
Modeling Concurrency in Parallel Debugging

Wenwey Hseush·
Gail E. Kaiser+

Columbia University
Department of Computer Science

New York,NY 10027

(212) 854-8123
hseush@cs.columbia.edu

21 September 1989

CUCS-460-89

Abstract

We propose a description language, Data Path Expressions (DPEs), for modeling the behavior of parallel programs.
We have designed DPEs as a high-level debugging language, where the debugging paradigm is for the programmer
to describe the expected program behavior and for the debugger to compare the actual program behavior during
execution to detect program errors. We classify DPEs into five subclasses according to syntactic criteria, and
characterize their semantics in tenns of a hierarchy of extended Petri Net models. The characterization demonstrates
the power of DPEs for modeling (true) concurrency. We also present predecessor automata as a mechanism for
implementing the third subclass Qf DPEs, which expresses bounded parallelism. Predecessor automata extend fmite
state automata to recognize or genemte partial ordering graphs as well as strings, and provide efficient event
recognizers for parallel debugging. We briefly describe the application of DPEs to mce conditions, deadlock and
starvation.

Copyright Q 1989 Wenwey Hseush and Gail E. Kaiser

°Hseush is supported in part by the Center for Telecommunications Research. Part of this research was conducted
while Hseush was a summer employee of the IBM T J. Watson Research Center. +Kaiser is supported by National
Science Foundation gmnts CCR-8858029 and CCR-880274 1 , by grants from IBM, AT&T, Siemens, Sun and
Xerox, by the Center for Advanced Technology and by the Center for Telecommunications Research.

keywords: debugging, formal models, Petri nets, path expressions, synchronization

1. Introduction
We are concerned with debugging parallel programs. One approach to locating the causes of program misbehavior

is for the programmer to provide a high-level description of the expected behavior and for the debugger to compare

the expected and actual behavior during execution. Expected behavior is specified abstractly in terms of control

flow. data flow and/or synchronization events. In this approach. defining an appropriate notation for modeling

program behaviors is a crucial prerequisite to developing a debugger. The conventional debugging approach.

exemplified by dbx [Linton 81], also models program behavior but at a lower-level. in terms of source code entities

such as subroutine names and line numbers; the programmer is responsible for comparing expected with actual

behavior during execution. We refer to the first approach as problem-oriented. and the second as program-oriented.

Both are necessary in practical debugging. just as both specification-based (blackbox) testing and program-based

(whitebox) testing are required for practical testing [Howden 87].

In this paper, we are concerned primarily with the problem-oriented aspect of debugging. We have developed a

style of problem-oriented debugging for parallel programs called data path debugging. Parallel program behaviors

are described in a formal notation called Data Path Expressions (DPEs). an extension of Bruegge and Hibbard's

generalized path expressions for debugging sequential programs [Bruegge 85. Bruegge 83]. This work is in tum an

application to debugging of Campbell and Habermann's classical work on path expressions for describing process

behavior in operating systems [Campbell 74]. Other researchers also advocate a problem-oriented approach to

parallel debugging (e.g., Bates [Bates 88a], Miller and Choi [Miller 88]). The primary advantage of our OPEs is

that they model true concurrency. distinguished from interleaving, and are concerned with data as well as control

flow.

Subclass Semantic Model

Sequential DPEs Finite State Automata

Multiple DPEs K-Sare Nets (subset)

Sare DPEs K-Sare Nets

General DPEs Petri Nets

Extended DPEs Extended Petri Nets (subset)

Figure I-I: OPE Hierarchy

In our previous paper [Hseush 8Sa], we informally described preliminary work on OPEs and discussed how they

could be used in debugging parallel programs. The goal of this paper is to formally define several subclasses of

DPEs in terms of their syntax and semantics. We defme five subclasses according to syntactic criteria, and

characterize the semantics of each subclass using a hierarchy of extended Petri net models [peterson 81] (see Fig.

1-1). Extended Petri nelS are equivalent to Turing machines [Hack 75. Thomas 76].

In our OPE taxonomy. the first subclass expresses only sequential behavior. The second subclass also expresses

limited concurrency. where no program branching (e.g .• if-then-else) is allowed in conjunction with process splitting

(e.g .. fork or para-do). The third subclass expresses general bounded parallelism. TIle fourth permits unbounded

parallelism, but without the ability to join an unknown number of threads. The fifth describes general concurrency.

We propose predecessor automata as an implementation vehicle for the third subclass. safe DPEs. which subsumes

the first and second subclasses. Predecessor automata extend fmite state automata to represent predecessor events,

2

and thus can recognize or generate partial ordering graphs (or pomsets) [Lamport 78] as well as strings. The

concurrent composition [Milner 80] of two predecessor automata preserves causal independence (i.e., true

concurrency), while the concurrent composition of two rmite state automata loses this infonnation.

The expected prograIn behavior described by a programmer as OPEs is translated into a predecessor automaton for

efficiently recognizing concurrent events during execution. The DPE debugger will be useful for parallel

applications where race conditions, deadlocks and starvation are concerns, and some small examples are given in

this paper. We are in the process of implementing safe DPEs as a high-level debugging language for both a

concurrent extension of C and for the Meld concurrent object-oriented programming language [Kaiser 89].

Section 2 introduces OPEs and explains other background material necessary to understand the remainder of the

paper. In section 3, we show the power of the five subclasses of OPEs in terms of extended Petri Net models.

Section 4 presents the predecessor automata model for efficient implementation of safe OPEs in a debugging

system. Section 5 discusses the practicality of OPEs for parallel debugging. We conclude by summarizing the

contributions of our work.

2. Background
A DPE consists of up to three components: one or more events, zero or more relations among events and zero or

more actions. Events and the relations among them specify the behavior of program execution, while actions are

performed by the debugger on program or debugger variables (or input/output) when the particular behavior is

recognized during execution. A set of operators, sequencing (*), exclusive selection (+), repetition (*), concurrency

(&) and concurrency closure (@), express the basic relationships among events. Other relationships such as

pennutation, partial concurrency and total concurrency can be derived from the basic relationships [Hseush 88a].

2.1. Events and Actions

There are four kinds of events: control, data, conditional and compound. Control events represent control activities,

such as procedure entry and exit Since there is a simple mapping from program execution to source code, control

events can be specified using the corresponding identifiers in the program's source code, notably procedure names.

Function.enter is the entering to Function, and Function.exit is the exiting from Function.

Data events occur when the specified program states become true. Oata events are denoted as "[condition]",

where the condition is an expression in the target programming language, augmented with the ability to express the

history of program states and activities associated with data such as read and write. For example, "[X .. 0]" is

the event that variable X becomes equa110 zero, n [X .. X' + 1]" is the event that X is incremented (x' refers

to the previous value of X), "[X] " means that X has been referenced, and "[X,]" describes the case where

X has been updated.

Data events are not associated with any particular control thread when defmed, even though they are eventually

caused by specific control events during execution. The programmer need only specify the effects on program

entities without the knowledge of which control activities cause them; the debugger detects when the effects occur

and reports which control activities cause them. It is difficult to efficiently recognize data events without either

hardware support or significant modifications 10 the compiler and/or run-time support of the programming language,

3

but we do not address this here.)

Conditional events are control or data events with predicates attached. The format is "event [condition]".

where condition is a predicate. Conditional events are recognized when the event occurs in a context where the

condition is already satisfied. For example. "READ [lock = 1)" is the condition where the READ procedure is

called while lock is equal to one.

Compound events are defined by associating identifiers with DPEs. and permitting new DPEs to be defined in terms

of such identifiers in the style of context-free grammars. except that recursive and empty event definitions are not

allowed. The format is "event·id = dpe". where dpe is a data path expression as defined in the next section.

Actions may be attached to events. The format is "event { statements)". where statements is treated as a

single action. The action is evaluated when the event is recognized. For example,

"[X'] (counter = counter + 1;)" means that every time X is updated, counter is incremented

by one. Statements may involve program variables and/or debugger variables or functions. such as input/output and

break.

2.2. Safe Concurrency
The term safe concurrency refers to the case of bounded parallelism and unsafe concW'rency to unbounded

parallelism. Language constructs designed for expressing concurrency (e.g., fork-join) often permit unsafe

concurrency. Examples of safe and unsafe programs are shown in Figs. 2-1 and 2-2.

parallel-do I = 0 to 5
begin

philosopher(I):

end

Figure 2-1: A safe program of parallel-do

Loop:
Ir(rorkO != 0) {

parentO:
I:oto Loop:

}
else chlldO:

Figure 2-2: An unsafe program of forks

The semantics of safe concurrency is characterized as a subclass of Petri nets, k·safe nets [Peterson 81]. where the

maximum number of tokens in a place is bounded by k. A k-safe net assures bounded parallelism. Every program

with safe concurrency can be represented by a Ie-safe net. and every Ie-safe net is equivalent to a program with safe

concurrency. The corresponding Ie-safe and unsafe nets for the safe and unsafe programs are shown in Figs. 2-3 and

2-4.

IThe mM 8CE group [Garcia 89] is woricing on hardware support - a debugging monitor - that can be parameterized by the symbol tables
generated by the canpiler; when it deu:cu that interesting variables are acceued. it generaleS III intemJpt to retUrn cootrol beck to the debugger.
Our implementatioo for C will take advantage of thiJ hardware support. Our implementation for Meld on a neLWoric of San 3 worlcstations
involves extensive debugging facilities within the Meld run·time support.

4

~lolOpllerl parent

child

fork

Figure 2-3: A safe net for the parallel-do program Figure 2-4: An unsafe net for the fork program

3. DPE Hierarchy
DPEs are classified into five subcIasses by the operators employed and some other syntactic resuictions. Each

subclass is also defmed in tenns of a semantic model and the corresponding programming domain. The first

subclass is sequential DPEs, which expresses only sequential behavior. The second is multiple DPEs, which

subsumes the first and expresses limited safe concurrency, where no program branching (e.g., if-then-else) is

allowed in conjunction with process splitting (e.g., fork or para-do). The third subclass is safe DPEs, which

expresses safe concurrency. The fourth subclass is general DPEs, which expresses limited unsafe concurrency,

where unbounded parallel threads never join. The fIfth subclass is extended DPEs, which subsumes the fourth one

and expresses unsafe concurrency.

DPEs employ five operators: sequencing (:), selection (+), repetition(*), concurrency (&) and concurrent closure

(@). Examples are shown in Table 3-1. Table 3-2 summarizes the DPE hierarchy, including equivalence proofs

and related work.

Expression Description

AjB Event A causally precedes event B.

A+B Either event A or event B occurs, but not both. + means exclusive-or.

A* E + A + AjA + AjAjA + ...

A&B Event A and event B occur causally independently.

A@ E + A + A&A + A&A&A + ._

Table 3-1: Operators

The first subclass is well known as regular expressions or path expressions. The path expression

"open ; (write + read) *; close" states that a file has to be opened. before an arbitrary sequence of

reads and writes is perfonned. and then closed. To describe sequential program behavior like recursive procedure

calls, control variables are used. "E *n ; X *n" states that the number of enterings is equal to the number of

exiting, where E is the event of entering, x is the event of exiting, and the number of enterings is the same as that of

exitings. The control variable n relates the number of occurrences of E to the number of occurrences of x with

equality (=). One alternative is to simulate this behavior by actions attached to the events. In

5

Subclass Sequential DPEs Multiple DPEs Safe DPEs

Expresses sequential behavior limited safe safe concurrency
concurrency

Syntax dpe1 : E.VENT dpez: dpc1 dpe3 : EVENT
I (dpel) I dp~ & dpe1 I (dpe3)

I dPct + dPct I dpe3 + dpc3
I dPct ; dPct I dpe3 j dpc3
I dPct • I dpe3 •

I dpe3 & dpc3

Semantic fmite state automata k-safe nets k-safe nets
Model subset (see appendix I)

Proof Hopcroft & Lauer & Campbell see Appendix I
Ullman [Lauer 75]
[Hopcroft 79]

Example openj(read+wrlte)· j (ajsjb) & (cjsjd) (enqjdeq)+(cnq&deq
close

Limitations no concurrency no program no unbounded
branching parallelism
preceding
process splitting

Related Generalized path COS Y [Lauer 81] EBBA [Bates 83]
Work expressions

[Bruegge 85]

Table 3-2: DPE Hierarchy

{ n = O} j E { n = n + I} * j X { n = n - 1 } * j { If(n != 0) error}

General DPEs Extended DPEs

limited unsafe unsafe concurrency
concurrency

dpe4 : dpe3 dpes : EVENT
I dpe4 + dpe4 I (dpes)
I dpe4 & dpe4 I dpes + dpes
I dpe4 @ I dpes j dpes

I dpes •
I dpes & dpes
I dpes @

Petri nets [Garg 88] extended Petri nets
subset

Garg [Garg 88] see Appendix II

(forkjparent)* & (enq jU pdate)@ jdeq j
(forkjcblld)@ display

no joining for open question
unbounded
parallelism

()oncurrentre~
expressions
[Garg 88]

the first action sets n to zero at the beginning of program execution. Then E occurs zero or more times and each time

n is incremented by one. The sequence is then followed by the occurrences of x. where x might occur zero or more

times and each time n is decremented by one. At the end of program execution. n is compared to zero.

The second subclass. multiple DPEs. expresses only global-level concurrency. where no nested concurrency (&) is

allowed. Three examples are shown in Table 3-3. When the same event name appears in multiple subparts of the

DPE. it is treated as a synchronization event and renaming is necessary to avoid this synchronization convention.

We use (1\) to distinguish two distinct events with the same name (see the third example). In concurrent

programming. a synchronization event usually involves two events in different threads. as explained in subsection

3.1.

The third subclass. safe DPEs. allows multi-level concurrency. One example that can be expressed by safe OPEs but

not multiple OPEs is "enq ; deq + (enq & deq)". which states that if the queue size is equal to zero. then

enqueuing must precede dequeuing. otherwise. enqueuing and dequeuing can operate concurrently. Safe OPEs are

equivalent to k-safe nets (the proof is given in appendix I).

The fourth subclass, general DPEs, expresses unbounded parallelism by using the concurrent closure operator (@).

but disallows an event causally succeeding an unknown (unbounded) number of concurrent events. The general

OPE" (fork;parent) * & (fork; child) @" models the program mentioned in Fig. 2-2 and the Petri net in

Multiple DPE

(a;b)&(c;d)

(a;s;b)&(c;s;d)

Description

ajb and c;d occur
causally independently.

Two causally independent paths
a;s;b and c;s;d synchronize
with each other at s.

(a;s;b) & (c;sA;d) a;s;b and c;sAjd
occur causally independently.

6

Partial Order

aO -0 b

cO .ad

a b

e d

a~b

e~d

Table 3-3: Examples for multiple DPEs

Fig. 2-4. Some programming examples are: (1) an unbounded number of messages selecting the same method may

arrive at an object and each message activates a control thread for executing the method without waiting for the prior

activations to fmish; and (2) an unknown number of signals arise and each signal invokes an unmasked signal

handling routine.

General DPEs are also known as conCW'7'enl regular expressions. Concurrent regular expressions have been proven

equivalent to Petri nets by Garg [Garg 88]. The limitations on general DPEs are the same as those on Petri nets: no

zero testing [Kellel' 72]. Zero testing is the ability to test for zero tokens in an unbounded place of a Petri net For

example, " (A; B) @;e n is not expressible in general DPEs. It states that an unknown (unbounded) number of

threads A; B are created. and when all B events in the concurrent threads are complete, then c occurs; note that C can

occur while the number of non-processed B'S is tested equal to zero, because of the concurrent closure operator.

This expression cannot be described by a Petri net, but is expressible by an extended Petri net [peterson 81].

The fIfth subclass of DPEs, extended DPEs, allows an event causally succeeding an unknown (unbounded) number

of concurrent events, as modeled by extended Petri nets. For example,

"enq ; update) ; deq ; display" represents the case where an unbounded number of signals arise and

each signal invokes a signal handling routine without disabling further signal invocations. The handling routine puts

one character into a global queue and updates some information (assume the enqueue operation is atomic). After the

7

control eventually returns to the main program, further signal invocation is disabled and all characters are dequeued

and displayed. Extended OPEs express extended Petri nets, but whether extended OPEs are equivalent to extended

Petri nets is an open question.

3.1. Synchronization Events

The behavior of language-specific synchronization primitives can be described using OPEs. Systems programmers

or debugger users instruct the debugger to recognize the event patterns that constitute synchronizations among

threads. For example, the pattern of sending a message X followed by receiving a message X constitutes a

synchronization between the sender and the receiver. The description is
S~C(M): send(M); recelve(M) {sync_event($l, $2);}

which instructs the debugger that send is causally related to receive by message M. Then a synchronization

event from the send event ($1) to the receive event ($2) can be established by the debugger based on the

information from the sender and the receiver, once both are recognized during execution. Otherwise, the debugger

would have no knowledge that send and rece i ve matched as a synchronization event

Another example,
SYNC(X): V(X).exlt: P(X).exlt { sync_event($l, $2):}

instructs the debugger that V. exit is causally related to P. exit by the shared datum X and constitutes a

synchronization event. Say the set of events is Pi . enter, Pl' exit, P 2 . enter, Vi' enter, Vi' exit,

P2,exit, V2.enter, v2 .exit; the debugger uses the synchronization directive to establish the

synchronization event (V 1 . exi t, P 2' exi t).

This approach requires the same knowledge as in other approaches, but it provides the flexibility that users can

easily invent and debug new synchronization primitives. In contrast, other debugging systems (e.g., [Goldszmidt

89]) retrieve such information through either source-to-source program transformation or augmenting the compiler

with particular knowledge about synchronization primitives as related to parallel debugging.

4. Predecessor Automata

The problem-oriented debugging paradigm assumes that the programmer provides a description of expected

program behavior, and the debugger compares this description to actual behavior at run-time to detect discrepancies.

In our case, the debugger must be able to recognize selS of concurrent events matching DPEs. The debugger itself

consists of support added (in hardware or software) to each executing thread or processor that submits messages

representing primitive events to a centralized OPE recognition process. The sequence of events it receives are

treated as tokens and are parsed them into a partial ordering graph according to the currently enabled set of OPEs.

We are concerned here with the central recognition process, and do not address how the primitive events are

generated.2

One key issue is ~ tradeoff between the efficiency of recognition and the memory space needed to represent the

OPEs in a suitable internal form. In the case where minimizing memory space is most important, Petri nets are

2sce previous fOOIlIote.

8

probably the best choice. Petri nets can represent sequential and concurrent behavior in a compact form. but they

are relatively inefficient for recognizing events at runtime. In contrast. finite state automata (FSAs) are efficient

recognizers for sequential behavior. but they cannot represent concurrent events that are causally independent.

FSAs express interleaving semantics. but not true concurrency. The concurrent composition of two FSAs involves

combining two FSAs into one such that all possible states and all possible interleavings of two sets of transitions are

preserved [Milner 80]. This process loses the information regarding which events occur causally independently and

there is no way to reverse the process to recover the original two FSAs. With or without concurrent composition.

FSAs cannot distinguish two causally independent events interleaved with each other from two sequential events.

We present an implementation model, predecessor automata (PAs). that has the clean and efficient structure of

finite state automata. but also the capability of representing true concurrency as in safe Petri nets. PAs can

recognize behavior with safe concurrency and detect the situation of unsafe concurrency, and thus implement our

third subclass. safe DPEs.

4.1. Definition of Predecessor Automata

A predecessor automaton is a 5-tuple (Q. I:. B. qo. F).

• Q is a finite set of states.

• 1: is a finite set of even/so

.0 is the transilionfunction mapping Qx1:xP to Q. where P is thepreckcessor set, P ~ (E) u l: u l:xl: u ...

• qo is the initial state. qo E Q.

• F is the set offinal states. F ~ Q.

The defmition of a PA is the same as an FSA except for the transition function, which not only carries the

information about the expected events. but also the information about its predecessors.

The predecessor P (E P) of an event e is a set of events {w1 ' w2 ' ••• , wn }, where (1) n is a non-negative

integer. (2) Wi causally precedes e and (3) Wi and Wj occur causally independently. 1 ~ i. j ~ n, i ~ j. If P = E, e is

an original event (E is also represented as '. '). The occurrence of event e implies that all its predecessor events ej

E p. 1 ::;; i ::;; n, have occurred.

The input to a PA is not a string of events, but a string of event-predecessor pairs. (eo PO>. (e I PI)' ...• (en Pn)' where

ei E 1: and Pi E p. 0 ~ i ~ n. The string of event-predecessor pairs can be considered as a partial ordering graph

(or a directed acyclic graph). if for every event W E Pi' 0 ~ i ~ n, there exists an event ej. 0 ~ j ::;; n, such that

ej} = W and j ~ i. lbat is. every event mentioned as a predecessor event must occur. We usually assume j < i,

which means the receiving order preserves the occurrence (partial) order. This is discussed in more detail later in

this section.

A PA moves from one state q to another state r on an input (e p). according to the transition function O(q. (e p}) = r.

That is. a move is made by examining the incoming event and its predecessors. Given a predecessor automaton PA,

a sequence of transitions. O(qo. (eo PO>) = ql' O(ql' (e l PI» = q2' O(qn.I' (en.1 Pn.l» = qn' where qo is the initial

state. we need to construct a partial ordering graph. For each (e j Pi)' 0 ~ i ~ n.
1. Create a vertex labeled with ej •

2. For each event W E Pj' create a directed edge >from w to ej •

9

Figure 4-1: A PA and its partial ordering graph

Fig. 4-1 shows how to construct a partial ordering graph from a PA. Transitions (a E) and then (b E) create a

graph with two vertices, a and b, and no edge. Then transition (c a) adds another vertex c and a directed edge

a ~ c to the graph. Finally, transition (d (c b)) (also represented as (d c b) adds vertex d and two directed

edges c ~d, b~d.

Two problems arise when constructing partial ordering graphs: (1) ambiguity and (2) instability. A PA is

ambiguous if and only if there exists a sequence of transitions, 8(q(}t (eo Po» = ql' 8(ql' (e l PI» = q2' •.• , 8(qn-l' (en-l

Pn-I» = qn' where qo is the initial state, such that more than one partial ordering graph can be constructed. Fig. 4-2

illustrates an ambiguous situation.

a

b

inputs:(a .) (b a) (d c) ...

Figure 4-2: An ambiguous situation Figure 4-3: An unstable situation

The fJrst step to elimina1e the ambiguous situation is to rename some events ej in the ambiguous PA, such that there

does not exist an event ej. i _ j and ej = ej. The standard approach is to rename every event e appearing in the PA

to qlelr, where q is the state when the transition is made and r the state that the transition leads to. A PA with a

cycle is ambiguous. even after renaming. In this case, there is a second step that modifies the graph construction

procedure. When a directed edge w ~ e is constructed, the vertex labeled with w is the one that was added to the

graph most recently and labeled with w. These two steps eliminate all possible ambiguous situations.

Given a PA and a sequence of inputs, (eo pc). (e l PI)' ...• (en Pn)' a situation is unstable at input (ej Pj) if and only if

there exists a predecessor w E Pj' 0 ~ j ~ i, such that ek ~ w for all Ie, 0 ~ Ie ~ i-I. Informally, a situation is

unstable if an event mentioned as a predecessor has not arrived so far or the event is missing in the constructed

10

graph. See Fig. 4-3.

Figure 4-4: An unstable PA and the stabilized PA

A PA is unstable if and only if there exists a sequence of transitions O(qo' (eo po» = ql' O(ql' (e l PI» = q2' "" O(qn_I'

(en_I Pn-I» = qn' where qo is the initial state, such that an unstable situation happens at (ei Pi)' 0 ~ i ~ n. An

unstable PA can be stabilized by restricting the automaton, as shown in Fig. 4-4. An unstable situation may still arise

in a stable PA, when the given sequence of inputs does not preserve the partial ordering in which the events occur.

The way to avoid the unstable situation is to rearrange the ordering of the given sequence (eo PO>. (e I PI)' ... , (eo po)'

such that for every W E Pi' there exists ej. j < i. w = ej' The receiving ordering preserves the occurrence partial

ordering.

4_2. Event Recognition
As discussed above, recognition involves two components: (1) a target system that reflects the actual program

behavior and provides the infonnation about primitive events and their predecessors, and (2) a recognizer that

represents the expected program behavior in some internal fonn and collects and processes the information. The

target system is a concurrent system, messages representing primitive events and their predecessors are generated

from different processors and sent to the centralized recognizer.

The recognizer is a sequential machine that receives messages representing primitive events from different threads

one message at a time, compares them with the expected ones, and eventually reports the results. The message

receiving order for primitive events and their predecessors is assumed independent from the order of the event

occurrences, since the sending order may be different from the receiving order. The recognizer has two parts, a

stabilizer and a PA. The stabilizer has two functions: (1) establishing synchronization events according to the

descriptions of synchronization behavior, provided by system programmers or users. and (2) regulating the incoming

event/predecessors messages such that the ordering of event messages that go into the automaton preserves the

partial ordering of event occurrences in the target system. For example, if the input messages to the stabilizer are

(el E) (e2 e 3) (e3 ell (e 4 ell (es e4),wheree2isasendeventande4isareceiveevent,andthe

debugger has been instructed that a send event followed by a receive event is a synchronization event; the output of

the stabilizer is (el E) (e3 ell (e2 e3) (e4 el) (es {e 4 , e2)·Theoutputmessagesofthestabilizer

are the input messages of the PA, which will compare the input messages (the actual behavior) with the DPEs (the

expected behavior) provided by the users as represented by a PA. A general structure for such a debugging system

11

is shown in Fig. 4-5.

TARGET SYSTEM

TABILIZER PA

Figure 4-5: A general structure for event recognizers

The PA is in the initial state before receiving any messages. Every time a message describing an event and its

predecessors arrives from the stabilizer, the PA compares the received information with the transitions directed from

the current state. If both the event and its predecessors match one of the transitions, the automaton makes a move to

the next state according to the matched transition. In the meantime, a partial ordering graph can be constructed. An

example is illustrated in Figs. 4-6 and 4-7. One important assumption in our event recognition framework is that

the target system (eventually) has full knowledge about every event that occurs and its predecessor events, where

these events appear in some OPE used to construct the PA and/or reflect synchronization events.

Targeted system
events
(a .)
(b a)
(d c)
(c a)

(e b d)

(a .)

(b a)

(d c)

(c a)

(e b d)

TABILIZER

(a .)

(b a)

(c a)

(d c)

(e b d)

Figure 4-6: An event recognizer for a;(b&(c;d));e

s tAbiliz.er
events
(a .)
(b a)

(c a)
(d c)
(e b d)

Figure 4-7: PA Description

predecessor automata
state transitions
0--> 1
1 --> 2

2 --> 4
4 --> 6
6 --> 7

12

4.3. Constructing Predecessor Automata From Safe DPEs
Given a safe DPE, a predecessor automaton can be conslructed. There are two steps, involving transformations of

subexpressions and translation using an attribute grammar [Knuth 68]. The first step is to transform each expression

into a new expression where there are no subexpressions R*, such that E E R. For example, (e*)* can be

transformed into e*. This guarantees that the constructed automaton has no transition cycles B(ql' (e1 PI» = q2'

B(q2' (e2 P2» = q3' ... , B(qn' (en Pn» = ql' such that ej = E, for all i, 0 SiS n. The transformation is based on an

extension to Foster's conversion theorem [Foster 86], which states that for any regular expression R, there is a

regular expression N(R) such that
• N(R) does not contain the empty string,

• R* = (N(R»*

• N(R) is no longer than R.

If E #: R, N(R) = R. Otherwise, there are three cases.
1. If R = p., N(R) = N(P)

2. If R = P+Q·, N(R) = N(P) + N(Q)

3. If R = P;Q·, N(R) = N(P) + N(Q)

The theorem was originally defined for regular expressions, which only have three operators (; • +). In safe DPEs, a

new operator (&) is employed. We augmented the theorem to apply to safe DPEs. Thus there is a fourth case.
1. If R = P&Q·, N(R) = (N(Q) & N(P» + N(Q) + N(P)

But the third condition in Foster's conversion theorem (N(R) is no longer than R) is no longer lrue.

The second step applies an attribute grammar that specilles how to construct a PA. A DPE is first parsed into an

abstract syntax tree, where three attributes are attached to each node of the tree, AUTO, PRED and LAST. The

AUTO attribute of a node n will contain an automaton that represents the subtree (subexpression) rooted at node n.

A subtree can be considered as a subexpression or a PA. The PRED attribute of n represents its predecessors, the

events that might precede any event occurring in the subtree rooted with n. The LAST attribute of n refers to the

events without successors in the subtree. The values of PRED and LAST have the form

(eO,OAeO,l ••• Aeo,m) v (el,o"el,l _. Aeo,k) v ••• v (en,~n,l ••• Aen.m>, where the events related with (,,) occur

concurrently and the events related with (v) occur exclusively. The semantic rules associated with the grammar are

shown in Fig. 4-8.

This is not a syntax-directed translation system like Y ACC [Johnson 78]. Instead, the semantic rules describe the

relations between a node in the abstract syntax tree and its parent node, and between the node and its children nodes.

A semantic rule is evaluated only when its dependent attribute(s) is changed,3 instead of at the time of parsing. For

example, the first semantic rule, "dpe. AUTO = new_automaton (EVENT, dpe. PRED) n, which is

associated with a leaf node, is evaluated when its PRED attribute is changed.

The function last_events, with a PA as an input parameter, obtains the last events that might occur in the PA.

The return value has the same form as LAST and PRED. The function new automaton creates a new

automaton with two input parameters, an event e and its predecessors p. The new automaton has one start state P,

lUsing, for example, Reps's incrcmcntal evaluatioo algorithm [Reps 84].

dpe: EVENT
{
dpe.AUTO = Dew automaton (EVENT, dpe.PRED)j
dpe.LAST :::: ... eftDts(dpe.AUTO)j ,. EVEJ'I.'T .,

} -
I '(' dpe'- ')'
{

}

dpel.PRED = dpe.PREDj
dpe.AUTO = dpel.AUTOj
dpe.LAST = dpe1.LASTj

I dpel ';' dpe 2
(

}

dpe1.PRED = dpe.PRED;
dpel.PRED = dpe1.LASTj
dpe.AUTO = concat(dpe1.AUTO, dpel.AUTO);
dpe.LAST = dpe2.LAST;

13

I dpel '+' dpe 2
(
dpe1.PRED = dpe.PRED;
dpel.PRED:::: dpe.PREDj
dpe.AUTO = unlon(dpel.AUTO, dpe2.AUTO);
dpe.LAST = dpe1.LAST v dpel.LAST;

}
I dpel'·'
{

}

dpel.PRED = dpe.PRED·
dpe.AUTO :::: repeat(d~.AUTO)j
dpeLAST = dpel.LAST v Ej

I dpe1 '&' dpe Z
(

}

dpel.PRED = dpe.PRED;
dPel.PRED = dpe.PRED;
dpe.AUTO = compoee(dpel.AUTO, dpel.AUTO);
dpe.LAST = last_events(dpe.AUTO);

Figure 4-8: Attribute Grammar for DPEs

one final state q and one transition B(p (e PRED(e») = q.

The attribute grammar evaluation is started by setting the PRED attribute of the root to e; every node will eventually

be visited a few times, as changes are propagated around lhe tree. The root is the first node visited, since its PRED

is changed. For each node t visited, if e is a leaf, AUTO is assigned a new PA and LAST is set to e. Since the

values of PRED and AUTO are changed., its parent node will be visited again according to lhe semantic rules

associated with the parenL If the node is not a leaf, it propagates the value of PRED down to its child nodes, and

when the node is eventually visited again, it constructs a new PA from its children's PAs according to the operators

and properly sets the value of its LAST attribute. The functions concat, union and repeat are depicted in Fig.

4-9. The function compose concurrently composes two PAs into one, as explained in the next section. When lhe

evaluation is complete, the AUTO attribute of the root contains the PA for the given OPE.

~
~

PAl ;PA2

~
~

PAI+PA2

Figure 4-9: Functions for constructing PAs

14

4.4. Concurrent Composition

The concurrent composition of two PAs creates a new PA that preserves all possible states and all possible

transitions as if the two original automata operate concurrently. As explained above. the concurrent composition of

two finite state automata will lose the concurrency information. while the concurrent composition of two PAs will

not An example is shown in Fig. 4-10.

FSAI PAl

FSAI&FSA2

Figure 4-10: Concurrent composition of two FSAs Figure 4·11: Concurrent composition of two PAs

Composition of two PAs can be divided into two cases. those that do and do not involve synchronization.

Synchronization occurs when two automata have common events (or reflect components of synchronization events,

as explained previously). Assume the first automaton has n states. St. sz • .••• sn' So is the initial state. and the second

automaton has m states. z l' Z2' ..•• Zm' Zo is the initial state. In the case that two PAs have no synchronization. the

composed automaton will have nXm states. qU' qt,2' ...• qn,m-t. qn.m. The state qij is the combined state of the state

si in the ftrst automaton and the state Zj in the second automaton. The transitions from qij to qkj in the composed

automaton are the transitions from si to Sic in the first automaton. and the transitions from qij to qi,k in the composed

automaton are the transitions from Zj to zlc in the second automaton. No transitions hold between qij and qh.!c' i :I; h

and}:I; k.

In the case where two PAs do have synchronization. the concurrent composition consists of two steps. The first is to

transform two PAs into one Petti net, where the places in the Petri net are the states in the automata. the transitions

in the Petri net are the transitions in the automata, and multiple transitions with a common event are combined into

one transition with multiple inputs and outputs. For example. a transition (si e Pi Sj) and a transition (sic e Pic s~ will

be combined into a transition (st. Ic e Pi"Pk Sj. J.

The second step is to fmd all possible states and transitions for the composed automaton by the following procedure.

An example is shown in Fig. 4-11.

I. Let Q = ((so %0) }, R = 0. T = 0.

2. If Q = 0, stop.

3. For every v E Q.setQ=Q-(v}.R=Ru(v}.

15

4. Let V be a set of all possible states succeeding v. for every U E V. U ~ R. set Q = Q V {ul.

5. Set T = T v { transitions from v to u I. goto step 2.

4.5. Related Work
EBBA [Bates 88b] employs shuffle automata [Bates 87] as a formal model for event recognition in distributed

systems. Shuffle automata recognize concurrent events based on the interleaving semantics. That is. shuffle

automata cannot distinguish two causally independent events interleaving with each other from two causally

dependent events.

Shuffle automata are an FSA-like formalism that consist of a set of states and a finite state control that effects

transitions from an initial state to some final state. An important difference between the shuffle automaton and an

FSA is that in order to make transitions in the shuffle automaton. the finite state control examines sets of input

symbols. rather than individual symbols. At run-time. the recognizer will accumulate the incoming events in a set.

Whenever a subset of the accumulated event set becomes sufficient to make a transition. the finite control then goes

>from the current state to another state. In the example of Fig. 4-12. if events a and b occur causally dependently

due to some synchronization events in the target system. when a and b arrive. the shuffle automaton will recognize

these two events as concurrent

Figure 4-12: The shuffle automaton for «a&b);(c;d;e»+(c;e*;(a&b»

5. Debugging Concurrent Programs
Most concurrency-related bugs involve problems with synchronization among multiple threads. which may share

information in a number of different ways. including shared memory. message passing. files and devices. and human

interaction. In this section. we demonstrate that DPEs are useful for aiding detection and correction of three typical

kinds of synchronization errors: race conditions. deadlocks and starvations.

A race condition happens when two or more concurrent threads interact with some common resources without

properly constraining the ordering of interactions. resulting in a computation that is nondeterministic and incorrect.

To eliminate the race conditions. appropriate synchronization must be added to the program so that the crucial

interactions are properly ordered and thus lead to a correct computation. Two types of synchronization mechanisms

are frequently adopted: (1) wait-resume and (2) rollback-retry. Wait-resume constrains the ordering of interactions

by blocldng threads from competing for resources. but may lead to a deadlock situation when two or more threads

16

wait for each other indefmitely due to lack of knowledge of the global situation. In the rollback-retry type of

synchronization, a thread constrains the ordering of interactions by expecting other threads to complete their crucial

interactions while temporarily releasing its resources. This may lead to a starvation situation where one or more

threads repeats the rollback-retry cycle indefinitely. In the standard dining philosophers example, there is a deadlock

when every philosopher has a fork: in his right hand and is waiting for the fork on his left-hand side; there is

starvation when a philosopher repeatedly picks up the forks on his right-hand side and then puts down the fork

because the fork on his left-hand side is always unavailable.

It is difficult to debug programs with race conditions, deadlocks or starvations, where bugs may be embedded in (1)

the synchronization primitives and/or (2) the program units that apply the synchronization primitives. It is also

difficult for programmers to detect, by observing the external program behavior, whether the error is caused by

buggy synchronization primitives or buggy program units. We assume in this paper that synchronization primitives

are always correct, and are thus concerned only with (2). One concern in debugging is reproducibility, since it is

desirable for the identical program behavior to be replayed by re-execution or simulation over and over again until

the bugs are located. We assume this is possible, but do not address the mechanism here.4

5.1. Debugging Race Conditions

There are two necessary conditions for race conditions: (1) concurrent threads share common resources, and (2) the

particular events within these threads that compete for the common resources are causally independent Therefore.

debugging a program with race conditions can be treated as a process of establishing relations of causal dependence

and detecting whether the critical events that access the common resources occur causally independently.

program producer_consumer;
var

s: semaphore := 1;
deposlted: semaphore := 0;

procedure producer;
var next: Integer;
begin
while true do

next = calculate();
P(s); -------------> (1)
enqueue(next); ------> (2)
V(s);
V(deposlted);

end;
end;

procedure consumer;
var next: inteeer;
begin
while true do

P(deposlted) ;
P(s);
next = dequeue();
V(s);
print(next);

end;
end;

be&ln
para-do

producerO;
consumerO;

para-end
end

Figure 5-1: Producer-Consumer Program

For example. Fig. 5-1 shows a simple producer-consumer program, where the producer thread puts numbers in a

queue, and the consumer thread gets and prints the numbers from the queue when the queue is not empty. A

semaphore 5 and its operations P (5) and V (5) are used for synchronization. Assume the P(s) at point (1) is

4In another paper lHseush 8gb], we describe. form of pseudo-replay where il iJ poclible to force reproducibility in many casel by stepping
through the partial ordering grlph generated by DPE rcrognition with respect 10. preparatory execution.

17

missing from the program. During execution, the queue data structure may become inconsistent. In order to debug

the program, the fl!St step is to define, using OPEs, the synchronization events in the program (see section 3.l).

Then, in the case w~ a race condition between producer and consumer is suspected, the second step is to

describe, in DPEs, the expected misbehavior that enqueue and dequeue occur concurrently.
enqueueO & dequeueO (prlnt(s); break;}

instructs the debugger to print the value of semaphore s and stop the execution when enqueue and dequeue

occur concurrently.

The third step is to replay the program execution. The program execution will stop at (2) and the value of s is

printed out. The debugger will detect the true concurrency of enqueue and dequeue, no matter how the event

messages interleave with each other. Some interleavings might accidently produce correct results and others

produce the wrong results; in both cases, the debugger will detect the race condition.

5.2. Debugging Deadlocks

There are four necessary conditions for deadlock [Coffman 71]:
1. Threads claim exclusive control of the resources they require (mutual exclusion condition).

2. Threads hold resources already allocated to them while waiting for additional resources (wait for condition).

3. Resources cannot be removed from the tlueads holding them until completion (no preemption condition).

4. A circular chain of threads exists in which each holds one or more resources that are requested by the next thread in the chain
(circular wait condition).

Debugging a program with deadlock requires the same description of synchronization events as in debugging a

program with race conditions, but has a more complicated expected program behavior.

One example is that LOCK and UNLOCK are used to allocate resources before reference to the data. The first three

conditions are determined by the synchronization primitives, and the fourth condition can be established by

constructing a wait-for graph during debugging. The synchronization events can be described as follows.
SYNC(X): UNLOCK(X).exit; LOCK(X).exit (sync_event($l, $2);}

The expected program behavior can then be described as
LOCK(X).exit{bold($1.pid, X)};UNLOCK(X).exit{unbold($l.pld, X)}
LOCK(X).enter;walt(){ walt _ (or($l.p Id,x);c beck _ deadlockO} ; resume() iLOCK(X).exit{relea.se($4.pld,x)}

where (1) the hold () function infonns the debugger that the thread of the event ($1 . pid) holds the resource x,

(2) unhold () tells the debugger that the associated thread ($3.pid) does not hold the resource x any more, (3)

wait_for () means that the associated thread ($l.pid) waits for resource x, (4) release () that the associated

thread no longer waits for the resource x, and (5) check_deadlock asks the debugger to check whether a

deadlock exists according to the infonnation provided by the first four functions.

18

5.3. Debugging Starvations

Starvation is a special type of race condition where a set of causally independent events might repeat indefinitely.

There is no easy way to detect this. In the example of dining philosophers, every philosopher might repeat picking

up the fork on his left-hand side and putting it down. One possibility for detecting this is to store the program state

every time a philosopher picks up his right fork and compare it with the previous states. If there exists an identical

previous state and between them no progress has been made, there may (or may not) be an error. Detecting

starvation is probably more amenable to program verification than debugging, but DPEs can check the correctness

of verification assertions during execution.

6. Conclusions

We have defined a formal notation, DPEs, for modeling concurrent behavior in the context of debugging parallel

programs. There are five subclasses of DPEs, four equivalent in power to a member of a hierarchy of Petri net

models and the fifth a subset of extended Petri nets. We have developed an efficient implementation vehicle for the

third subclass of DPEs, which models safe concurrency. We have briefly described the application of DPEs to

practical concurrent debugging problems, from a viewpoint of problem-oriented behavior. DPEs must be combined

with conventional debugging mechanisms to observe program-oriented behavior, for example, to support single

stepping among statements and modification of the program state at a breakpoint

Acknowledgments
Some of the ideas presented here originated in discussions with Timothy BaIraj, who has been working on Petri net

models [Balraj 86] and path expressions in the context of silicon compilers. We would also like to thank Janice

Stone, Bowen Alpern, Felix Wu and Dannie Durand for their helpful discussion, and Colin Harrison for his support

of DPE debugging. Krish Ponamgi is working with us on an implementation of DPEs for C on the IBM 8CE

multiprocessor running the Mach operating system [Rashid 87]. Krish is a co-op MS srudent at IBM under the

supervision of Colin Harrison. Yi-wun Lu and Taka Ishizuka have previously worked with us on the Meld

Debugger (MD) implementation of DPEs on Sun 3 workstations.

References
[Balnj 86]

[Bates 83)

[Bates 87)

[Bates 88a)

T.S. 8alraj IIld MJ. Foller.
~iJl Mannen: A Spccializ.ed Silicon Compiler for Synchronizen.
In Proe,ediIIg3 o/11v Founll MIT COff/erUte', pagel 3·20. The MIT Prell. April, 1986.

Peter Batea and Jack C. Wileden.
An ApproKh 10 High·Level Debugging 01 Distributed System.
In ACM S1GSoft/S1GPltut Sojtwtu, Effgiffurillg S)'mIHMium Off Higll·uvel Debuggillg. pagel 107·111. Pacific Grove, CA.

MMdl, 1983.
Special i.- of SojtwGT, EllliluITiIIg Notu, 8(4). August 1983.

Peter C. Bare..
SIuJf!l4 Awlomala: A Formal MocUl/or BeMvior RecogfliJioff ill Di.rlribulld Sy.rw,u.
Technical Repon COINS 87·7:7. Univenity 01 MaSJachusew at Amhent, January. 1987.

Peter BateJ.
Diruibutcd Debugging Tooll for Heter<>gct1eouJ DiJtributed SYlteml.
In 8111 '"UntaliONlI COtI/eruII:e Off DUlribulld CompWlillg Sy.rttlf1U, pagel 308·315. Computei' Society Prell. San JOie CA.

June, 1988.

[Bates 88b)

[Bruegge 83)

[Bruegge 85)

19

Peler Bates.
Distributed Debugging Tools for Heterogeneous Distributed Systems.
In ACM SlGPLANISIGOps Worehop 011 Parallel alld DistribuJed Debugging, pages 11-22 Madison WI, May, 1988.
Special iUIIe of SlGPLAN Notiets, 24(1), January 1989.

Bernd Bmegge and Peter Hibbard.
Generalilzd Path Expressions: A High-Level Debugging Mechanism.
Tite Jountal of Systems and Software 2(3):265-276, 1983.

Bernd Bruegge.
Adap/ability alld Portability of Symbolic Debuggers.
PhD thesis, Carnegie Mellon University, 1985.
CMU-CS-85-174.

[Campbell 74) R.H. Campbell and A.N. Habermann.
'The Specification of Process Synchronization by Path Expressions.
In G. Gooc and J. Hartmanis (editors), ucture Notes in CompuJer SciellCe. Volume 16: Operating Systems, pagel 89-102.

Springer-Verlag, Beriin, 1974.

[Coffman 71) E. G. Coffman, Jr., M. Elpbiclc; and A. Shoshani.
Systems Deadlocks.
CompuJing Surveys 3(2):71-76, June, 1971.

[Foster 86) MJ. Foster.
Avoiding Latch Formation in Regular Language Recogniurs.
In Proceedings of the Allertoll Conferellce 011 Communicatioll, COlllrol, and CompuJing, pages 740-748. University of illinois,

Urbana-O!ampaign IL, October, 1986.
This paper also appears in the IEEE VLSI TecJtnjcal Bulletin, I (2), September 1986.

[Garcia 89) Armando Garcia, David J. FOItc!" and Richard F. Freitas.
Tite AdlIallCed CompuJing ElIvirofIrMlII Multiprocessor Woretalion.
Technical Repon RC14491, mM Research Division, TJ.Wauon Research Center, Yorktown Heights, N.Y. 10598, February,

1989.

[Gars 88) Vijay Kumar Garg.
Specification and AIIalysis of DistribuJed Systems With a LArge Nwmbcr of Processes.
PhD thesil, University of California at Berlceley, 1988.

[Goldszmidt 89) German S. Go1dl7midl, Shmuel Katz and Shaula Yemini.
High Level Language Debugging for COllCurrelll Programs.
Technical Repon RC14341, mM Research Division, TJ.Watson Research Center, Yorlaown Heights, N.Y. 10598,lanuary,

1989.

[Hack 75] M. Hack.
DecidabjJity QlastiollS lor Petri Ntts.
PhD thesil, Depanment of Electrical Engineering, MallachuletU Institute of Technology, 1975.
Technical Repon 161.

[Hopcroft 79) Jolm E. Hopcroft and Jeffrey D. Ullman.
lntrodw:tionto AuJomala Theory, LaltfIuages and Computation.
AddilOO-Wesley Publishing Canpany, 1979, pages 28-35.

[Howden 87) William E. Howden.
Software Engineering aJtd TecJuwlogy: FlUlCtiONll Program T&fting ci ANJlysu.
McGraw-Hill BooIt Co., New Yortc, 1987.

[Hseush 88a) WezJwey Hsewh and Gail E. Kaiser.
Data Path Debuggina: Dala-Oriented Debugging for a Concurrent Programming Language.
In ACM SlGPUtNISIGOt» Worblwp "" Parall,1 aJtd DistribuJed D,bugging, page. 236-246. Madison WI. May, 1988.
Special iuue 01 SlGPLAN Noticu, 24(1), January 1989.

[Hseush 88bl WClWff'j HJeUJh and Gail E. Kaiser.
C01ICIITTUII Bntlkpoillling.
TcclmicallUJpon CUCS-402-88, Columbia University Deparunent c:l Computer Science, October, 1988.

[Jolmson 78) S.c. JoIuual and M.E. Lesk.
Language Development Tooh.
TM B,1l Syslt", T,clutiaJl JoJTNJI 51(6):2155-2175, July-Augun, 1978.

[Kaiser 89) Gail E. Kaiser, Steven S. Popovich, Wenwey H.eush and Shyhtnm Felix Wu.
Melding Multiple Granularities c:l Panllelism.
In Stephen Cook (editor), 3,d Ewrope4ll Con/erellCt on Object.Oriellltd ProgrammiltfI, ~gea 147-166. Cambridge University

Press, Nouinghllll, UK, July, 1989.

[Keller 721 R. Keller.
V,ctor Replacemtlll Systenu: A Formtl/ismfor Motkling AsyIIchrOttOU.f Systenu.
Technical Repon 117, Canputer Science Laboratory, Princeton University, December, 1972.

(Knuth 68)

(I-3IDpon 78]

[Lauer 75]

(Lauer 81)

[Linton 81]

[Miller 88]

(Milner 80]

(peterson 81)

[Rashid 87)

[Reps 84]

[Thomas 76)

20

Donald E. Knuth.
Sc:rnantics of Context-Free Languages.
MaJllunalical Systems Theory 2(2):127-145, June, 1968.

Leslie Lamport.
TIrIle, Cocks and the Ordering of Events in a Distributed System.
CACM 21(7):558-564, July. 1978.

P. E. Lauer and R. H. Carnpbcill.
FonnaI Semantics of a aUI of High-Level Primitives for Coordinating Concurrent Procellel.
Aeta Informatica 5(4):297-332. 1975.

P. E. Lauer and M. W. Shields.
Formal behavioural spedfication of concurrent system. without globality assumptions.
In 1. Diu and I.Ramos (editor). Leetlln NOles in CompuJer Sc~nce. Number 107: Proceedings of Internation Colloquium on

Formalization of Programming Concepts. pages 115-151. Springer-Verlag. Berlin. 1981.

~. Linton.
A Debugger for the Berkeley Pascal System.
Master's thesis. Univenity of California at Berkeley. June. 1981.

Barton P. Miller and Jong-Deok OIOL
Breakpoints and Halting in Distributed Programs.
In 8111 International Conference on DistribuJed CompuJing Systems. pages 316-323. Computer Society Press, San Jose CA.

June, 1988.

Robin Milner.
A Calculus of Communicating Systems.
In G, Goes and J. HBI1manis (editon). LeclllTe NOles in CompuJer Sc~nce (92). Springer-Verlag. Berlin. 1980.

James L Peterson.
Petri Net Theory and The MlXkling of Systems.
Prentice-Hall. Inc .• Englewood aiffs. NJ 07632, 1981.

Richard Rashid, Avadis Tevanian. Michael Young. David Golub. Roben Baron. David Blaclc. William BolOlky and Jonathan
Otew.
Machine-Independent Virtual Memory Management for Paged Uniprocellor and Multiproceuor Architectures.
In 2nd InternalioNl/ Confuence Oft ArcniucllITa/ Supportfor Programming Languages and Opuati1l8 Systenu. paga 31-39.

Palo Alto CA. October. 1987.
Special issue of SIGPlan NOlices. 22(1O}. October 1987.

Thomas Reps.
Generating Language-Based EnvironlMnts.
The MIT Press, Cambridge MA. 1984.

P.Tbomu.
The Petri Net: A Modeling Tool for the Coordinatioo of Asynchronous processes.
~aster's thesis. Univenity of Tennessee. 1976.

21

I. Safe DPEs = k-safe nets
Safe DPEs are equivalent to k-safe nets. That is, four operators (; ... + &) are necessary and sufficient to express safe

concurrency. In order to prove this, we have to show (1) every expression constructed with (; ... + &) can be

translated to a k-safe_ net, and (2) every k-safe net can be expressed by a safe DPE.

1.1. Proof: safe DPEs --> k-safe nets

By construction: Given an expression including only (; ... + &), t~e corresponding k-safe net can be constructed by

translating every operator with the associated events into a net graph (see Fig. I-I).

a;b

a

a* a

a
a&b

Figure 1-1: Constructing k-safe nets

Since the number of tokens in each component is conserved, the number of tokens in the constructed k-safe net is

conserved.

1.2. Proof: k-safe nets --> safe DPE

To show that every k-safe net can be expressed by a DPE constructed with (; ... + &) is more difficult than the fIrSt

part. Some definitions are given. Let split transitions be the transitions with multiple outputs, and join transitions

be the transitions with multiple inputs; thus the degree of parallelism is increased by firing split transitions and

22

decreased by fIring join transitions. Here, split refers to the fIring action of a split transition and branch refers to the

selection of a multiple-output place. A standard k-safe net is a k-safe net with fIve conditions: (1) every split

transition has exactly two outputs, (2) every join transition has exactly two inputs, (3) the initial marking is such that

there is only one token in a start place and zero tokens elsewhere, and (4) there is no path in the net graph that starts

at one output of a split transition and ends at the same transition without joining with any path that starts at the other

output of the same transition.

We show this in two steps:
1. Every k-safe net can be translated to a standard k-safe net.

2. Every standard k-safe net can be expressed by an expression constructed with the four operators (; ... + &).

It is easy to show the fIrst three conditions (see Fig. 1-2). A split transition with n outputs can be translated to n-1

split transitions with two outputs, and a join transition with n inputs can be translated to n-} join transitions with two

inputs. A k-safe net with the initial marking of n tokens in the start places S can be translated to a k-safe net by

adding a new place p and a new n-output split transition t, where (1) p is the new start place with one token, (2) pis

the only input place of t, (3) the original start places S are the output places of t, and (4) n tokens in S are removed.

Figure 1-2: Standard k-safe nets

For the fourth condition of standard k-safe nets, all decisions can be made at the fIrst place. All possible cases of

23

k-safe nets have to be considered. Split transitions in k-safe nets can be categorized into three possible cases 1-3:
• No cycle: There is no path that starts at one split transition and ends at the same transition.

• Conserved cycle: A path that starts at one output of a split transition and ends at the same transition joins with a path that
starts at the second output of the same transition. The number of token is conserved.

• K-bounded cycle: The maximum number of firings of a split transition with an unconserved cycle is bounded by k.

One case left out from Petri nets is that the maximum number of firings of a split transition is unbounded. A Petri

net with this condition is unsafe. A split transition with no cycle or conserved cycles satisfies the fourth condition of

standard k-safe nets. A split transition with a k-bounded cycle can be translated into k split transitions with no

cycles. The first step shows that a k-safe net can be translated into a standard k-safe net

The second step will show that every standard k-safe net can be expressed by a safe DPE. In order to simply the

proof, we assume the given standard k-safe net is an I-safe net, which satisfies two conditions:
• I-safe net: The maximum munber of tokens in a place is bounded by one.

This assumption is reasonable because every k-safe net can be translated to a I-safe net, and every I-safe net can be

translated to an I-safe nets.

A standard I-safe net can be expressed by a safe DPE. Split transitions in standard I-safe net can only be in one of

two cases: (1) no cycles and (2) conserved cycles.

In the case of no cycles, a DPE can be constructed by parsing the I-safe net from the start place to the ends of the

net according to the rules: (1) translate two sequential transitions a, b into expression a; b, (2)translate transitions

a, b, c,.. starting from a multi-output place into expression a +b+c+ ... , and (3) translating the outputs

(only two) of a split transition into two expressions related with (&). The first expressionn is constructed by parsing

the sub-net starting from the first output of the split transition to the end according to the rules. The second

expression is constructed by parsing the sub-net starting from the second output of the split transition but stop at the

events that already appears in the first expression.

In the case of conserved cycles (*), the proof is the same as that a fmite state machine can be denoted by a regular

expression.

II. Extended DPEs: a Subset of Extended Petri Nets
This is obvious, since (1) the subclass of general DPEs is qui valent to Petri nets (2) a general DPE is a extended

DPE, and (3) every extended DPE can be represented by an extended Petri net

