
Infrastructural Support for Enforcing and

Managing Distributed Application-Level

Policies

Tom Goovaerts1 Bart De Win2 Wouter Joosen3

DistriNet Research Group
Department of Computer Science

K.U.Leuven
Leuven, Belgium

Abstract

State-of-the-art security mechanisms are often enforced in isolation from each other, which limits the kinds
of policies that can be enforced in distributed and heterogeneous settings. More specifically, it is hard to
enforce application-level policies that affect, or use information from multiple distributed components. This
paper proposes the concept of a Security Service Bus (SSB), which is a dedicated communication channel
between the applications and the different security mechanisms. The SSB treats the security mechanisms as
reusable, stand-alone security services that can be bound to the applications and it allows the enforcement
of advanced policies by providing uniform access to application-level information. This leads to a security
infrastructure that is more flexible and more manageable and that can enforce more expressive policies.

Keywords: security policies, policy management, security enforcement, distributed systems

1 Introduction

Distributed applications consist of interacting components that are deployed on

various locations in the network. Nowadays, instead of being programmed from

scratch, applications are often built by composing heterogeneous, reusable compo-

nents. When security becomes a priority, several techniques exist to bind security

mechanisms to these components. For instance, security mechanisms can be sup-

ported by the middleware such as an application server or a virtual machine, they

can be injected in the code by security automata [20] or aspect-oriented program-

ming techniques [6], or they can simply be embedded in the code of the components.

1 Email:tom.goovaerts@cs.kuleuven.be
2 Email:bart.dewin@cs.kuleuven.be
3 Email:wouter.joosen@cs.kuleuven.be

Electronic Notes in Theoretical Computer Science 197 (2008) 31–43

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.10.012

mailto:tom.goovaerts@cs.kuleuven.be
mailto:bart.dewin@cs.kuleuven.be
mailto:wouter.joosen@cs.kuleuven.be
http://www.elsevier.com/locate/entcs


In either way, the distribution of the functional components implies that the security

mechanisms are spread throughout the infrastructure.

An important problem with the spreading of security mechanisms is that the

enforcement of application-level policies affecting multiple locations (i.e. compo-

nents) becomes difficult. Most mechanisms are not designed to support different

locations – nor should they be – and while a number of specific technologies exist

that might solve this problem to some extent (e.g., security protocols, JACC [21]

or XACML [18]), they are by no means a complete solution. Extra infrastructural

support is needed to connect the different, heterogeneous components and mecha-

nisms together in a unified way. This will increase the necessary level of control of

security policies in nowaday’s applications and the management thereof.

The main contribution of this paper is the discussion of the Security Service

Bus (SSB), a dedicated communication channel that interconnects the functional

components and security mechanisms within a certain trust domain. The SSB treats

security mechanisms as first-class, reusable services that can use information from

components and that are bound to the components. The advantages of the SSB

are the potential to enforce a broader spectrum of security policies, the unified view

on the security infrastructure and the gained flexibility and manageability. Remark

that this paper does not provide a concrete and finalized SSB solution. Rather, it

elaborates on the requirements, advantages and challenges of the SSB concept.

In Section 2, we illustrate the need for the SSB by means of a concrete example.

In Section 3, we discuss the SSB concept in more detail. Section 4 shows how to

the SSB facilitates the enforcement of the policies from Section 2 and points out

some other interesting applications of the SSB. Section 5 discusses related work and

Section 6 concludes the paper.

2 Motivation

In this section, we discuss why the fact that security mechanisms operate in isolation

from each other limits the enforcement capabilities of the security infrastructure.

2.1 Example

Suppose we have an enterprise that offers an online shopping application consisting

of three main components (see Figure 1). The web site that presents the shop to

the user is implemented in the Web Shop servlet component on a Java EE [22]

web container. This component interacts with the Shopping Cart Enterprise Java

Bean (EJB) which is deployed on an EJB container on another host and maintains

the items that the user is going to buy. The web shop and the EJB component

communicate with each other over the RMI/IIOP protocol [11]. The Shopping Cart

component in its turn requires a Payment component which is deployed on a third

host, but is implemented in the .NET framework. All communications between the

Shopping Cart and the payment component are realized over the SOAP protocol

[25].

The platforms that host each of these three components enforce a set of security

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–4332



Web
Container

EJB
Container .NET CLR

Web 
Shop

Shopping 
Cart EJB

Payment
Assem-

bly

RMI/IIOP SOAP
user

Fig. 1. The example scenario consisting of three interoperating software systems.

mechanisms and policies at runtime. Typical examples of security mechanisms that

are enforced are user component-authentication, access control and auditing. Now,

consider the following policies:

(i) At the web shop, deny all access to customers that are registered as bad payers

at the Payment component.

(ii) At the host that runs the Payment component, ensure that the payment of a

user is equal to the amount in its shopping cart.

(iii) When an unauthorized user repeatedly tries to access the administrative inter-

face of the web shop, increase the level of auditing at all three sites.

The first and second policies illustrate that a policy might need access to in-

formation that is not local to the enforcement point for that policy. In the first

policy, the access control mechanism of the web container needs information from

the .NET component and in the second example, the access control mechanism of

the .NET environment needs information about the EJB component. The third

policy illustrates that security policies might affect several distributed components:

the detection of an event at the web container triggers a change in the policies of

different security mechanisms.

Without any further support, supporting policies like these is not straightfor-

ward. The first and the second policies depend on information that is located in

other (remote) components. Some information about the caller (mainly its identity

and/or its credentials) is usually propagated over communication protocols such as

IIOP and SOAP, but evidently it is not feasible to propagate all kinds of informa-

tion the security mechanisms will ever need, especially when this is application-level

information that is not always known beforehand. One way of implementing these

policies without any further support is to make all the components interoperable

using a common protocol such as SOAP. Another approach is to let some com-

ponents be proxies for components they are connected to. For instance, the EJB

component could expose the bad payer attribute from the payment component to

the web shop. For supporting the third policy, the auditing policies of the different

middleware platforms would need to be exposed to the web container and the audit

mechanism on the web container would need to be able to detect the attempted

access to the management interface.

Implementing these policies in an ad hoc way may work to some extent but

is far from optimal: dependencies on specific components need to be injected in

the code of the components or into the security mechanisms. It is clear that these

approaches are hard to manage and do not scale well if the information that is

required changes/grows and if the policies change.

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–43 33



2.2 The Missing Link

The three policies from the previous section are hard to implement because they

require application-level information from several distributed components, and be-

cause the security mechanisms operate in isolation from other mechanisms and com-

ponents. This is especially hard when these components are heterogeneous. The

sketched solutions always require the introduction of some form of communication

channel between the security mechanisms on one hand and the functional compo-

nents on the other hand. Once such a channel is put in place, the example policies

can be supported much easier. The SSB precisely provides such an information

channel, and it does so in a generic way.

While there is no generic approach for sharing security information, some spe-

cific solutions and building blocks do exist. In the first place, various dedicated and

low-level security protocols exist that serve specific purposes such as key distribu-

tion or mutual authentication. These protocols allow the communication between

two or more security mechanisms but they only focus on one specific security con-

cern. Secondly, the sharing of security information is supported to some extent

in the communication protocols that are used between the different parts of a dis-

tributed application. Several middleware protocols such as IIOP and SOAP have

support for piggybacking security information to messages, for example in the form

of certificates or assertions. These protocols are usually generic and they can use

standardized representations such as WS-Security [17] and SAML [16], but they are

only building blocks in the sense that the applications and the security mechanisms

still have to agree upon which information should be propagated and under which

form. E.g., it is trivial to propagate the user’s role, but it is less straightforward to

determine the fact that precisely the role needs to be propagated.

The increased distribution of applications over the past decades is being followed

by an increased distribution and centralization of security mechanisms themselves.

Traditionally, security mechanisms have been tightly coupled with the applications

that need to be secured: applications either implemented the security mechanisms

themselves or they made use of software libraries that provide security mechanisms.

This monolithic design has evolved towards offering the security mechanisms in the

middleware that connects the applications, such as virtual machines, object request

brokers and application servers. Typical examples of concrete middleware-level

security mechanisms are the CORBA Security Service [10] and implementations of

the Java EE security model. The inevitable and ongoing next step in the sharing of

security logic is to pull certain security mechanisms out of the middleware and to

offer them as reusable services, that can be managed centrally and can be reused by

many heterogeneous components. This evolution can be seen by the appearance of

various security services such as Kerberos [15], Akenti [23], Tivoli Access Manager

[13] and Shibboleth [1] to name a few.

The use of centralized audit and authorization services in our example would

make supporting the required policies easier since we do not need to make the

platforms dependent on each other. However, if the number of components and

security services grows, the situation quickly becomes hard to manage and inflexible,

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–4334



because each of the security services has their own way of communicating with the

applications. The SSB aims at solving these issues by connecting the mechanisms

and the applications using an intermediary abstraction layer.

3 The Security Service Bus

We propose to interconnect the different components and security mechanisms by

means of a dedicated communication channel for security-relevant information such

as security policies, security-relevant events and contextual information. In this

section, we elaborate on this approach which we call the Security Service Bus.

First, we discuss the most important requirements. Subsequently, we present the

core concepts and components of the SSB and discuss their goal. Finally, we explore

which kinds of security information can be exchanged on the SSB.

3.1 Requirements

The SSB is a dedicated communication channel that interconnects the different

components of a distributed application and the security services. In order to guar-

antee the benefits of this approach, the following requirements need to be taken into

account.

Flexibility Since the SSB needs to provide a more flexible security infrastructure,

it must be flexible as a platform itself.

Security Besides giving increased flexibility, the SSB can also make the environ-

ment more secure, because there is a dedicated channel for sensitive security

traffic. However, if the SSB is compromised, the consequences can be disastrous.

Every single security service an application would be exposed to the attacker.

Therefore, it is extremely important that the bus itself is highly secured.

Performance The more information security mechanisms can use, the larger the

performance overhead can become, especially when the information is distributed.

Because security mechanisms often block functional components (e.g. while mak-

ing an authorization decision), the introduction of the SSB can have far-reaching

performance consequences. Therefore it is important to keep the performance

overhead under control. In a second step, the SSB can also be used to make the

security infrastructure more efficient.

3.2 Conceptual Overview

The SSB is a dedicated security-specific communication channel that lets the com-

ponents and the security mechanisms exchange information with each other. Based

upon this communication channel, the SSB brings the established principle of sep-

arating functional logic and security logic to a distributed setting. It does so by

virtualizing the security infrastructure as a set of interoperating components and

security services that can be accessed, managed and bound to each other in a uni-

form way. Each component in a distributed infrastructure that needs to be secured

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–43 35



Application

Security 
Service

Information Enforcement

Management Security

Security Service Bus

Application Binding

Fig. 2. Application bindings and security services.

and each security mechanism that provides security logic is connected and deployed

on the SSB together with an exact specification of what the application or security

service requires and provides in terms of security information and security logic.

We assume that the SSB is deployed within a single trust boundary.

Security Services

The SSB treats security mechanisms as first-class reusable services that can be

invoked, managed and composed with applications and with each other. The se-

curity services do not have to be completely independent components, they can

also belong to existing middleware platforms. Security services are the components

that contain the security logic and they implement a security interface and a man-

agement interface (see Figure 2). The security interface specifies the core security

functionality. For instance, for an audit service, the security interface contains oper-

ations for auditing events and for an authorization service, it contains operations for

making authorization decisions given certain contextual information. The manage-

ment interface specifies operations that can be invoked to configure an manage the

security service, such as loading a certain policy or enabling/disabling the service.

The SSB keeps track of all security services that are registered and can it invoke

their functionality when it is needed. The security services themselves can use the

SSB for obtaining application-level information.

Application Bindings

Applications are bound to the SSB by means of an application binding. This is

a wrapper component that presents an abstract view on an application to the SSB.

The SSB aggregates all these views on the applications and provides a uniform

abstraction layer to the security services that is independent of all application-

specific details and that contains all application-level information available. When a

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–4336



security service needs a particular piece of information, the SSB mediates the request

and ensures that the application binding that offers the information is queried. The

model that is used to specify the interfaces of the application binding consists of:

(i) A set of subjects S and subject attributes SA. Subjects represent the active

entities in the application, typically the users.

(ii) A set of resources R and resource attributes RA. Resources represent the assets

of the application that need to be protected. We assume that resources are

organized hierarchically.

(iii) A set of actions A and action attributes AA. Actions represent the operations

that can be executed on the resources. Each action is associated with one

resource and one resource has many actions.

(iv) Three binary relations “.” that associate subjects, actions and resources from

S, A and R with their attributes from SA, AA and RA respectively.

The application binding implements of an enforcement interface and an informa-

tion interface. The enforcement interface specifies all resources that are contained

in the application and lists all the actions that can be performed on these resources.

Resources and actions can correspond directly to low level concepts in the imple-

mentation of the application (such as a class and its methods), but they can also

represent more abstract entities. The application binding guarantees that the be-

havior of the security services can be invoked each time an action on a resource is

called. The security services can then use the SSB for obtaining information about

the subject that wants to execute the action, the action itself and the resource on

which the action is executed.

The information interface specifies which attributes about the subjects and re-

sources of the application are made available to the SSB. Besides using information

about a local invocation of an action, security services can make use of the in-

formation of other application bindings for obtaining additional information. The

information interface consists of S, SA, R, RA and their association relations and of

the hierarchy of R. In this case, the subjects do not only represent active subjects,

but rather group all static and dynamic information an application has about a cer-

tain user, for instance, a user’s age or telephone number. R represents all resources

the application exposes such as an account or a form. The information that can be

represented in the information interface either belongs to subjects or to resources.

For some kinds of information it is possible to model it as a subject attribute or as

a resource because it relates to both. For instance, a particular users’ account at

the payment component can be an attribute of the a subject or it can be a resource

with the subject’s name as an attribute.

A particular deployment configuration of the security bus will consist of a num-

ber of security services, a number of applications and a number of application bind-

ings. One of the big advantages of the explicit notion of application bindings is that

the correctness of the configuration can be verified by checking whether the appli-

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–43 37



cation bindings match the policies of the security services in terms of attributes and

operations they must provide. In that sense, the main challenge in (re)configuration

is to maintain this condition as an invariant.

3.3 Classification of Security Information

The definition of the security bus is intentionally kept rather broad. This section

explores the possible kinds of security-related information that can be shared on

the SSB. Three main categories of security information are distinguished.

Policies

Most security services are configured by a declarative policy that specifies the

expected behavior of the service. Security policies are used to make easy adapta-

tions to the behavior of the security service due to changing security requirements.

Administrators of the SSB can change or query policies over the management in-

terfaces of the security services, but security services can also transfer the policies

themselves. For instance, an authorization service can reason about its policy and

send an optimized sub-policy to another authorization service for performance rea-

sons. Two major kinds of security policies are distinguished:

• Configuration policies specify various configuration parameters of a security ser-

vice such as the location of an LDAP server, the use of specific keys or initializa-

tion vectors, or the kind of authentication mechanism that has to be used.

• Security Policies are specific to a security mechanism and are written in a lan-

guage that is based on a particular security model such as RBAC [7]. These

kinds of policies are more abstract than configuration policies. Typical exam-

ples of high-level security policies are access control policies, username-password

mappings and role assignment policies.

Events

In the context of security information, events are things that happen in a system

that are relevant for security. Often, an event is a trigger of security logic. Usually,

an event is triggered by the invocation of an operation or the sending of a message.

Security events are found at two levels:

• Security-specific events are events that are generated by security services them-

selves. Examples are authentication decisions or authorization decisions.

• Security-relevant events In most cases, security logic is initially triggered by an

application-specific event. An application-specific event is an event about an

application- or platform-level abstraction. An example of a generic security event

is the invocation of an operation.

Contextual Information

This is application-level information that is used in various security policies.

This information is represented in the form of attributes and can relate to subjects

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–4338



or resources. Attributes can be application-specific, such as the bad payer attribute

in the example, or they can be security-specific, such as the credentials or the role

of a user.

4 Application of the SSB

In this Section, we show how the SSB can be used to enforce the concrete policies

from Section 2.1 and we show how the SSB facilitates solving some more advanced

scenarios.

Figure 3 illustrates how the SSB can be used to support the policies from the

example in Section 2.1. The three components are now bound to the SSB. The

interfaces of the application bindings are shown in Table 1. Because attribute

mappings and resource-action mappings are trivial, they are omitted. Attribute

values are not shown either. The enforcement interface of the web container lets

security services intercept HTTP messages and the enforcement interfaces of the

EJB container and of the .NET runtime can intercept method calls. The bindings

are responsible for translating application state to the enforcement and information

interfaces.

The audit and access control mechanisms from the three middleware platforms

have been replaced by two security services, of which the security interfaces are

shown in Table 2. Each of the middleware platforms now write their audit records

to the audit service and query the authorization service for authorization decisions.

The authorization and audit services now hold a policy that states which operations

are permitted or audited respectively. These policies are expressed in terms of

actions of the enforcement interfaces. When a user invokes an action on a protected

resource (directly or indirectly) at one of the components, the middleware platforms

notify the SSB of this event. The SSB then notifies each security service that

needs to know this event, in our case both of the security services. 4 When the

authorization service needs to make a decision for the first and second policies, it

queries the information interfaces of the other applications via the SSB in order

to obtain the badpayer attribute from the Payment component and the totalprice

attribute from the cart of the active subject. If an authorization decision is made,

it is returned to the application binding and another event is placed on the SSB.

The audit service inspects the authorization decision events and when it detects a

repeated denial event for the management interface of the Web Shop component, it

raises makes its audit policy more strict.

This example only illustrates the basic functionality of the SSB but once the SSB

is put in place, more advanced scenarios can be supported. For instance, the SSB

can offer a session management service that allows different applications to share

4 While it is true that this would generate an enormous amount of events, we stress that this discussion is
held at the conceptual level. An implementation of the SSB can realize the same overall effect much more
efficiently.

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–43 39



I EI EI E

M SM S

Security Service Bus

Authorizati
on Service

Web
Container

EJB
Container .NET CLR

Web 
Shop

Shoppi
ng Cart 

EJB

Payme
nt

Assem
-bly

RMI/IIOP SOAP
user

Audit 
Service

Application Binding Application Binding Application Binding

Fig. 3. The Example Revisited.

Table 1
The Application Bindings for the Example.

Information Interface Enforcement Interface

Web

Shop

S = {alice, bob}

SA = {certa, certb}

R = {webshop, adminintf}

S = {alice, bob}

SA = {certa, certb}

R = {webshop, adminintf}

A = {post, get}

Shopping

Cart

S = {alice, bob}

SA =

{nbitems, totalprice, role}

R = {carta, cartb}

S = {alice, bob}

SA =

{nbitems, totalprice, role}

R = {carta, cartb}

A = {add, remove, checkOut}

Payment

Com-

ponent

S = {alice, bob}

SA = {badpayer}

R = {accounta, accountb}

RA = {balance}

S = {alice, bob}

SA = {badpayer}

R = {accounta, accountb}

RA = {balance}

A = {pay}

Table 2
The Security Interfaces for the Example.

Audit Service audit(Event event)

Authorization Service bool isAuthorized(Subject s, Action a, Resource r)

a common security context which can hold, for example, information about the

usage history of a principal. Another application is policy distribution: a centrally

specified policy can be decomposed and distributed to decision points that are nearer

to the resources that need to be protected.

An important assumption in the preceding discussion of the SSB is that it is

deployed within a single trust domain: all components in the example reside in

the same company or division and the security requirements originate from a single

authority. Relaxing this assumption complicates the SSB, but also reveals some

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–4340



interesting problems that can be tackled more easily when a SSB is provided. Sup-

pose that we have a single security domain consisting of many subdomains. In such

a case, the flow of security information needs to be controlled very tightly. Guaran-

teeing this without an SSB would be very cumbersome. However, when applications

within these domains would be connected by a SSB, they could explicitly advertise

the information flow policies and rely on the SSB for enforcing them in a uniform

way.

5 Related Work

We are not aware of any work that proposes to use a global platform for security

services. However, research does exist that links various security services to each

other. Foley [8] introduces a framework that allows the sharing of access control

policies between different middleware platforms. All policies can be encoded in a

format that is based on Keynote credentials. The framework supports configura-

tion, comprehension, migration, maintenance and decentralization. McDaniel [14]

proposes a flexible security enforcement architecture for a group communication

system called Antigone. The architecture enforces low level session policies that

specify the security properties of a group session. Flexibility is achieved by using

an event bus for communication between the API and the security mechanisms.

Several authors have explored the enforcement of advanced security policies that

can take into account more information than the typical user/action/resource at-

tributes. For instance, the dimension of time can be included and decisions can be

made depending on previous events [20,2] or future events [12,9]. In the field of

access control, several authors have proposed ways of representing, using and ob-

taining application-level information for use in access control policies [3,24]. These

advanced policy enforcement mechanisms work well in local and homogeneous en-

vironments, but because of the lack of a uniform communication channel, it is hard

to apply them in a distributed and heterogeneous setting. The work that perhaps

comes closest to the SSB is Tivoli Access Manager [13], but this approach only

considers access control and as such it does not address the problem of generically

binding the applications with security services.

The security mechanisms within some platforms are architected with flexibility

in mind in the sense that third parties can develop pluggable modules that extend

the security functionality. For instance, the Java Authentication and Authorization

Service (JAAS) [4] and the Java Authorization Contract for Containers (JACC) [21]

allow customization with new authentication mechanisms and authorization engines

respectively. The SSB can be seen as a generalization of these approaches that is

inherently distributed.

Existing ways of sharing security information are mostly found in middleware

protocols such as IIOP, .NET Remoting or SOAP. When propagation at the protocol-

level is not possible, alternative solutions are needed. In the literature, different

approaches exist for attaching security metadata to an execution context at a lower

level than the protocols. Stateful Distributed Interposition (SDI) [19] and Cause-

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–43 41



way [5] provide system-level architectures for automatically propagating metadata

between different distributed processes. These systems use an instrumented ker-

nel and copy metadata at transfer points in the call flow of the application. The

difference with our work is that we envision a more generic form of information

sharing: instead of only pushing security attributes along with the application flow,

like these systems do, the SSB supports more types of information and is based on

a pull model where the security services request the information themselves. How-

ever, these systems can be useful instruments for implementing certain parts of a

SSB, especially keeping track of sessions.

6 Conclusion

In this paper we have motivated the Security Bus concept as a way of interconnecting

security services and we have illustrated how to apply this idea to the enforcement

of a set of policies that span multiple distributed applications. This work discusses

the general concept of an SSB rather than a fully worked-out architecture. We

are currently designing the first version of our architecture in detail and we aim to

validate it in a prototype.

References

[1] Internet 2. The shibboleth project. http://shibboleth.internet2.edu/ .

[2] M. Abadi and C. Fournet. Access control based on execution history. Proceedings of the 10th Annual
Network and Distributed System Security Symposium, pages 107–121, 2003.

[3] K. Beznosov. Object security attributes: Enabling application-specific access control in middleware.
Proceedings of the 4th International Symposium on Distributed Objects & Applications (DOA), 2002.

[4] Lai C., L. Gong, L. Koved, A. Nadalin, and R. Schemers. User authentication and authorization in the
java platform. In Proceedings of the 15th Annual Computer Security Applications Conference, 1999.
http://java.sun.com/products/jaas/.

[5] K. Chanda, K. Elmeleegy, A. Cox, and W. Zwaenepoel. Causeway: Support for controlling and
analyzing the execution of multi-tier applications. In Middleware, volume 3790 of Lecture Notes in
Computer Science, pages 42–59. Springer, 2005.

[6] B. De Win. Engineering Application-Level Security through Aspect-Oriented Software Development.
PhD thesis, Katholieke Universiteit Leuven, 2004.

[7] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed NIST standard
for role-based access control. ACM Transactions on Information and System Security, 4(3):224–274,
2001.

[8] S. Foley, T. Quillinan, M. O’Connor, B. Mulcahy, and J. Morrison. A framework for heterogeneous
middleware security. Parallel and Distributed Processing Symposium, 2004.

[9] P. Gama and P. Ferreira. Obligation policies: an enforcement platform. Proceedings of the Sixth IEEE
International Workshop on Policies for Distributed Systems and Networks, pages 203–212, 2005.

[10] Object Management Group. CORBA security service spcification, version 1.8.
http://www.omg.org/cgi-bin/apps/doc?formal/02-03-11.pdf , 2002.

[11] Object Management Group. Common object request broker architecture specification, version 3.0.2.
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-01.pdf , 2004.

[12] K. Irwin, T. Yu, and W.H. Winsborough. On the modeling and analysis of obligations. Proceedings of
the 13th ACM conference on Computer and Communications Security, pages 134–143, 2006.

[13] G. Karjoth. Access control with IBM tivoli access manager. ACM Transactions on Information and
System Security, 6(2):232–257, 2003.

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–4342

http://shibboleth.internet2.edu/
http://www.omg.org/cgi-bin/apps/doc?formal/02-03-11.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-01.pdf


[14] P. McDaniel and A. Prakash. A flexible architecture for security policy enforcement. DARPA
Information Survivability Conference and Exposition, 2003. Proceedings, 2, 2003.

[15] B.C. Neuman and T. Ts’o. Kerberos: an authentication service for computer networks. IEEE
Communications Magazine, 32(9):33–38, 1994.

[16] OASIS. Security Assertion Markup Language Specification, Version 1.1, 2003.

[17] OASIS. Web Services Security: SOAP Message Security, Version 1.0, 2004.

[18] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0, December 2005.

[19] J. Reumann and K.G. Shin. Stateful distributed interposition. ACM Transactions on Computer
Systems, 22(1):1–48, 2004.

[20] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and System
Security, 3(1):30–50, 2000.

[21] Sun Microsystems. Java authorization contract for containers (JACC) version 1.0.
http://java.sun.com/j2ee/javaacc/index.html , November 2003.

[22] Inc. Sun Microsystems. Java enterprise edition. http://java.sun.com/javaee .

[23] M. Thompson. Akenti: Distributed access control. http://dsd.lbl.gov/Akenti/ .

[24] T. Verhanneman, F. Piessens, B. De Win, and W. Joosen. Uniform application-level access
control enforcement of organizationwide policies. Proceedings of the 21st Annual Computer Security
Applications Conference, pages 431–440, 2005.

[25] W3C. Simple object access protocol, version 1.2 recommendation. http://www.w3.org/TR/soap/ .

T. Goovaerts et al. / Electronic Notes in Theoretical Computer Science 197 (2008) 31–43 43

http://java.sun.com/j2ee/javaacc/index.html
http://java.sun.com/javaee
http://dsd.lbl.gov/Akenti/
http://www.w3.org/TR/soap/

	Introduction
	Motivation
	Example
	The Missing Link

	The Security Service Bus
	Requirements
	Conceptual Overview
	Classification of Security Information

	Application of the SSB
	Related Work
	Conclusion
	References

