal when the agent has no pre-
compiled plans that guide him to the goal completion by composing
or repairing plans. The On-line Planner uses a TB-CBP (Temporal
Bounded Case Based Planner) to generate the plans at runtime. The
time required to execute the TB-CBP is known and, for this reason,
the deliberative process is temporal controlled. Moreover, the TB-
CBP uses cases that have been executed in the past in order to take a
decision about if the calculated plan can be fulfilled in the established
temporal bounds.

– OS Goals set: The OS has its own goals to perform the correspond-
ing tasks of an operating system. This set of goals includes all the
maintenance tasks and non-critical functionality that the OS must
achieve to ensure the proper functioning of the computer.

– OS Knowledge Base: This is the knowledge that the OS has. The
operating system uses this knowledge base to perform their goals by
means of the services that it can invoke.

– OS Services set: This struct stores the set of basic services pro-
vided by the OS. This set of services is used by the OS to provide
the basic low-level functionality to the system agents. It includes all
the necessary stuff to manage the system and to access to restricted
features only available through the OS for security and stability rea-
sons. Some of these features are the communication of system drivers
with the hardware, as well as other features that allow the correct in-
teraction among agents, service providers and the operating system.

– OS Plan Library: By means of this library the agent has a set of
available pre-compiled plans. This component is created during the
OS design phase to provide pre-compiled plans for critical goals that
cannot wait for a different composition or cannot vary their execution
flow due to security and efficiency reasons.

Under the Distributed Goal-Oriented Computing paradigm the goals that
the agents have are sent to the execution module for their achieve. Then, the
deliberative engine chooses the appropriate plan to meet each goal. Note that
the agent model preserves its desirable features like autonomy and pro-activity
since the agent is who activates its own goals when he decides he wants to
achieve them. The deliberative engine provides the needed resources to help
to achieve the goals. Plans may be provided by the agent itself or can be
compounded on-line. These plans are a sequence of services offered by the
agents both locally and remotely. It is also an agent choice to share its pre-
compiled plans with other agents. The basic running elements are the services
that make the plans. Plans are provided to the module in two different ways:
the off-line generation of the plan or the on-line generation of the plan by the
On-Line Planner module. Once the plan that meets the active goal is selected,

10

the Runtime Engine activates the services that comprise the selected plan. In
Figure 2 the deliberation and execution processes are shown.

Once the Goal-Oriented Execution model and architecture have been pre-
sented, in next section we are going to show the deliberation process that is
used to fulfill the agent’s goals.

4. Deliberation Engine

The Deliberation Engine is the brain of the execution module. This compo-
nent is in charge of analyzing the current active goals and helping their achieve-
ment. The Deliberation Engine is the root node which manages all the main flow
of the execution process. It communicates to the Runtime Engine to run the
services, to the Commitment Manager module to manage the temporal com-
mitments of the agents and to the On-line Planner module to compose new
plans.

The Deliberation Engine is responsible for deciding what actions should be
performed to achieve a goal. This component is in charge of analyzing the
current active goals and helping their achievement. The Deliberation Engine is
the root node which manages all the main flow of the execution process. To run
the services, the Deliberation Engine communicates to the Runtime Engine to
indicate the services composition to execute.

Since a goal is activated by an agent until it is achieved, the Deliberation
Engine goes through different steps which involve the different components of
the execution module. These steps are:

1. Checking if it is possible to activate the goal.
2. Checking if the goal is consistent and there are no conflicts.
3. Asking the On-Line Planner for a set of plans that achieve the goal.
4. Querying the Commitment Manager for a temporal commitment for each

service of the plan.
5. If there is no available commitment, asking the On-Line Planner for a new

plan or setting the goal as unreachable.
6. Selecting the best plan from the set of plans using the temporal commit-

ments and the historical quality parameter.
7. Sending plan to the Runtime Engine to be executed.
8. If the plan fails, asking the On-Line Planner for a new plan or set the goal

as unreachable.
9. When the plan ends, updating the case-base with the results of the com-

mitments.
10. Checking entailed goals and postconditions and setting the goal as reached.

There are two modules that facilitate the deliberation engine to make de-
cisions when it determines the service composition. They are the On-line
Planner and the Commitment Manager.

11

Table 1: Example of Case-Base of the TB-CBP

Postcondition Precondition Services Quality Time
B A {S1} 1 4t
C A {S1,S3} 0.85 10t
C B {S3} 0.85 6t
D C {S6} 0.9 7t
E B {S7,S10,S11} 0.76 11t
E D {S8} 0.99 3t
E D {S4,S12} 0.98 7t
F C {S5,S9} 0.81 7t
F E {S13,S14} 0.98 10t
...

4.1. On-line Planner
The responsible entity for providing plans that fulfill the agents’ goals in the

Deliberation Engine is the On-Line Planner. This planner is built on a CBP
(Case-Based Planning) [21]. This CBP has been modified for giving a temporal
bounded response in order to have a temporarily predictable execution. This
new model, called Temporal Bounded CBP, is composed by the same phases as
the classic CBP but these phases have been treated to bound their execution
time. Thus, the execution time of the service composition process is known
and this time is taken into account when the On-line Planner must build a
plan within a maximum time. A general description of the functioning of the
TB-CBP on-line planner is shown below.

First, the case structure used in the base-case offered by the TB-CBP is
defined as:

< Postcondition, Precondition, {Service}, Quality, ExecutionT ime >

where:

• Postcondition is the goal wanted to be achieved.

• Precondition are the initial conditions that must be given to start the
execution of necessary services to fulfill the goal.

• Service is the list of services that must be executed from the state Precondition
to reach the state Postcondition.

• Quality indicates the confidence that the system has about the correct
execution of the services.

• ExecutionT ime is the time required for the execution of the services. An
example of the used case-base is presented in Table 1.

To complete the search of a service composition, the agent will inform about
its goal (Postcondition) and its believes (Precondition). With this information,

12

the On-line Planner can fulfill a service composition. To do it, the planner
extracts cases from the case-base and composes a path between the goal to be
achieved until it reaches any of the believes that the agent knows.

Let’s imagine the following situation using the information in Table 1. An
agent wants to fulfill the goal F , and its believes are {A,B}. TheOn-line Planner
will extract from the case-base all cases that have as Postcondition the goal F .
For every extracted case the algorithm will come to search in the case-base,
but now the Postcondition are the pre-conditions of all the extracted cases
(Precondition parameter). This process will follow until it extracts a case whose
Precondition is either defined in the agent’s believes (Precondition = A ∨B).
In Figure 3 we can see the search progress from F to A or B. In this case, several
plans are possible. In response to the needs of both the agent or the Operating
System just one plan will be chosen. If the agent wants to get a result with the
best quality then he picks any of the plans marked as (3). It is possible that the
agent wants to get a plan that gets the goal as soon as possible. In this case he
will choose the plan marked as (1). If the agent wants a plan that meets within
a specified temporal bound, i.e. before 22 time units, with the highest quality,
in this case he will choose the option (2). As shown, the execution module has
the freedom to choose a plan taking into account the agent necessities. This
makes the system more adaptable to the agent needs.

F C

E

D

D
B

A

{S5,S9}, 0.81, 7t

{S1,S3,S5,S9}, 0.684, 17 t

{S13,S14}, 0.98, 10 t

{S7,S10,S11,S13,S14}, 0.74, 21 t

{S4,S12,S13,S14}, 0.96, 17 t

{S8,S13,S14}, 0.91, 13 t

{S4,S12,S13,S14}, 0,86, 24 t {S6,S8,S13,S4}, 0.90, 20 t

{S1,S3,S6,S8,S13,S4}, 0.765, 30 t
{S1,S3,S4,S12,S13,S14}, 0.731, 34 t

{S3,S5,S9}, 0.684, 13 t
{S3,S6,S8,S13,S4}, 0.765, 24 t

{S3,S4,S12,S13,S14}, 0.731, 30 t

(1)
(3)

(2)

(3)

Figure 3: Search sequence in the case-base

Once the plan is calculated by the On-line Planner, the system must ver-
ify that all the services associated to the plan are available and how much is
the workload of the agents that must execute the services. This function is
performed by the Commitment Manager which is seen below.

4.2. Commitment Manager
The Commitment Manager is based in a SAES framework [6] which allows

us to compose services and to guarantee their correct execution and finalization
on time. The main difference with the SAES approach is that by introducing

13

the service framework as part of the operating system, it has more information
to make better temporal commitments and predictions.

It is possible to identify two main functions in the Commitment Manager.
First, it must check if the set of services offered as a plan by the On-Line Planner
will be available to fulfill the request and then it must establish a commitment
relationship with the agents that provide the selected services (see Figure 4).

Inform(Plan)

CFP (service)

Refuse

Propose

Commitment
Manager

m

n

m - n

[service not available]
Request(replan)

n - l Refuse_proposal

Acept_Proposal

 l

On-Line Planner Agent's

Inform (commitment)

failure

Figure 4: Services Availability Query interaction protocol

To fulfill the first function, the Commitment Manager sends a call for propos-
als to all agents that can offer the services involved in the service composition.
Each agent analyses when he can finish the service, and then each agent returns
a proposal to the Commitment Manager. The proposal consists of a tuple:

< Tstart, Tduration, PS >

where:

• Tstart indicates the moment when the service can start its execution.

• Tduration indicates the necessary time to complete the service.

• PS is the probability of a successful execution.

During the execution of the On-line Planner the system obtains a quality
measure which is used to estimate the best plan. In this case, the Commitment
Manager calculates a probability that indicates if the agent can complete the
service in the time that is indicated taking the workload into account. This

14

information is more accurate than the quality obtained in the recovery plan
because it takes into account the current situation of the agent that offers the
service and the real workload of the system. with all this information, a pre-
commitment between the agent and the Commitment Manager is established.

When all agents have answered to the Commitment Manager, the CM must
calculate the success probability associated to the whole service composition.
To do that, the Commitment Manager uses the success probability sent to all
agents. This success probability is weighted with the information of previous
executions of similar services by these agents and that the Commitment Man-
ager has stored. The service composition success probability is calculated as it
follows:

PScomposition =
N∏
i=0

PSi∗ωi

where ωi ∈ [0, 1] is the weight associated to the service i. This weight is re-
lated to the previously fulfilled commitments; an agent who has many unfulfilled
commitments will have a low weight.

Once the Commitment Manager calculates the service composition success
probability, it sends the composed service and its probability PScomposition to
the Deliberation Engine. The Deliberation Engine analyses if it is a suitable
composition. If it agrees with the service composition, it communicates to
the Runtime Engine that the service executions can start. When this is the
case, the pre-commitments established with the agents are confirmed by the
Commitment Manager. If the Deliberation Engine does not agree with the
service composition, the Commitment Manager breaks the pre-commitments,
freeing the slack reserved by the agents.

The Commitment Manager is also in charge of ensuring that the acquired
commitments are fulfilled. In case that a commitment cannot be fulfilled, the
Commitment Manager penalizes the agent which provides the service. This
penalty is captured through the weights applied when the Commitment Manager
updates the service composition success probability.

5. Runtime Engine

The Runtime Engine is the component in charge of managing the entities
that are running in the system. This includes driving the execution of the
process model of the active plans and scheduling the services that are invoked
by a plan, both the local and the remote invocations.

The execution of an atomic service is much like a traditional operating sys-
tem’s process abstraction. These services are scheduled and executed by the
Runtime Engine with a proper context. These services have also a life cycle
inherited from traditional processes[19]. The states of the service life cycle are:
(i) ready to run, (ii) running and (iii) sleeping.

As stated before, the Runtime Engine also manages the life cycle of plans.
The execution of plans is made in collaboration with the Deliberation Engine’s

15

foreach Plan in selectedPlans() do0.1

if checkPreCondition(Plan) == True then0.2

ServiceQueue = emptyQueue()0.3

n = selectFirstNode(Plan)0.4

append(ServiceQueue, n)0.5

while hasNodes(ServiceQueue) do0.6

n = getNode(ServiceQueue)0.7

if checkPreCondition(n) == True then0.8

invoke(n)0.9

if checkPostCondition(n)== True then0.10

foreach Node in neighbors(n) do0.11

append(ServiceQueue,Node)0.12

end0.13

end0.14

end0.15

remove(ServiceQueue, n)0.16

end0.17

if checkPostCondition(Plan) == True then0.18

return True0.19

end0.20

else0.21

replanning()0.22

end0.23

end0.24

end0.25

Algorithm 1: The Runtime Engine algorithm

Commitment Manager. While the Commitment Manager is in charge of ensur-
ing that the temporal commitments are achieved, the Runtime Engine checks
that every step of the plan is properly executed. This includes to ensure that,
before executing a service, all its preconditions are true and that, after exe-
cuting the service, all their postconditions have been achieved. This part is
carried out by following the OWL process model (PM) at each step, following
the logical flow that determines its preconditions and postconditions. The task
of visiting the process model of each active plan and check the preconditions
and postconditions of each node belongs exclusively to the Runtime Engine.

Algorithm 1 shows the steps followed by the Runtime Engine:

1. The Runtime Engine (RE) extracts a plan from the list of selected plans
created by the Deliberation Engine.

2. The first action is to check that the plan’s precondition is valid and can
be executed.

3. At this moment the plan is selected as a running plan. The RE selects
the first node of the plan from its service graph and invokes the service by

16

appending it to the scheduler’s ready queue.
4. Before executing a service the Runtime Engine previously checks its pre-

condition and, after the service execution is finished, it checks the service
postcondition. If the postcondition is valid the execution of the plan can
continue.

5. Once the service finishes its execution, the RE extracts from the process
model all its neighbors and checks their preconditions. These neighbors
are all the nodes that are directly accessible from the given node through
a control construct.

6. This process continues until the service process model reaches a final node
or their services fail and a plan reparation is needed (using the On-line
Planner).

7. When the plan finishes, the Runtime Engine checks its postcondition. If
it is valid, the goal that has motivated the execution of the plan is marked
as pursued. Otherwise, a new plan is requested to the On-line Planner.

The Agent is the main entity that motivates this execution model. Agents
can flow through different states, depending on their current role:

• Applicant: The agent has goals to pursue and does not offer any service.

• Provider: The agent offers services to other agents but has no current
goal.

• Provider-Applicant: The agent has goals to pursue and also provides
some services for both its own use and for other applicant agents use.

• Inert: The agent has neither current goals nor provided services. This is
the case when the agent is ready to leave the system.

Once the Runtime Engine executes a plan it notifies the On-Line Planner
in order to perform the retain step, this is, to store the new case (whether it is
successful or not) to keep the case-base updated.

5.1. Execution trace
This section will expose a sample trace where the different steps that this

execution module follows to achieve a goal are shown. For simplicity we have
prepared a simple scenario with a few elements and a single goal to achieve. To
show the flexibility of the system we will simulate an error in the trace, showing
the fault tolerance of the module.

In this example there is an agent that acts as an interface of the user (the
client agent) and a set of services distributed around the different nodes of the
network. Each of these services is provided by an agent and is hosted in a node
which is connected to the node where the client agent is hosted. The prepared
scenario is designed to perform a very common task: saving a song in an iPod.
In this scenario the client agent just expresses its goal (Song in Ipod), and
has some previous knowledge in its knowledge base: the audio he wants to save

17

(PCM Audio) and some metadata (title, author, genre,...) about the song (Song
Metadata). These knowledge items will act as the preconditions of the plan that
is going to be executed.

SEQUENCE

Time and
Frequency
Analysis

I: PCM Audio
O: Frequency Domain Transform

PARARELL

Quantization
Entropy

Encoding Packaging

I: Frequency Domain Transform
I: Psychoacoustic Data
O: Quantized Data

Psychoacoustic
Analysis

I: PCM Audio
O: Psychoacostic Data

I: Quantized Data
O: Encoded Audio

I: Encoded Audio
I: Song Metadata
O: MP3 File

USB
Write

Add Song
to iPod

I: MP3 File
O: Byte Stream

I: Byte Stream
O: Data Sent

Validate
Song in iPod

I: Data Sent
I: Song Metadata
O: Song In iPod

SEQUENCE

PLAN: Save Song to iPod
Inputs: PCM Audio, Song Metadata

Outputs: Song in iPod

CASE: Encode MP3

Figure 5: Process model of plan Save Song to iPod

When the client agent activates the goal the Deliberation Engine looks for a
plan to fulfill the goal. Since there is not a plan that is able to perform the goal
expressed by the client agent, the On-line planner generates a plan that is able
to perform the desired goal starting from the known KB items as preconditions.
This plan is shown in Figure 5. The iPod only works with MP3 encoded audio
(and the precondition expressed by the agent is encoded in raw format), so the
generated plan will include the needed services to encode the raw audio to the
MP3 format. The services that encode audio were previously executed in the
system, that is why there is a Case included in the generated plan in Figure 5.
The dashed box represents a service provided by the operating system of the
client agent. For this reason the service is hosted in the same node than the
client agent.

As an example, we’ll follow an execution trace using this plan:

1. Initially, the Deliberation Engine would select a goal of an agent. For
simplicity there is only one goal, which is Song in iPod. Since there is
only one goal, the Deliberation Engine selects it.

2. The On-line Planner generates a plan to fulfill the goal (Figure 5), as
stated before.

3. As long as the plan meets the precondition (the agent knows PCM Audio
and Song Metadata), the deliberative engine will select the plan for its
execution since its postcondition is compatible with the desired goal (it
generates Song in iPod).

4. The first services to be executed are Psychoacoustic Analysis and Time
and Frecuency Analysis. Before running them, the Commitment Man-
ager establishes temporal commitments with their hosts.

18

5. The Runtime Engine executes the services Time and Frecuency Analysis
and Psychoacoustic Analysis, achieving as effects the values Frequency
Domain Transform and Psychoacoustic Data. The Commitment Man-
ager checks that the temporal commitments were accomplished, rewards
the services and performs the retain stage in the Case-Base of the On-line
Planner.

6. Next service is Quantization. After the establishment of the temporal
commitments, the Runtime Engine executes the service Quantization,
achieving as effect the value Quantized Data. Once again the Commit-
ment Manager rewards the service and retains the case.

7. To show the advantages of running this model, we introduce an error at
this point. Let us assume that the service Entropy Encoding is unavail-
able (the agent that provides the service is not connected, the service is
saturated, or maybe the output is not a real MP3 file). This situation
generates that the Commitment Manager punishes the case representing
the service.

8. At this time, the Runtime Engine would ask the On-line Planner a repair
of the running plan to continue the execution of this agent.

9. The planner would return the plan shown in Figure 6. This repaired plan
continues where the other plan has failed its execution and replaces the
failed service with other structure thanks to other services found in the dis-
tributed system. The new plan has a very similar structure but replaces
the encoding service with a choice for other three time domain encod-
ing services (PCM Encoding, Differential PCM Encoding and Adaptive
PCM Encoding).

10. At this moment the Commitment Manager needs to establish a commit-
ment with the service which ensures a lower execution time and offers a
better trust value. To do this, the CM asks the case-base for old trust
stored values and asks the providers hosts about their temporal commit-
ments. With this information the Runtime Engine selects for execution
the Adaptive PCM Encoding service.

11. Finally the execution of the plan is ongoing through the services Packaging,
Add Song to iPod, USB Write and Validate Song in iPod. At each
step a temporal commitment is established and the service executed is
punished or rewarded depending on the case.

12. When the execution of the service Validate Song in iPod has finished,
the client agent has in its knowledge base the fact Song in iPod, so the
goal has been achieved and it can be removed from the agent set of goals.

A remarkable aspect of the client agent is that despite the selected plan has
failed, it has been able to achieve its goal on a completely transparent way to
the agent through the ability of replanning of the execution module. With this
module the success degree of goal achievement is higher than on classic BDI
systems. This module has also the ability of providing system services for the
plan composition, allowing the OS to work with this paradigm, as is the case of
the USB Write service.

19

SEQUENCE

Time and
Frequency
Analysis

I: PCM Audio
O: Frequency Domain Transform

PARARELL

Quantization

Entropy
Encoding

Packaging

I: Frequency Domain Transform
I: Psychoacoustic Data
O: Quantized Data

Psychoacoustic
Analysis

Pulse Code
Modulation
Encoding

CHOICE

Differential PCM
Encoding

Adaptive PCM
Encoding

I: PCM Audio
O: Psychoacostic Data

I: Quantized Data
O: Encoded Audio

I: Encoded Audio
I: Song Metadata
O: MP3 File

I: Quantized Data
O: Encoded Audio

I: Quantized Data
O: Encoded Audio

I: Quantized Data
O: Encoded Audio

USB
Write

Add Song
to iPod

I: MP3 File
O: Byte Stream

I: Byte Stream
O: Data Sent

Validate
Song in iPod

I: Data Sent
I: Song Metadata
O: Song In iPod

SEQUENCE

REPAIRED PLAN: Save Song to iPod
Inputs: PCM Audio, Song Metadata

Outputs: Song in iPod

Figure 6: Repaired plan Save Song to iPod

6. Tests and Results

In order to evaluate the architecture presented here for the development of
goal-oriented operating systems, this work presents a set of tests and results
that validate the proposal. A discrete simulator has been developed to test all
the features and advantages provided by an Operating System implementing
the Distributed Goal-Oriented paradigm. In this section we present how the
simulator works and how the different tests that have been done by analyzing
what the different components of the proposal (runtime engine and deliberation
engine components: commitment manager and on-line planner) contribute to
the system.

6.1. The simulator
The operating system simulator allows us to test the provided functional-

ity proposed by this work, but avoiding the complexity of developing the full
operating system low-level abstractions. This simulator implements the main
components of the goal-oriented operating system execution module that are
needed for our purposes. This is mainly the execution module, which comprises
the runtime engine and the deliberation engine (including the on-line planner
and the commitment manager). The runtime engine is in charge of executing
the services that are invoked by any running plan. The deliberation engine
selects the goals that are activated and finds a plan which performs the goal
within a temporal commitment.

20

The simulator also supports the representation of a distributed environment,
where there are several goal-oriented operating systems which offer their services
in a shared network using a common publish-subscribe protocol (like ZeroConf[2]
or XMPP[1]). Thanks to this protocol, when an agent registers or unregisters
a new service every OS in the same network receives a notification of this event
and updates its case-base.

The environment also simulates a global time service which synchronizes the
clock in every OS in the network. If a new OS is added to the environment it
gets automatically synchronized with the rest of the system. This global time
service is very useful for establishing proper temporal commitments and uses
known solutions for clock synchronization in distributed real-time systems[12].

Every operating system in the simulation environment has also a commu-
nication module that is in charge of managing communications between the
nodes of the network. A node is a representation of a goal-oriented operating
system. This message passing system simulates a time-bounded environment
which allows us for predictability of end to end operations.

Since this is an ad-hoc simulator developed for our OS testing purposes,
it allows us to change some parameters in order to explore some interesting
behaviors. We can parameterize architectural issues, such as the number of
nodes in the network, the number of agents per node, or the number of services
or goals that an agent has. The simulator has a scripting system that loads
a configuration for the desired environment. The script can define the initial
configuration of the environment (number of nodes, agents, distribution of the
services by agent, goals, preconditions, etc), setting up the scenario that is
desired for the simulation. It can also schedule different events that will be
processed during the simulation in order to change the environment at runtime.

To compare the different behaviors, a set of internal parameters can be
changed. The probability that a service fails during its execution is parame-
terizable in the simulator. This way we can check how the operating system
behaves in a fault tolerant environment. We can also modify the precision of
calculating a temporal commitment in the simulator. Changing the prediction
algorithm or the quality of the algorithm itself we can compare different nodes
having responses that are not equal for a same request. This is a good way of
detecting how the system adapts itself to a changing environment. This kind of
tests will be presented in next sections.

Below all the tests have been conducted using the same methodology and
with at least 20 repetitions to extract a statistically significant mean and stan-
dard deviation. This test of significance ensures with great confidence that the
null hypothesis was avoided.

Next, the set of tests performed in this work are presented. They have been
divided into two main test suites: Deliberation Engine Tests, where its main
components have been tested (Commitment Manager and On-line Planner),
and Performance Tests, where some advantages of this distributed system are
presented.

21

6.2. Deliberation engine Tests
The deliberation engine is the component that introduces a reasoning process

in the proposed operating system. It is in charge of selecting the best available
services that can fulfill the activated goals and with the best possible conditions.
The deliberation engine components that perform this functionality are the On-
line Planner and the Commitment Manager. In this work we have developed a
set of tests in order to validate their expected functionality.

6.2.1. Commitment Manager
The main aim of the Commitment Manager (CM) is to establish temporal

commitments between a service provider and a client. When the client invokes
a service he needs to communicate to the service’s Commitment Manager to
get a proper time prediction of when the service response is going to be ready.
This prediction is not an easy estimation, since there are lots of factors than
can influence in the results (mainly, the workload of the system). The CM must
work side by side with the Runtime Engine, which schedules all the running
services in the resource (the microprocessor). The scheduling algorithm is very
important for the prediction task, since it has to be able to accomplish the
established temporal commitments. At the same time, it should get a good
performance and a high degree of interactivity in the system.

The way to do this is through resource reservation. The Runtime Engine
reserves at least the 50% of the current remaining processor using first-come
priorities. This scheduling algorithm ensures that each service will have a min-
imum of resources allocated for its execution. This means that if a service has
a 50% of processor and another service has a 25% of processor, since the first
service has twice the allocated resources, it will work twice faster. This is a
pessimistic case because the slack time is shared by all the running services.

This algorithm ensures that a running service has a percentage of processor
assigned, so it is easy for the Commitment Manager to calculate the response
time and establish a temporal commitment with the client. Since the priority
is assigned using first-come preferences, and it always assigns the half of the
remaining processor time, the Commitment Manager can calculate the response
time (<) using the equation showed in 3.

<P = 2P ∗WCETP (3)

Where, P is the priority of the service and WCETP is the worst-case execu-
tion time of the service, which is provided by the service provider agent. This
is a pessimistic approach since it ignores the slack time that is gained when the
processor is idle. Improvements to this algorithm are being prepared and will be
proposed in future work, including priority promotions when a service finishes
and estimation of time gained when there are priority promotions.

Below are the tests that check the proper functionality of the Commitment
Manager. These tests show how the system tries to select always the best
services that are available to perform the agents goals.

22

Test 1: Trust evolution for different deadline predictions
In this experiment we are going to show how the trust that a client node has

in different provider nodes evolves as time passes, focusing their requests on the
more reliable nodes. The trust will be changing due that not all the nodes in
the distributed system have the same accuracy when calculating the deadline
predictions.

The first experiment has being designed using the following scenario at the
initial state:

• There are 3 agents registered in the system: 1 client agent and 2 provider
agents, which offer the same service with the same precondition P and
postcondition Q.

• The network is composed by 3 nodes: Each agent is hosted in one of the
three nodes in the same network.

• The client agent has the necessary knowledge to run the service (P) and
activates the goal G which is the same as the two services postconditions
(this is, G=Q).

• The nodes that host the service have different accuracies to calculate the
response time:

– First node has an accuracy of 90% calculating the deadline prediction
of the response time (called GoodProviderHost).

– Second node has an accuracy of 20% calculating the deadline predic-
tion of the response time (called BadProviderHost).

Each experiment makes a request to any of the available services every time
step. This is, the client agent activates its goal and selects a plan to perform
its goal. After the execution of the service, the agent resets its knowledge base
and re-activates the goal once more. As time passes, the case-base acquires
more experience about the nodes confidence. Figure 7 shows the results of
running this test. The X axis represents time (in simulator steps) and the Y
axis represents the cumulative sum of services provided by each node, which is
a good representation of the trust that the client has in each node. At the start
time, the trust in each node is equal. This is because there are no previous
known experiences and the case-base of the client is empty, so the client has the
same trust on each provider. As time passes, the number of invocations to each
node varies due to the accuracy of the BadProviderHost is not very good and
he fails continuously when calculating a proper response time. This makes his
trust value going down and, therefore, most of the invocations are done to the
GoodProviderHost, as is presented in the related figure.

Note that the Deliberation Engine is not only using the trust value (extracted
from the case-base) to determine which service provider to choose. The Delib-
eration Engine gives a chance to other providers by using an on-line learning
algorithm[13] which decides to explore or exploit its solutions. This is done by

23

Figure 7: Test 1: Trust evolution for different deadline predictions

adjusting a threshold value during the execution of the operating system. That
is why the BadProviderHost provided services are not stuck. They grow more
slowly than the GoodProviderHost ones, but sometimes have a new chance.

Test 2: Trust evolution in a bigger scenario
This experiment shows a similar approach to the previous study (Test 1).

The main difference of this test is the size of the agents and nodes sets, which is
bigger than in Test 1. This test shows how the trust in the nodes with a good
deadline accuracy grows while the system learns about the environment. The
scenario is designed with the following elements:

• There are 51 agents registered: 1 client agent and 50 provider agents which
provide the same service.

• There are 51 nodes in the network: Each agent is distributed in one node.
Only one agent per node.

• The client activates the goal that invokes the service offered by the providers.

• The deadline accuracy of the nodes is distributed equally in four groups:
5%, 33%, 67% and 100%.

24

Figure 8: Test 2: Trust evolution in a bigger scenario

The execution of this experiment is equal to the execution of Test 1. The
client agent resets its knowledge base and re-activates the goal every time step.
Figure 8 shows the results of the experiment. The X axis represents once more
the time. The Y axis represents if a service was requested by the client at each
time instant. Each dot represents a request to the node that is represented
in the Y axis. So, the density of the dot cloud shows how popular is a group
of nodes. When the density is large enough and the dots are very close, the
representation becomes a straight line.

The middle line is just a mark to divide the dot cloud in the dense area
(top-left) and the sparse area (bottom-right). Both areas show how the vast
majority of the service requests are in the dense zone. This is again because
the OS case-base learns, as time passes, which hosts are more reliable. These
results demonstrate that the behavior of the system is what was expected. As
we increase the time, the number of requests to the less confident nodes gets
decreased.

Test 3: Adaptive Operating System
This experiment shows how the Operating System is able to adapt itself to

changes in the environment. The adaptation of the system is very important,
since it allows the system to have a dynamic behavior which is able to re-

25

configure itself to take full advantage of current circumstances. For this test we
have designed an scenario formed by the following elements:

• There are 5 agents registered: one client agent and four provider agents,
offering the same service.

• There are 5 nodes in the network: each agent is distributed in a different
node.

• The client activates the goal that invokes the service offered by the providers.

• The accuracy of the nodes at the initial step is distributed as follows:

– Host1: 100%

– Host2: 75%

– Host3: 50%

– Host4: 25%

In this experiment we are going to change the accuracy of some of the nodes
to show how the system adapts itself on changing environments. We are going
to activate 3 events to change the environment. Specifically, the following events
have been scheduled:

• Step 50000: Host 1 accuracy decreases to 20%

• Step 300000: Host 3 accuracy increases to 80%

• Step 600000: Host 4 increases to 90% and Host 2 decreases to 20%

Figure 9 shows how the trust of the nodes (Y axis) changes when the en-
vironment undergoes these major changes (marked with the vertical bounding
boxes). This trust value represents the trust that the client node has in the other
nodes. Adaptation takes time to occur due to the learning algorithm that the
deliberation engine is applying. In step 50000 we can see how the Host 1 stops
increasing its trust due to the first event. Note that this change takes some time
to occur. When the second event occurs (step 300000), the trust value of Host 3
begins to increase (its deadline prediction is improved by 80%). Meanwhile the
Host 1 trust continues decreasing and the other two hosts maintain their trust
value. This third event changes again the system behavior, giving more trust to
the Host 4, which has increased its accuracy to 90%. Its trust is growing quickly
since its new accuracy is quite good. Parallel to this, Host 2 begins decreasing
its trust value.

These results show how the operating system adapts itself when unexpected
events change the known environment. In this experiment the client agent
changes its trust in the different nodes of the network, changing consequently
the number of requests done to each one of the nodes.

26

Figure 9: Test 3: Adaptive Operating System

6.2.2. On-line Planner
The On-line Planner is the component that allows to compose plans that

fulfill the agents goals. This planner uses a time-bounded case based planner
(TB-CBP) to create the requested plans by reasoning about past cases. Using
a planner to achieve the active goals provides agents an interesting feature:
plan repairing, which makes the operating system fault tolerant. This is the
functionality that we are going to check with these tests. How the system
increases its fault tolerance in unreliable environments and how this affects to
the rate of completed goals.

Test 4: Fault-tolerant operating system
This test has as objective to check how the operating system is able to

complete the goals that are active, even if a service execution fails and the plan
becomes unuseful. In order to do that, the simulator can be parametrized with
an error probability, which defines the probability of a service to fail. This
test is defined with the following elements:

• Only 1 host is created, there is no need of distributing the test in this case.

• There are 50 registered agents, each of which has 50 goals to activate.

27

• There are 300 services equally distributed throughout all agents.

Figure 10: Test 4: Fault-tolerant operating system

In this experiment all the goals, services and agents knowledge items are
randomly generated. There is only one parameter that will be changed during
the test, the error probability. This parameter will be changed from 10% to 99%
in steps of 10. Figure 10 shows the results of this experiment. The X axis shows
the error probability assigned to the services. The Y axis shows the percentage
of success for all the goals activated. Note that the percentage of success is
not 100%, since the data is randomly generated and there is not always a path
from the preconditions to the goals. What is shown in Figure 10 is that the
percentage of success of the goals is constant, despite the error probability that
the services have. These results are so relevant because they conclude that the
proposed operating system is highly fault-tolerant.

Test 5: Trust evolution and multiple errors
This experiment shows how the combination of previous experiments can

affect to the trust of the nodes of the system. This experiment combines the
error probability of the running services and the accuracy of the response time
calculated by the Commitment Manager.

This experiment has the following scenario:

28

• There are 5 agents registered in the system: 1 client agent and 4 provider
agents.

• The network is composed by 5 nodes: Each agent is hosted in one of the
five nodes.

• The client agent has the necessary knowledge to run the service (P) and
activates the goal G which is the same that the two services postconditions
(G=Q).

• All services have the same behavior but the nodes that host the service
have different accuracies to calculate the response time and different error
probabilities for the services:

– Host1 has an accuracy of 90% calculating the deadline prediction
and a service error probability of 10%.

– Host2 has an accuracy of 90% calculating the deadline prediction
and a service error probability of 90%.

– Host3 has an accuracy of 10% calculating the deadline prediction
and a service error probability of 10%.

– Host4 has an accuracy of 10% calculating the deadline prediction
and a service error probability of 90%.

Figure 11 shows the results of this test. These results show that there is
no relevant difference between nodes with different configurations. The client
does not discriminate on the basis of the situation that generated an error (a
bad deadline prediction or a service error). What the client can see is that the
service has not been provided conveniently (maybe its execution failed or was
not provided in time), so the provider is punished. The figure shows how Host
1, which is the most reliable overall, has the higher number of requests. On
the other hand, Host 4 is probabilistically the less reliable node, thus it has the
lower number of requests.

6.3. Test 6: Distributed Computing Performance Tests
Finally, a performance test has been done to check how this computing

paradigm can improve the execution of goals. The Operating System imple-
menting the Distributed Goal-Oriented Computing paradigm has a great im-
pact in the performance of the system. Having an Operating System that not
only helps agents to perform their goals, but also searches services to compose
the plans on other hosts, largely increases the concurrence of the distributed
system.

Test 6 (Figure 12) shows how increasing the number of nodes that offer
services (X axis) decreases the mean time for achieving goals (Y axis). This
behavior is highly significant as nodes are added to the network. To run this
test, a large enough set of goals has been activated at every experiment. Each

29

Figure 11: Test 5: Trust evolution and multiple errors

experiment has a different number of nodes (1 to 50) and the agents are dis-
tributed equally around the nodes. This way we can perform the activated goals
with a higher degree of concurrency and, accordingly, with less time.

We can see in this experiment how important is to increase the amount of
nodes in the network. Specifically, the first ten nodes contribute with a great
impact to decrease the time needed to fulfill the activated goals. Experiments
with 10 or more nodes do not have as much impact as the first experiments, but
are always decreasing. In conclusion, the ability of distributing the execution in
an automatic and transparent way increases reasonably the performance of the
system.

7. Conclusions

We have presented in this work a Distributed Goal-Oriented Computing
paradigm based on the automatic composition of plans. These plans are formed
by distributed services provided by agents. Agents are also the entities who
express their own goals and try to fulfill them by means of the plans. To
implement this paradigm an execution module for a Goal-oriented Operating
System has been designed. The OS purpose is to help agents to achieve their
goals by means of a service-oriented approach.

30

Figure 12: Test 6: Distributed Computing

The OS execution module is divided in two components which are in charge
of performing this paradigm. The Deliberation Engine obtains the services
needed to achieve the agents goals and stores them in a case base to reason
about past cases. This component also takes time and trust constraints into
account. This is done either to obtain a result before a deadline, or just to
improve the quality of the result.

The case base introduced in the Deliberation Engine uses a Temporal Bounded
CBP algorithm to obtain plans that guarantee their execution before a deadline
(using the temporal commitments given by the Commitment Manager) and that
have a high success degree (reasoning about the trust stored in the case base).
This TB-CBP has allowed us to compose on-line plans that give solutions to
the goals of the agents following temporal constraints. To guarantee that the
agents execute their services before their deadline, the Deliberation Engine pro-
vides a Commitment Manager which is in charge of analyzing the workload and
establishing a temporal commitment between the agents and the Deliberation
Engine.

The results of this work have shown how the Operating System adapts itself
to the environment where it is deployed. It selects the providers which offer
better temporal commitments and trust values and distributes the workload
around these providers proportionally. Also, having an On-line Planner in the

31

OS makes it more reliable and fault-tolerant. This is because, even if a service
execution fails, the OS will look for a new plan transparently and without user
interaction. In fact, the user is not even aware of this.

This proposal opens the possibility of designing service-based operating sys-
tems directed by goals using this paradigm. These OS can be extended con-
tinuously with new services and plans driven by the user needs. These plans
are added by means of the services offered by other users and by their com-
position, thanks to the new goals defined by the users. The OS architecture
defined in this work allows us to use this computing paradigm, since there are
some capabilities that only the OS can provide (like soft real-time constraints
and temporal commitments).

Acknowledgments

This work is supported by TIN2008-04446 and TIN2009-13839-C03-01 projects
of the Spanish government, PROMETEO/2008/051 project, FEDER funds and
CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

[1] XMPP Pub-Sub: http://www.xmpp.org/extensions/xep-0060.html.

[2] Zero Configuration Networking: http://www.zeroconf.org.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In In Proceedings of the 14th Annual
Conference on Uncertainty in Artificial Intelligence (UAI98), pages 43–52.
Morgan Kaufmann, 1998.

[4] T. Cortes, C. Franke, Y. Jégou, and T. Kielmann. XtreemOS: a Vision for
a Grid Operating System. White paper, Jan 2008.

[5] L. de Silva and L. Padgham. Planning as needed in BDI systems. Interna-
tional Conference on Automated Planning and Scheduling, 2005.

[6] E. Del Val, M. Navarro, V. Julian, and M. Rebollo. Ensuring time in ser-
vice composition. In 2009 IEEE Congress on Services (SERVICES 2009),
volume 1, pages 376–383. IEEE Computer Society, 2009.

[7] D. Greenwood and M. Calisti. An automatic, bi-directional service inte-
gration gateway. In Proc. Workshop on Web Services and Agent-Based
Engineering (WSABE’2004), 2004.

[8] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. MINIX
3: A Highly Reliable, Self-Repairing Operating System. Operating System
Review, Jan 2006.

[9] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, and et al. An
Overview of the Singularity Project. MSR-TR-2005-135, Jan 2005.

32

[10] G. C. Hunt, J. R. Larus, D. Tarditi, and T. Wobber. Broad New OS
Research: Challenges and Opportunities. Proceedings of the 10th Workshop
on Hot Topics in Operating Systems, Jan 2005.

[11] I. Johnson, B. Matthews, and C. Morin. XtreemOS: Towards a Grid Oper-
ating System with Virtual Organisation Support. UK eScience All Hands
Meeting, Jan 2007.

[12] H. Kopetz and W. Ochsenreiter. Clock Synchronization in Distributed
Real-Time Systems. IEEE Transactions on Computers, C-36(8):933 –940,
aug. 1987.

[13] R. Michalski, J. Carbonell, and T. Mitchell. Machine learning: An artificial
intelligence approach, volume 1. Morgan Kaufmann, 1985.

[14] A. Montz, D. Mosberger, S. O’Malley, L. Peterson, and et al. Scout: A
communications-oriented operating system. Hot OS, Jan 1995.

[15] J. Palanca, V. Julian, and A. García-Fornes. A goal-oriented execution
module based on agents. In 44th Hawaiian International Conference on
System Sciences, page 277, 2011.

[16] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9 from Bell Labs.
Computing Systems, 8(3):221, Jan 1995.

[17] A. Rao and M. Georgeff. BDI agents: From theory to practice. Proceedings
of the first international conference on multi-agent systems (ICMAS95),
pages 312—319, Jan 1995.

[18] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub,
and M. Jones. Mach: a system software kernel. COMPCON Spring ’89.
Thirty-Fourth IEEE Computer Society International Conference: Intellec-
tual Leverage, Digest of Papers, pages 176—178, 1989.

[19] D. Ritchie and K. Thompson. The UNIX time-sharing system. Communi-
cations of the ACM, Jan 1973.

[20] E. Sirin and B. Parsia. Planning for semantic web services. In Proc. Work-
shop on Semantic Web Services: Preparing to Meet the World of Business
Applications, 2004.

[21] L. Spalzzi. A survey on case-based planning. Artif. Intell. Rev., 16(1):3–36,
2001.

[22] M. Wooldridge and I. Dickinson. Agents are not (just) web services: con-
sidering BDI agents and web services. Proc. of SOCABE’2005, Jan 2005.

33

