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ABSTRACT 

This paper presents results of efforts during 1979-1981 to integrate and enhance the 
work of the System ARchitects Apprentice (SARA) Project at UCLA and the 
Information System Design Optimization System (ISDOS) Project at the University 
of Michigan. While expressing a need for a requirements definition subsystem, 
SARA had no appropriate requirements definition language, no defined set of 
requirements analysis techniques or tools, and no procedures to form a more 
cohesive methodology for linking computer system requirements to the ensuing 
design .. Research has been performed to fill this requirements subsystem gap, using 
concepts derived from the ISDOS project as a basis for departure. 
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INTRODUCTION 

Research into requirements definition and design method­
ologies for Computer-based Information Processing Systems 
(CIPS) has been extensive. Some fundamental concepts have 
emerged: 

1. Hierarchical decomposition from abstract descriptions to 
refined detail1 

2. Verification analysis to ensure that each level of descrip­
tion is consistent with and traceable to adjacent levels2 

3. Simulation as a legitimate analysis aid in detecting in­
complete and inappropriate designs3

,4 

Many methodologies utilize notations that ease the burden 
of analysis and decomposition as well as provide a vehicle 
that enhances understanding and design freedom. Of prin­
cipal interest are pictorial and graphical modelling, 5 special­
ized textual languages,6,7,8 and database management of 
information.9 

Less prevalent before the SARA research 10-13 was recog­
nition of the following needs: (1) describing attiibute require­
ments along with process and function requirements, (2) 
modelling CIPS structure as well as behavior, (3) separating 
models of the environment and the CIPS and modelling the 
environment along with the CIPS, and (4) constructing tests 
for requirements satisfaction as a necessary adjunct to defin­
ing the requirements. Nearly all methodologies concentrate 
separately on either the requirements phase or the design 
phase of the CIPS development cycle. That narrow concen­
tration creates an artificial gap in notation and analysis be­
tween the requirement and design phases, generally resulting 
in ad hoc methods to bridge this gap. More coherence 
between the requirements definition and design method­
ologies is needed, not only to bridge this gap but to close or 
eliminate it. 

In this paper, the authors discuss the results of efforts to 
relate requirements definition and design methodologies by 
integrating and enhancing the work of the System ARchitects 
Apprentice (SARA) Project at UCLA and the Information 
System Design Optimization System (ISDOS) Project at the 
University of Michigan. SARA 12 offered support to a designer 
in creation and analysis of multilevel models. While express­
ing a need for a requirements definition subsystem, SARA 
had no appropriate requirements definition language, no de­
fined set of requirements analysis techniques or tools, and no 
procedures to form a more cohesive methodology for linking 
requirements to the ensuing design. The ISDOS Project's 
PSLlPSA System9 offered support to problem statements, 
problem analysis, and management of resulting information 
but had no other support to give to the design process. Re-
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search has been performed to fill the SARA requirements 
subsystem gap, using concepts derived from the ISDOS pro­
ject as a basis for departure. Neither the PSL/PSA nor the 
SARA systems were looked on as models of perfection in 
supporting computer-aided creation of complex systems 
whose behavior would satisfy customers' and designers' in­
tents. They each offered some unique strengths but also need­
ed each other's strengths. 

This paper is organized as follows. The system develop­
ment life cycle, specifications and requirements categories, 
and analysis aspects of requirements definition are first 
summarized. 

The SARA methodology and the PSLlPSA system are then 
briefly described. The framework of SARA, augmented with 
a requirements definition subsystem derived from the con­
cepts of PSLlPSA, is proposed as a viable approach to an 
integrated development methodology. 

The requirements definition subsystem can be character­
ized by three components: (1) a Requirements Definition Lan­
guage (RDL) , (2) Requirements Analysis Techniques and 
Tools, and (3) Requirements Definition Procedures. Due to 
the limitations on publication length, the emphasis of this 
paper is on the RDL and its semantic foundation. Details of 
the complete requirements definition subsystem and its inter­
face with the SARA methodology are found elsewhere. 13 

Finally, a brief summary of experience using RDL and the 
state of the support tool development is described. 

OVERVIEW OF REQUIREMENTS 
DEFINITION ISSUES 

The requirements for a CIPS must be recorded in some 
fashion to provide a means of communication between indi­
viduals and supporting tools involved in its design. This record 
consists of a set of specifications comprising language state­
ments (natural or some special language), graphs, diagrams, 
and tables. Determination of the form and format of these 
specifications is an important issue. Its resolution is affected 
by the desired interface between the requirements specifica­
tion and the succeeding design processes. 

The requirements specification must include three catego­
ries of requirements. First are function requirements. Func­
tion requirements specify the transformations that a system 
must perform. Second are process requirements. Process re­
quirements specify coordinated sequences of functions. Third 
are attribute requirements. These are statements of con­
straints and performance parameters imposed upon elements 
of the CIPS. 

A means must exist to analyze the requirements specifica­
tion to ensure that certain criteria for a well-formed specifica­
tion are satisfied. The specification should be understandable 
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to those who are providing the requirements information (the 
"customers") as well as those responsible for developing the 
proposed system (the "designers"). The information within 
the specification should be consistent; i.e., no subset of re­
quirements should be incompatible with any other subset. The 
specification should be complete so that unintended value 
judgements can be avoided during the design process. The 
information within the specification should be traceable to the 
resulting design and implementation to verify that the result­
ing CIPS has addressed all requirements. The requirements 
should be testable to validate that the resulting design satisfies 
all of the requirements. The requirements should be realizable 
in the sense that there are no unattainable requirements which 
are detectable. Finally, the requirements should be specified 
so that there is design freedom allowed wherever possible. 

SARA METHODOLOGY 

The SARA methodology uses a set of tools and procedures to 
design computer-based information processing systems. The 
SARA methodology has evolved from research and develop­
ment continued since the early 1960's at UCLA. 11 

An overview of the SARA methodology is illustrated in 
Figure 1. The methodology is characterized as requirement­
driven; that is, requirements that the CIPS must satisfy are 
specified, and the design activity proceeds to create a system 
that can meet those requirements. The environment with 
which the CIPS is assumed to interact is explicitly defined at 

the beginning of the design process. Validation of a CIPS' 
design is meaningful only in the defined environment. 

To describe and evaluate CIPS (and the set of decomposed 
subsystems) a collection of modelling tools is used. 10,11,12,14 A 
structural model identifies subsystems and their interconnec­
tions. A set of behavioral models14 expresses the behavior of 
subsystems and their behavioral interrelationships. The 
Graph Model of Behavior (GMB) consists of two separate but 
interrelated control and data graphs to express behavior. An 
interpretation model is associated with each processor and 
data set. A GMB model can then be exercised through an 
interpreter that simulates the behavior represented in the 
model, providing a means to evaluate ensuing CIPS designs. 
A control flow analyzer15 is used to detect pathologies such as 
deadlock. 

Once a CIPS has been partitioned to the point at which the 
designer feels confident in understanding each subsystem and 
knowing how to fabricate it, the composition process begins. 
The designer composes the subsystems using validated build­
ing block models of existing hardware, software, and other 
elements that may be used to enhance analysis. The specifica­
tions for the building blocks should be consistent in form with 
top down requirements. In the limit, if a building block exists 
whose specification satisfies a requirement which was gen­
erated top down, its acceptance should be simple. Research is 
ongoing to discover canonical forms for specification of exist­
ing hardware and software elements. 16,17 The composed mod­
els of the subsystems are then analyzed and tested using the 

SARA METHODOLOGY PHASES 

I 

INITIALIZE I I 
REQUI REMENTS I PARTITION & I I 

EVALUATION COMPOSITION 

I OF DESIGN & I & EVALUATION I 
REQUIREMENTS I OF BUILDING 

I BLOCK I I MODELS 

NEEDS I I I 
ANALYSIS I I I I 
• • • • • REQUIREMENTS 

DEFINITION I 

I DESIGN 

I 
I 

IMPLEMEN· 
TATION 
OF 
SUBSYSTEMS 

OPERATIONAL 
TEST OF 
SUBSYSTEMS 

OPERATIONAL 
TEST OF 
INTEGRATED 
SYSTEM 

IIMPLEMENTATIL 

~------------+-••• 
ACCEPTANCE MAINTENANCEi 
TEST MODIFICATION 

LIFE CYCLE PHASES 

Figure I-The CIPS development life cycle phases as constrained by the 
SARA methodology phases 
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modelling and simulation tools to verify that the subsystems 
and, ultimately, the complete CIPS satisfy all requirements. 
The physical implementation of the CIPS can then be fabri­
cated directly from the building blocks used in the model of 
the CIPS. 

PSLlPSA SYSTEM 

The PSL/PSA system is a product of the Information System 
Design Optimization System (ISDOS) Project. The ISDOS 
Project is an ongoing research effort at the University of 
Michigan. 

The Problem Statement Language (PSL) consists of a syn­
tax and semantics for describing requirements according to a 
structured format of objects and relationships. Aspects of 
system structure, size, volume, dynamics, properties, data 
structure and derivation, and project management can be de­
scribed. Included in the language is the capability to add 
descriptive English language comments and definitions of ob­
ject attributes.9 

The Problem Statement Analyzer (PSA) consists of all the 
computer software to process, analyze, and manage the PSL 
statements and the resulting database of PSL information. 
Final complete documentation of the PSL database can be 
produced by PSA semiautomatically in desired formats. 

REQUIREMENTS DEFINITION FOR SARA 

The SARA methodology is based upon accurate specification 
of requirements for a CIPS being designed. The methodology 
includes tools and procedural steps for decomposing, compos­
ing, and modelling CIPS to create a design that tries to meet 
the desired requirements and can be directly implemented. 
Figure 1 illustrates how the system development life cycle 
phases can be defined in terms of the SARA methodology 
phases. The requirements definition phase is seen to form the 
basis for all of the decomposition (refinement) activity. Thus 
the requirements specifications form a continuous stream of 
documentation of the CIPS from the most abstract customer­
defined need for the CIPS down to the detailed refinement of 
subsystems, so that the designer can construct the subsystem 
from existing building blocks. In this context, the concept of 
distinct design specifications is not necessary; the design spe­
cifications can be a refined level of the requirements 
specifications. 

A REQUIREMENTS DEFINITION LANGUAGE 
FOR SARA 

The RequiremeIilts Definition Language (RDL) is used to 
express the requirements of a CIPS and to interface those 
requirements to the ensuing SARA oriented design. To deter­
mine what elements of information must be included in a 
requirements definition, one must have an appropriate 
model, or representation, of a computer-based information 
processing system (from requirements definition and design 
definition viewpoints) and an appropriate model of a require­
ments specification. 
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Computer-based Information Processing System Semantic 
Model (CIPSSM) 

RDL's semantic model of a computer-based information 
processing system is based on SARA's structural and be­
havioral models of a system. 10,12,18,19 Most requirements for a 
system deal with conceptual information as opposed to physi­
cal realization. Therefore a semantic model, from a require­
ments viewpoint, should be concerned with conceptual con­
structs onto which physical constructs can be mapped as part 
of the design activity. The CIPSSM is derived from this basis. 

CIPSSM primitives 

The CIPSSM consists of six primitives that can be combined 
to model the structure and behavior of a CIPS and its environ­
ment. This representative framework allows the require­
ments, design, and implementation information to be associ­
ated with the model as the system development proceeds from 
requirements definition through implementation. Inherent in 
this modelling approach is the ability to perform a controlled 
refinement of the primitives to create a multilevel representa­
tion of a CIPS. At each refinement, more descriptive details 
are added to effect a progression from the conceptual require­
ments to physical realization. 

The CIPSSM structural model primitives are systems, 
dataflows, and connectors. The CIPSSM behavioral model 
primitives are functions, data-uses, and processes. Figure 2 
illustrates the graphical representation of the primitives and 
provides a brief description of the meaning of each primitive. 

CIPSSM rules 

The CIPSSM primitives interact with each other according 
to well-defined rules. The semantic rules are organized into 
three categories: (1) allowed relationships between the en­
vironment and CIPS domains of the design universe (the only 
allowed interface between the environment and the CIPS is 
through connectors, data-flows, and processes); (2) allowed 
relationships between primitives within each domain (e.g., a 
function can derive any number of data-uses); and (3) allowed 
decomposition relationships (e.g., a function can consist of 
any number of subfunctions). The RDL is designed to imple­
ment these semantic rules while the Requirements Definition 
Techniques and Tools are designed to enforce them. 

Requirement Specification Model 

The Requirement Specification Model (RSM) is a defini­
tion of the form and format of the requirements specifications 
for a CIPS. RDL is the principal language that will document 
the information that must be included in the RSM. The RSM 
ensures that the criteria for a well-formed specification are 
achievable and that the three categories of requirements are 
discernible. To perform this task, the RSM is set up to provide 
a means to describe a CIPS at all stages of its development and 
then automatically extract the function, process, and attribute 
requirements identified in the description. After the require-
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CIPSSM STRUCTURAL PRIMITIVES 

SYSTEM 

CONNECTOR 

DATA-FLOW 

• 

• 

• 

• 

A system pri mitive represents a real or conceptual 
object that contains some set of information PiO­
cessing activities 

A connector primitive represents a real or conceptual 
communication path between system primitives. 

A data-flow primitive represents some real or con­
ceptual information that flows into or out of 
system primitives . 

CIPSSM BEHAVIORAL PRIMITIVES 

FUNCTION 

/ 
DATA-USE 

PROCESS 

A function primitive represents a real or con.::eptual 
operation that transforms input data into output 
data. 

A data-use primitive represents real or conceptual 
information that is used by functions. 

A process primitive represents the combination 
and control of function primitives to perform a 
particular set of (one or more) tasks. 

Figure 2-The graphical representation and definition of the CIPSSM 
primitives 

ments are extracted, the tests for requirement satisfaction can 
be defined. 

CIPS views 

The RSM provides a description of four interrelated views 
of the CIPS. These views are decomposable in a structured 

fashion so that, within any particular view, the information at 
level (i + 1) is related to the view from level (i). The views 
adhere to the semantic rules of the CIPSSM. An example of 
the graphical representation of the four views using CIPSSM 
primitives is illustrated in Figure 3. The four views are de­
signed to form a composite of the CIPS and its environment. 
All information expressed graphically in the four views and 
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SCG-USER 

ENVIRONMENT DOMAIN 

SCG-USER 

ENVIRONMENT DOMAIN 

START 

SCG-USER 

START 

I 
USER-CONNECTION 

SCG-OUTPUT 

I 
USER-COMMANDS 

I 

I 
I 

SCG-OUTPUT 

I 
USER-CONNECTION 

I 
USER-COMMANDS 

SCG-OPERATION 
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SYSTEM-CONNECTOR VIEW 

CIPS DOMAIN 

MODIFIED­
SCG-SYSTEM 

DEFINE SYSTEM modified-seg-system; 
INTERCONNECTED BY user-connection; 

DEFINE E-SYSTEM scg-user; 
INTERCONNECTED BY user-connection; 

DEFINE CONNECTOR user-connection; 
l~nERCONNECTS modified-scg-system, scg-user; 

SYSTEM-FLOW VIEW 

CIPS DOMAIN 

MODIFIED-
SCG-SYSTEM 

CIPS DOMAIN 

DEFINE SYSTEM modified-scg-system; 
GENERATES scg-output; 
RECEIVES user-commands; 

DEFINE E-SYSTEM scg-user; 
G EN E RATES user-commands; 
RECEIVES scg-output; 

DEFINE 10 scg-output; 
GENERATED BY modified-scg-system; 
RECEIVED BY scg-user; 

DEFINE 10 user-commands; 
GENERATED BY seg-user; 
RECEIVED BY modified-scg-system; 

FUNCTION-DATA VIEW 

PROCESS VIEW 

J---+-- FINISH 

DEFINE FliNCTION scg-functions; 
DERiVES scg-output; 
UPDATES data-base; 
USES user-commands; 

DEFINE E-FUNCTION user-activities; 
DERIVES user-commands; 
USES seg-output; 

DEFINE 10 user-commands; 
DERIVED BY user-activities; 
USED BY scg-functions; 

DE FIN E 10 scg-output; 
USED BY user-activities; 
DERIVED BY scg-functions; 

DEFINE ENTITY data-base; 
UPDATED BY scg-functions; 

DEFINE PROCESS scg-operation 
SYNONYM scgo; 
PROCEDURE; 
(process procedure language description) 
scgo-s (start: user-activities) 
user-activities (scgo-s+$cg-functions: scg-functions) 
scg-functions (user-activities: user-activities+scgo-e) 
scgo-e (scg-functions: finish); 

COMPOSITE VIEW 

MODI FI ED-SCG-SYSTEM 

FINISH 

DEFINE SYSTEM modified-scg-system; 
PE R FO RMS scg-functions; 
RESPONSIBLE FOR data-base, scg-output; 

DEFINE E-SYSTEM scg-user; , 
PERFORMS user-activities; 
RESPONSIBLE FOR user-commands; 

DEFINE CONNECTOR user-connection; 
PASSES scg-output, user-commands; 

DEFINE PROCESS scg-operation; 
UTI LlZES user-activities, scg-functions; 

Figure 3-An example of the four CIPS views and the corresponding RDL 
representation for a modified structure chart graphics (SCG) system 
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their composite have a corresponding RDL textual represen­
tation. RDL also allows a means to express detailed informa­
tion about CIPSSM primitives that cannot be represented 
graphically. 

CIPS view decomposition 

Requirements decomposition proceeds from a primarily 
logical description of a CIPS to a physical description of the 
CIPS that ultimately represents the actual design. The four 
descriptive views of a CIPS are oriented toward gradiated 
levels of logical versus physical description, between the 
views, and within the views. 

The requirements decomposition process proceeds in par­
allel with the design process after the initial requirements 
specification is completed. The requirements decomposition 
is made as the result of design decisions. Figure 4 illustrates the 
graphical representation of a decomposition of the function­
data view shown in Figure 3. At each level of decomposition, 
the designer gets a new set of requirements to respond 
to; however, since the new set of requirements were derived 
and documented from the previous level of requirements, 

ENVI RONMENT 

DOC­
CMOS 

EDIT­
CMOS 

ANALYSIS­
CMOS 

USER·COMMANDS 

PLOTTER­
OUTPUT 

TERMINAL­
OUTPUT 

I SCG·OUTPUT 

L-, 
I 
I 
I 
I 
I 

continuous traceability is maintained between one step of 
decomposition and another. The RSM, built upon the 
CIPSSM primitives and documented by the RDL, is appropri­
ate for the description of the CIPS at all stages of the require­
ments definition phase of the development cycle, as displayed 
in Figure 1. 

Requirements extraction 

Once a satisfactory requirements specification level is de­
fined, using the CIPS graphical views and corresponding RDL 
descriptions, a complete set of function, process, and attribute 
requirements can be extracted. The function requirements are 
the RDL descriptions of the function primitives that are por­
trayed in the function-data view. The process requirements 
are the RDL descriptions of the process primitives that are 
portrayed in the process view. The attribute requirements are 
the RDL descriptions of attributes associated with all of the 
primitives in all four views. The requirements extraction con­
cepts are illustrated in Figure 5. The function requirement 
extracted from the initial CIPS description of Figure 3 is 
presented in Figure 6(a). 

CIPS 

DATA·BASE 

DATA­
BASE 

VAX­
INPUT 

PLOTTER­
DATA 

TERMINAL­
DATA 

Figure 4--An example decomposition of the function·data view shown in 
Figure 3 
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INTRALEVEL CHECKS 
r -----1------,------, 

r 
I 
I 

I 
len 
I~ 

::I: 

I~ 

SYS-CONNECTOR VIEW 
(DRAWING + RDL DESC) 

SYS-FLOW VIEW 
(DRAWING + RDL 
DESC) 

FUNCTION-DATA VIEW 
(DRAWING + RDL DESC) 

PROCESS VIEW 
(DRAWING + RDL 
DESC) 

w 

I~ 
REQUI REMENTS 
LIST ATTRIBUTES FUNCTIONS PROCESSES 

-I 

I'~ 
I~ 

I 
I 
I 
L_ 

I 
I 
I 

I 
I 
I 

I 
I 
I 

J 
LEVEL 2 

I 
I 

LEVEL N 

Figure 5--At every level of specification, requirements are extracted from 
the complete CIPS description as represented in the four views 

Requirements tests 

At every requirements specification level, a list of function, 
process, and attribute requirements is generated. At every 
level, each unique requirement makes one or more associated 
tests mandatory, so that the requirement can be verified and 
validated. The tests consist of test procedures and criteria to 
judge the outcome of the tests (i.e., whether the requirement 
is satisfied or not). In addition, the tests should reflect the 
multilevel decomposition of the requirements by becoming 
more detailed during refinement. 

The nature of the test procedures and criteria depends upon 
the category of requirements being tested. RDL provides con­
structs permitting definition of initial conditions, final condi­
tions, and procedures for defining how the test cases should be 
executed and acceptance criteria for determining how the out­
come of each test case will be evaluated. A test for the re­
quirement extracted in Figure 6( a) is described in Figure 6(b). 

Requirements specification outline 

The body of the requirements specification is organized by 
requirements specification level. Each level of the document 

consists of the four drawings of the CIPS views; a composite 
drawing of the four views; the function, process, and attribute 
requirements and tests; and any supporting RDL sections 
referenced by the requirements descriptions (e. g., definition 
of the 'user-commands' of Figure 6(a) and 'scg-ftl-ac' of Fig­
ure 6(b). At the end of the requirements specification, docu­
ments referenced by the requirements specification body that 
are not expressed in RDL are found. 

Requirements Definition Language Characteristics 

The Requirements Definition Language is based upon the 
same syntactical constructs as the Problem Statement Lan­
guage (PSL) of the ISDOS project. 9 The language consists of 
objects, relationships, descriptors, and associators. Objects are 
essentially equivalent to nouns in English-they represent the 
things being described (CIPSSM primitives and associated 
information elements) when describing the CIPS. An object­
type is a generic class of objects. The object-types are cate­
gorized according to what aspect of the RSM and CIPSSM 
they support. In Figure 6(a) the object 'scg-functions' is an 
example of the object-type FUNCTION. 

Relationships are the "verbs" of RDL-they define the as-
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DEFINE FUNCTION 
USES 
DERIVES 
UPD,I\TES 
PERFORMED BY 
UTILI ZED BY 

(a) 

scg-functions; 
user-commands; 
scg-output; 
data-base; 
modified-scg-system; 
scg-operation; 

(b) 
DEFINE FUNCTION- TEST scg-function-testl; 

TESTS scg-functions, user-activities; 
DESCRI PTION; 

This test sequence is designed to provide 
a customer acceptance test for creating 
structure charts, as one of the necessary 
functions of the modified-scg-system.; 

INITIAL-CONDITIONS ARE scg-ftl-l, user-cmd-seq; 
FINAL-CONDITIONS ARE scg-ftl-2; 
ACCEPTANCE-CRITERIA ARE scg-ftl-ac; 
PROCEDURE; 

DO. 
set initial-conditions to 'scg-ftl-l'. 
DO UNTIL final-conditions='scg-ftl-2'. 

execute initial-condition 
'user-cmd-seq' . 

ENDDO. 
check acceptance-criteria 'scg-ftl-ac'. 

ENDDO. ; 

Figure 6---(a) A function requirement extracted from the initial CIPS 
description shown in Figure 3 

(b) A test for the function requirement 

sociations between objects based upon the allowed relation­
ships between object-types as determined by the CIPSSM and 
the RSM. In Figure 6(a) USES is an example of a relationship 
associating 'scg-functions' and 'user-commands.' Relation­
ships are designed to be complementary in the sense that if the 
object-types are interchanged in an RDL statement, an equiv­
alent relationship can be formed. 

Descriptors are RDL constructs which fall outside of the 
object, relationship character of most RDL statements. De­
scriptors are associated with objects but are not objects them­
selves. Descriptors are an important source of redundancy 
which is counted on to help reduce the gap between intent and 
designed behavior. The most common descriptor-type is the 
comment-entry. This descriptor-type consists of English lan­
guage text, or any more formal language of the users' choos­
ing, that can be used to further describe an object outside the 
realm of the object's relationships with other objects. De­
scriptors are associated with objects via associators. Associ­
ators and descriptors allow one type of extensibility within 
RDL by permitting any desired language (e.g., SARA's GMB 
expressions, program description languages) to be included in 
the RDL specification. The associator DESCRIPTION and 
its comment -entry is illustrated in Figure 6(b). 

ffhe RDL sy,ntactical constructs are patterned after the con­
structs ·that are supported by the ISDOS Project's Meta­
generator and Generalized Analyzer. 20 RDL statements are 
grouped together by sections. Each section defines an object 
name and the relationships of that object to all other objects 
in a specification, plus the descriptors associated with that 
object. Figure 3 illustrates simple RDL sections that describe 
CIPS views. 

RDL implementation of CIPSSM 

RDL implements the CIPSSM by providing constructs that 
allow all CIPSSM primitives and properties to be described, as 
well as maintaining a basis for the semantic rules. There are 
unique RDL object-types for primitives that exist in the en­
vironment domain versus the CIPS domain. Their purpose is 
to provide a mechanism for maintaining the universe partition 
in a CIPSSM description. 

RDL support of RSM 

RDL supports the RSM by providing constructs that allow 
the following: (1) the four CIPS views to be incrementally 
developed and then rigorously coupled (Figure 3), (2) easy 
extraction of requirements by category (Figure 6( a)), (3) asso­
ciation of tests with each requirement (Figure 6(b)), and (4) 
easy extraction of RDL sections for the organization of the 
requirements specification. 

The RDL syntax permits the designer/customer to describe 
the objects and relationships associated with anyone particu­
lar CIPS view and then later to add the relationships that 
couple the views. 

REQUIREMENTS ANALYSIS TECHNIQUES TOOLS 
AND PROCEDURES 

Analysis techniques have been defined as a set of checks on 
the information within the specification to determine its com­
pliance to the criteria of being understandable, consistent, 
complete, traceable, testable, realizable, and allowing design 
freedom. These checks are driven by the CIPSSM rules, 
heuristics of the design activity, and the modelling and analy­
sis power of SARA. The requirements definition activity is 
designed to be extensively supported by computer-aided 
tools. The tools can be categorized into five functional areas: 
(1) an RDL interpreter and editor (plus associated database 
storage mechanism), (2) database query, (3) analysis check­
ers, (4) graphics support of the CIPS view constructions and 
translation to corresponding RDL, and (5) CIPS view to 
SARA model construction and translation. 

An eighteen-step procedure has been developed that serves 
as a guideline on how to construct a model of the CIPS using 
RDL and graphics, perform analysis checks, and decompose 
a specification. 

USAGE EXPERIENCE 

The ISDOS Project's META System20 was used to implement 
an RDL interpreter and editor (including database manage­
ment system) and query system. A collection of SARA tools 
(fully operational and accessible on the ARPANET) exist and 
include the GMB Simulator and Control Flow Analyzer, plus 
structural modelling tools and a sophisticated help system. 
Using this continually expanding support environment, RDL 
has been applied in two practical CIPS specification activities 
since early 1981. The experience of these applications re­
vealed that the modelling scheme was well liked, particularly 
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for the separation of environment and CIPS, and the pro­
vision of integrated multiview aspects. However, the follow­
ing improvements are considered essential: 

1. A graphics interface is needed to reduce the tedium of 
CIPS view construction and translation into RDL. 

2. A better user interface to the support environment is 
needed. 

3. Automated utilities to support test construction are 
needed to lessen the difficulty of creating appropriate 
requirements tests. 

4. The ease with which RDL can express specifications of 
existing building blocks (e.g., manufacturers chip speci­
fications) must be tested. 
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