
Requirements definition and its interface to the SARA design
methodology for computer-based systems

by JAMES W. WINCHESTER
Hughes Aircraft Company
Fullerton, California

and
GERALD ESTRIN
University of California
Los Angeles, California

ABSTRACT

This paper presents results of efforts during 1979-1981 to integrate and enhance the
work of the System ARchitects Apprentice (SARA) Project at UCLA and the
Information System Design Optimization System (ISDOS) Project at the University
of Michigan. While expressing a need for a requirements definition subsystem,
SARA had no appropriate requirements definition language, no defined set of
requirements analysis techniques or tools, and no procedures to form a more
cohesive methodology for linking computer system requirements to the ensuing
design .. Research has been performed to fill this requirements subsystem gap, using
concepts derived from the ISDOS project as a basis for departure.

369

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

INTRODUCTION

Research into requirements definition and design method­
ologies for Computer-based Information Processing Systems
(CIPS) has been extensive. Some fundamental concepts have
emerged:

1. Hierarchical decomposition from abstract descriptions to
refined detail1

2. Verification analysis to ensure that each level of descrip­
tion is consistent with and traceable to adjacent levels2

3. Simulation as a legitimate analysis aid in detecting in­
complete and inappropriate designs3

,4

Many methodologies utilize notations that ease the burden
of analysis and decomposition as well as provide a vehicle
that enhances understanding and design freedom. Of prin­
cipal interest are pictorial and graphical modelling, 5 special­
ized textual languages,6,7,8 and database management of
information.9

Less prevalent before the SARA research 10-13 was recog­
nition of the following needs: (1) describing attiibute require­
ments along with process and function requirements, (2)
modelling CIPS structure as well as behavior, (3) separating
models of the environment and the CIPS and modelling the
environment along with the CIPS, and (4) constructing tests
for requirements satisfaction as a necessary adjunct to defin­
ing the requirements. Nearly all methodologies concentrate
separately on either the requirements phase or the design
phase of the CIPS development cycle. That narrow concen­
tration creates an artificial gap in notation and analysis be­
tween the requirement and design phases, generally resulting
in ad hoc methods to bridge this gap. More coherence
between the requirements definition and design method­
ologies is needed, not only to bridge this gap but to close or
eliminate it.

In this paper, the authors discuss the results of efforts to
relate requirements definition and design methodologies by
integrating and enhancing the work of the System ARchitects
Apprentice (SARA) Project at UCLA and the Information
System Design Optimization System (ISDOS) Project at the
University of Michigan. SARA 12 offered support to a designer
in creation and analysis of multilevel models. While express­
ing a need for a requirements definition subsystem, SARA
had no appropriate requirements definition language, no de­
fined set of requirements analysis techniques or tools, and no
procedures to form a more cohesive methodology for linking
requirements to the ensuing design. The ISDOS Project's
PSLlPSA System9 offered support to problem statements,
problem analysis, and management of resulting information
but had no other support to give to the design process. Re-

Requirements Definition and Its Interface to SARA 371

search has been performed to fill the SARA requirements
subsystem gap, using concepts derived from the ISDOS pro­
ject as a basis for departure. Neither the PSL/PSA nor the
SARA systems were looked on as models of perfection in
supporting computer-aided creation of complex systems
whose behavior would satisfy customers' and designers' in­
tents. They each offered some unique strengths but also need­
ed each other's strengths.

This paper is organized as follows. The system develop­
ment life cycle, specifications and requirements categories,
and analysis aspects of requirements definition are first
summarized.

The SARA methodology and the PSLlPSA system are then
briefly described. The framework of SARA, augmented with
a requirements definition subsystem derived from the con­
cepts of PSLlPSA, is proposed as a viable approach to an
integrated development methodology.

The requirements definition subsystem can be character­
ized by three components: (1) a Requirements Definition Lan­
guage (RDL) , (2) Requirements Analysis Techniques and
Tools, and (3) Requirements Definition Procedures. Due to
the limitations on publication length, the emphasis of this
paper is on the RDL and its semantic foundation. Details of
the complete requirements definition subsystem and its inter­
face with the SARA methodology are found elsewhere. 13

Finally, a brief summary of experience using RDL and the
state of the support tool development is described.

OVERVIEW OF REQUIREMENTS
DEFINITION ISSUES

The requirements for a CIPS must be recorded in some
fashion to provide a means of communication between indi­
viduals and supporting tools involved in its design. This record
consists of a set of specifications comprising language state­
ments (natural or some special language), graphs, diagrams,
and tables. Determination of the form and format of these
specifications is an important issue. Its resolution is affected
by the desired interface between the requirements specifica­
tion and the succeeding design processes.

The requirements specification must include three catego­
ries of requirements. First are function requirements. Func­
tion requirements specify the transformations that a system
must perform. Second are process requirements. Process re­
quirements specify coordinated sequences of functions. Third
are attribute requirements. These are statements of con­
straints and performance parameters imposed upon elements
of the CIPS.

A means must exist to analyze the requirements specifica­
tion to ensure that certain criteria for a well-formed specifica­
tion are satisfied. The specification should be understandable

From the collection of the Computer History Museum (www.computerhistory.org)

372 National Computer Conference, 1982

to those who are providing the requirements information (the
"customers") as well as those responsible for developing the
proposed system (the "designers"). The information within
the specification should be consistent; i.e., no subset of re­
quirements should be incompatible with any other subset. The
specification should be complete so that unintended value
judgements can be avoided during the design process. The
information within the specification should be traceable to the
resulting design and implementation to verify that the result­
ing CIPS has addressed all requirements. The requirements
should be testable to validate that the resulting design satisfies
all of the requirements. The requirements should be realizable
in the sense that there are no unattainable requirements which
are detectable. Finally, the requirements should be specified
so that there is design freedom allowed wherever possible.

SARA METHODOLOGY

The SARA methodology uses a set of tools and procedures to
design computer-based information processing systems. The
SARA methodology has evolved from research and develop­
ment continued since the early 1960's at UCLA. 11

An overview of the SARA methodology is illustrated in
Figure 1. The methodology is characterized as requirement­
driven; that is, requirements that the CIPS must satisfy are
specified, and the design activity proceeds to create a system
that can meet those requirements. The environment with
which the CIPS is assumed to interact is explicitly defined at

the beginning of the design process. Validation of a CIPS'
design is meaningful only in the defined environment.

To describe and evaluate CIPS (and the set of decomposed
subsystems) a collection of modelling tools is used. 10,11,12,14 A
structural model identifies subsystems and their interconnec­
tions. A set of behavioral models14 expresses the behavior of
subsystems and their behavioral interrelationships. The
Graph Model of Behavior (GMB) consists of two separate but
interrelated control and data graphs to express behavior. An
interpretation model is associated with each processor and
data set. A GMB model can then be exercised through an
interpreter that simulates the behavior represented in the
model, providing a means to evaluate ensuing CIPS designs.
A control flow analyzer15 is used to detect pathologies such as
deadlock.

Once a CIPS has been partitioned to the point at which the
designer feels confident in understanding each subsystem and
knowing how to fabricate it, the composition process begins.
The designer composes the subsystems using validated build­
ing block models of existing hardware, software, and other
elements that may be used to enhance analysis. The specifica­
tions for the building blocks should be consistent in form with
top down requirements. In the limit, if a building block exists
whose specification satisfies a requirement which was gen­
erated top down, its acceptance should be simple. Research is
ongoing to discover canonical forms for specification of exist­
ing hardware and software elements. 16,17 The composed mod­
els of the subsystems are then analyzed and tested using the

SARA METHODOLOGY PHASES

I

INITIALIZE I I
REQUI REMENTS I PARTITION & I I

EVALUATION COMPOSITION

I OF DESIGN & I & EVALUATION I
REQUIREMENTS I OF BUILDING

I BLOCK I I MODELS

NEEDS I I I
ANALYSIS I I I I
• • • • • REQUIREMENTS

DEFINITION I

I DESIGN

I
I

IMPLEMEN·
TATION
OF
SUBSYSTEMS

OPERATIONAL
TEST OF
SUBSYSTEMS

OPERATIONAL
TEST OF
INTEGRATED
SYSTEM

IIMPLEMENTATIL

~------------+-•••
ACCEPTANCE MAINTENANCEi
TEST MODIFICATION

LIFE CYCLE PHASES

Figure I-The CIPS development life cycle phases as constrained by the
SARA methodology phases

From the collection of the Computer History Museum (www.computerhistory.org)

modelling and simulation tools to verify that the subsystems
and, ultimately, the complete CIPS satisfy all requirements.
The physical implementation of the CIPS can then be fabri­
cated directly from the building blocks used in the model of
the CIPS.

PSLlPSA SYSTEM

The PSL/PSA system is a product of the Information System
Design Optimization System (ISDOS) Project. The ISDOS
Project is an ongoing research effort at the University of
Michigan.

The Problem Statement Language (PSL) consists of a syn­
tax and semantics for describing requirements according to a
structured format of objects and relationships. Aspects of
system structure, size, volume, dynamics, properties, data
structure and derivation, and project management can be de­
scribed. Included in the language is the capability to add
descriptive English language comments and definitions of ob­
ject attributes.9

The Problem Statement Analyzer (PSA) consists of all the
computer software to process, analyze, and manage the PSL
statements and the resulting database of PSL information.
Final complete documentation of the PSL database can be
produced by PSA semiautomatically in desired formats.

REQUIREMENTS DEFINITION FOR SARA

The SARA methodology is based upon accurate specification
of requirements for a CIPS being designed. The methodology
includes tools and procedural steps for decomposing, compos­
ing, and modelling CIPS to create a design that tries to meet
the desired requirements and can be directly implemented.
Figure 1 illustrates how the system development life cycle
phases can be defined in terms of the SARA methodology
phases. The requirements definition phase is seen to form the
basis for all of the decomposition (refinement) activity. Thus
the requirements specifications form a continuous stream of
documentation of the CIPS from the most abstract customer­
defined need for the CIPS down to the detailed refinement of
subsystems, so that the designer can construct the subsystem
from existing building blocks. In this context, the concept of
distinct design specifications is not necessary; the design spe­
cifications can be a refined level of the requirements
specifications.

A REQUIREMENTS DEFINITION LANGUAGE
FOR SARA

The RequiremeIilts Definition Language (RDL) is used to
express the requirements of a CIPS and to interface those
requirements to the ensuing SARA oriented design. To deter­
mine what elements of information must be included in a
requirements definition, one must have an appropriate
model, or representation, of a computer-based information
processing system (from requirements definition and design
definition viewpoints) and an appropriate model of a require­
ments specification.

Requirements Definition and Its Interface to SARA 373

Computer-based Information Processing System Semantic
Model (CIPSSM)

RDL's semantic model of a computer-based information
processing system is based on SARA's structural and be­
havioral models of a system. 10,12,18,19 Most requirements for a
system deal with conceptual information as opposed to physi­
cal realization. Therefore a semantic model, from a require­
ments viewpoint, should be concerned with conceptual con­
structs onto which physical constructs can be mapped as part
of the design activity. The CIPSSM is derived from this basis.

CIPSSM primitives

The CIPSSM consists of six primitives that can be combined
to model the structure and behavior of a CIPS and its environ­
ment. This representative framework allows the require­
ments, design, and implementation information to be associ­
ated with the model as the system development proceeds from
requirements definition through implementation. Inherent in
this modelling approach is the ability to perform a controlled
refinement of the primitives to create a multilevel representa­
tion of a CIPS. At each refinement, more descriptive details
are added to effect a progression from the conceptual require­
ments to physical realization.

The CIPSSM structural model primitives are systems,
dataflows, and connectors. The CIPSSM behavioral model
primitives are functions, data-uses, and processes. Figure 2
illustrates the graphical representation of the primitives and
provides a brief description of the meaning of each primitive.

CIPSSM rules

The CIPSSM primitives interact with each other according
to well-defined rules. The semantic rules are organized into
three categories: (1) allowed relationships between the en­
vironment and CIPS domains of the design universe (the only
allowed interface between the environment and the CIPS is
through connectors, data-flows, and processes); (2) allowed
relationships between primitives within each domain (e.g., a
function can derive any number of data-uses); and (3) allowed
decomposition relationships (e.g., a function can consist of
any number of subfunctions). The RDL is designed to imple­
ment these semantic rules while the Requirements Definition
Techniques and Tools are designed to enforce them.

Requirement Specification Model

The Requirement Specification Model (RSM) is a defini­
tion of the form and format of the requirements specifications
for a CIPS. RDL is the principal language that will document
the information that must be included in the RSM. The RSM
ensures that the criteria for a well-formed specification are
achievable and that the three categories of requirements are
discernible. To perform this task, the RSM is set up to provide
a means to describe a CIPS at all stages of its development and
then automatically extract the function, process, and attribute
requirements identified in the description. After the require-

From the collection of the Computer History Museum (www.computerhistory.org)

374 National Computer Conference, 1982

CIPSSM STRUCTURAL PRIMITIVES

SYSTEM

CONNECTOR

DATA-FLOW

•

•

•

•

A system pri mitive represents a real or conceptual
object that contains some set of information PiO­
cessing activities

A connector primitive represents a real or conceptual
communication path between system primitives.

A data-flow primitive represents some real or con­
ceptual information that flows into or out of
system primitives .

CIPSSM BEHAVIORAL PRIMITIVES

FUNCTION

/
DATA-USE

PROCESS

A function primitive represents a real or con.::eptual
operation that transforms input data into output
data.

A data-use primitive represents real or conceptual
information that is used by functions.

A process primitive represents the combination
and control of function primitives to perform a
particular set of (one or more) tasks.

Figure 2-The graphical representation and definition of the CIPSSM
primitives

ments are extracted, the tests for requirement satisfaction can
be defined.

CIPS views

The RSM provides a description of four interrelated views
of the CIPS. These views are decomposable in a structured

fashion so that, within any particular view, the information at
level (i + 1) is related to the view from level (i). The views
adhere to the semantic rules of the CIPSSM. An example of
the graphical representation of the four views using CIPSSM
primitives is illustrated in Figure 3. The four views are de­
signed to form a composite of the CIPS and its environment.
All information expressed graphically in the four views and

From the collection of the Computer History Museum (www.computerhistory.org)

SCG-USER

ENVIRONMENT DOMAIN

SCG-USER

ENVIRONMENT DOMAIN

START

SCG-USER

START

I
USER-CONNECTION

SCG-OUTPUT

I
USER-COMMANDS

I

I
I

SCG-OUTPUT

I
USER-CONNECTION

I
USER-COMMANDS

SCG-OPERATION

Requirements Definition and Its Interface to SARA 375

SYSTEM-CONNECTOR VIEW

CIPS DOMAIN

MODIFIED­
SCG-SYSTEM

DEFINE SYSTEM modified-seg-system;
INTERCONNECTED BY user-connection;

DEFINE E-SYSTEM scg-user;
INTERCONNECTED BY user-connection;

DEFINE CONNECTOR user-connection;
l~nERCONNECTS modified-scg-system, scg-user;

SYSTEM-FLOW VIEW

CIPS DOMAIN

MODIFIED-
SCG-SYSTEM

CIPS DOMAIN

DEFINE SYSTEM modified-scg-system;
GENERATES scg-output;
RECEIVES user-commands;

DEFINE E-SYSTEM scg-user;
G EN E RATES user-commands;
RECEIVES scg-output;

DEFINE 10 scg-output;
GENERATED BY modified-scg-system;
RECEIVED BY scg-user;

DEFINE 10 user-commands;
GENERATED BY seg-user;
RECEIVED BY modified-scg-system;

FUNCTION-DATA VIEW

PROCESS VIEW

J---+-- FINISH

DEFINE FliNCTION scg-functions;
DERiVES scg-output;
UPDATES data-base;
USES user-commands;

DEFINE E-FUNCTION user-activities;
DERIVES user-commands;
USES seg-output;

DEFINE 10 user-commands;
DERIVED BY user-activities;
USED BY scg-functions;

DE FIN E 10 scg-output;
USED BY user-activities;
DERIVED BY scg-functions;

DEFINE ENTITY data-base;
UPDATED BY scg-functions;

DEFINE PROCESS scg-operation
SYNONYM scgo;
PROCEDURE;
(process procedure language description)
scgo-s (start: user-activities)
user-activities (scgo-s+$cg-functions: scg-functions)
scg-functions (user-activities: user-activities+scgo-e)
scgo-e (scg-functions: finish);

COMPOSITE VIEW

MODI FI ED-SCG-SYSTEM

FINISH

DEFINE SYSTEM modified-scg-system;
PE R FO RMS scg-functions;
RESPONSIBLE FOR data-base, scg-output;

DEFINE E-SYSTEM scg-user; ,
PERFORMS user-activities;
RESPONSIBLE FOR user-commands;

DEFINE CONNECTOR user-connection;
PASSES scg-output, user-commands;

DEFINE PROCESS scg-operation;
UTI LlZES user-activities, scg-functions;

Figure 3-An example of the four CIPS views and the corresponding RDL
representation for a modified structure chart graphics (SCG) system

From the collection of the Computer History Museum (www.computerhistory.org)

376 National Computer Conference, 1982

their composite have a corresponding RDL textual represen­
tation. RDL also allows a means to express detailed informa­
tion about CIPSSM primitives that cannot be represented
graphically.

CIPS view decomposition

Requirements decomposition proceeds from a primarily
logical description of a CIPS to a physical description of the
CIPS that ultimately represents the actual design. The four
descriptive views of a CIPS are oriented toward gradiated
levels of logical versus physical description, between the
views, and within the views.

The requirements decomposition process proceeds in par­
allel with the design process after the initial requirements
specification is completed. The requirements decomposition
is made as the result of design decisions. Figure 4 illustrates the
graphical representation of a decomposition of the function­
data view shown in Figure 3. At each level of decomposition,
the designer gets a new set of requirements to respond
to; however, since the new set of requirements were derived
and documented from the previous level of requirements,

ENVI RONMENT

DOC­
CMOS

EDIT­
CMOS

ANALYSIS­
CMOS

USER·COMMANDS

PLOTTER­
OUTPUT

TERMINAL­
OUTPUT

I SCG·OUTPUT

L-,
I
I
I
I
I

continuous traceability is maintained between one step of
decomposition and another. The RSM, built upon the
CIPSSM primitives and documented by the RDL, is appropri­
ate for the description of the CIPS at all stages of the require­
ments definition phase of the development cycle, as displayed
in Figure 1.

Requirements extraction

Once a satisfactory requirements specification level is de­
fined, using the CIPS graphical views and corresponding RDL
descriptions, a complete set of function, process, and attribute
requirements can be extracted. The function requirements are
the RDL descriptions of the function primitives that are por­
trayed in the function-data view. The process requirements
are the RDL descriptions of the process primitives that are
portrayed in the process view. The attribute requirements are
the RDL descriptions of attributes associated with all of the
primitives in all four views. The requirements extraction con­
cepts are illustrated in Figure 5. The function requirement
extracted from the initial CIPS description of Figure 3 is
presented in Figure 6(a).

CIPS

DATA·BASE

DATA­
BASE

VAX­
INPUT

PLOTTER­
DATA

TERMINAL­
DATA

Figure 4--An example decomposition of the function·data view shown in
Figure 3

From the collection of the Computer History Museum (www.computerhistory.org)

Requirements Definition and Its Interface to SARA 377

INTRALEVEL CHECKS
r -----1------,------,

r
I
I

I
len
I~

::I:

I~

SYS-CONNECTOR VIEW
(DRAWING + RDL DESC)

SYS-FLOW VIEW
(DRAWING + RDL
DESC)

FUNCTION-DATA VIEW
(DRAWING + RDL DESC)

PROCESS VIEW
(DRAWING + RDL
DESC)

w

I~
REQUI REMENTS
LIST ATTRIBUTES FUNCTIONS PROCESSES

-I

I'~
I~

I
I
I
L_

I
I
I

I
I
I

I
I
I

J
LEVEL 2

I
I

LEVEL N

Figure 5--At every level of specification, requirements are extracted from
the complete CIPS description as represented in the four views

Requirements tests

At every requirements specification level, a list of function,
process, and attribute requirements is generated. At every
level, each unique requirement makes one or more associated
tests mandatory, so that the requirement can be verified and
validated. The tests consist of test procedures and criteria to
judge the outcome of the tests (i.e., whether the requirement
is satisfied or not). In addition, the tests should reflect the
multilevel decomposition of the requirements by becoming
more detailed during refinement.

The nature of the test procedures and criteria depends upon
the category of requirements being tested. RDL provides con­
structs permitting definition of initial conditions, final condi­
tions, and procedures for defining how the test cases should be
executed and acceptance criteria for determining how the out­
come of each test case will be evaluated. A test for the re­
quirement extracted in Figure 6(a) is described in Figure 6(b).

Requirements specification outline

The body of the requirements specification is organized by
requirements specification level. Each level of the document

consists of the four drawings of the CIPS views; a composite
drawing of the four views; the function, process, and attribute
requirements and tests; and any supporting RDL sections
referenced by the requirements descriptions (e. g., definition
of the 'user-commands' of Figure 6(a) and 'scg-ftl-ac' of Fig­
ure 6(b). At the end of the requirements specification, docu­
ments referenced by the requirements specification body that
are not expressed in RDL are found.

Requirements Definition Language Characteristics

The Requirements Definition Language is based upon the
same syntactical constructs as the Problem Statement Lan­
guage (PSL) of the ISDOS project. 9 The language consists of
objects, relationships, descriptors, and associators. Objects are
essentially equivalent to nouns in English-they represent the
things being described (CIPSSM primitives and associated
information elements) when describing the CIPS. An object­
type is a generic class of objects. The object-types are cate­
gorized according to what aspect of the RSM and CIPSSM
they support. In Figure 6(a) the object 'scg-functions' is an
example of the object-type FUNCTION.

Relationships are the "verbs" of RDL-they define the as-

From the collection of the Computer History Museum (www.computerhistory.org)

378 National Computer Conference, 1982

DEFINE FUNCTION
USES
DERIVES
UPD,I\TES
PERFORMED BY
UTILI ZED BY

(a)

scg-functions;
user-commands;
scg-output;
data-base;
modified-scg-system;
scg-operation;

(b)
DEFINE FUNCTION- TEST scg-function-testl;

TESTS scg-functions, user-activities;
DESCRI PTION;

This test sequence is designed to provide
a customer acceptance test for creating
structure charts, as one of the necessary
functions of the modified-scg-system.;

INITIAL-CONDITIONS ARE scg-ftl-l, user-cmd-seq;
FINAL-CONDITIONS ARE scg-ftl-2;
ACCEPTANCE-CRITERIA ARE scg-ftl-ac;
PROCEDURE;

DO.
set initial-conditions to 'scg-ftl-l'.
DO UNTIL final-conditions='scg-ftl-2'.

execute initial-condition
'user-cmd-seq' .

ENDDO.
check acceptance-criteria 'scg-ftl-ac'.

ENDDO. ;

Figure 6---(a) A function requirement extracted from the initial CIPS
description shown in Figure 3

(b) A test for the function requirement

sociations between objects based upon the allowed relation­
ships between object-types as determined by the CIPSSM and
the RSM. In Figure 6(a) USES is an example of a relationship
associating 'scg-functions' and 'user-commands.' Relation­
ships are designed to be complementary in the sense that if the
object-types are interchanged in an RDL statement, an equiv­
alent relationship can be formed.

Descriptors are RDL constructs which fall outside of the
object, relationship character of most RDL statements. De­
scriptors are associated with objects but are not objects them­
selves. Descriptors are an important source of redundancy
which is counted on to help reduce the gap between intent and
designed behavior. The most common descriptor-type is the
comment-entry. This descriptor-type consists of English lan­
guage text, or any more formal language of the users' choos­
ing, that can be used to further describe an object outside the
realm of the object's relationships with other objects. De­
scriptors are associated with objects via associators. Associ­
ators and descriptors allow one type of extensibility within
RDL by permitting any desired language (e.g., SARA's GMB
expressions, program description languages) to be included in
the RDL specification. The associator DESCRIPTION and
its comment -entry is illustrated in Figure 6(b).

ffhe RDL sy,ntactical constructs are patterned after the con­
structs ·that are supported by the ISDOS Project's Meta­
generator and Generalized Analyzer. 20 RDL statements are
grouped together by sections. Each section defines an object
name and the relationships of that object to all other objects
in a specification, plus the descriptors associated with that
object. Figure 3 illustrates simple RDL sections that describe
CIPS views.

RDL implementation of CIPSSM

RDL implements the CIPSSM by providing constructs that
allow all CIPSSM primitives and properties to be described, as
well as maintaining a basis for the semantic rules. There are
unique RDL object-types for primitives that exist in the en­
vironment domain versus the CIPS domain. Their purpose is
to provide a mechanism for maintaining the universe partition
in a CIPSSM description.

RDL support of RSM

RDL supports the RSM by providing constructs that allow
the following: (1) the four CIPS views to be incrementally
developed and then rigorously coupled (Figure 3), (2) easy
extraction of requirements by category (Figure 6(a)), (3) asso­
ciation of tests with each requirement (Figure 6(b)), and (4)
easy extraction of RDL sections for the organization of the
requirements specification.

The RDL syntax permits the designer/customer to describe
the objects and relationships associated with anyone particu­
lar CIPS view and then later to add the relationships that
couple the views.

REQUIREMENTS ANALYSIS TECHNIQUES TOOLS
AND PROCEDURES

Analysis techniques have been defined as a set of checks on
the information within the specification to determine its com­
pliance to the criteria of being understandable, consistent,
complete, traceable, testable, realizable, and allowing design
freedom. These checks are driven by the CIPSSM rules,
heuristics of the design activity, and the modelling and analy­
sis power of SARA. The requirements definition activity is
designed to be extensively supported by computer-aided
tools. The tools can be categorized into five functional areas:
(1) an RDL interpreter and editor (plus associated database
storage mechanism), (2) database query, (3) analysis check­
ers, (4) graphics support of the CIPS view constructions and
translation to corresponding RDL, and (5) CIPS view to
SARA model construction and translation.

An eighteen-step procedure has been developed that serves
as a guideline on how to construct a model of the CIPS using
RDL and graphics, perform analysis checks, and decompose
a specification.

USAGE EXPERIENCE

The ISDOS Project's META System20 was used to implement
an RDL interpreter and editor (including database manage­
ment system) and query system. A collection of SARA tools
(fully operational and accessible on the ARPANET) exist and
include the GMB Simulator and Control Flow Analyzer, plus
structural modelling tools and a sophisticated help system.
Using this continually expanding support environment, RDL
has been applied in two practical CIPS specification activities
since early 1981. The experience of these applications re­
vealed that the modelling scheme was well liked, particularly

From the collection of the Computer History Museum (www.computerhistory.org)

for the separation of environment and CIPS, and the pro­
vision of integrated multiview aspects. However, the follow­
ing improvements are considered essential:

1. A graphics interface is needed to reduce the tedium of
CIPS view construction and translation into RDL.

2. A better user interface to the support environment is
needed.

3. Automated utilities to support test construction are
needed to lessen the difficulty of creating appropriate
requirements tests.

4. The ease with which RDL can express specifications of
existing building blocks (e.g., manufacturers chip speci­
fications) must be tested.

REFERENCES

1. Ross, D. T., and K. E. Schoman, Jr. "Structured Analysis for Require­
ments Definition." IEEE Transactions on Software Engineering, Vol. SE-3,
No.1, January 1977.

2. Alford, M. W. "Requirements for Distributed Data Processing." Pro­
ceedings of First International Conference on Distributed Data Processing,
IEEE,1979.

3. Alford, M. W. "Software Requirements Engineering Methodology
(SREM) at the Age of Two." COMPSAC 78 Proceedings, November, 1978.

4. Willis, R. R. "DAS: An Automated System to Support Design Analysis."
Proceedings of the Third International Conference on Software Engineering,
Atlanta, Georgia, May 1978.

5. Alford, M. W., and I. F. Burns. "R-nets: A Graph Model for Real-time
Software Requirements." In Proc. Symp. On Comput. Software Eng., MRI
Symp. Ser., Vol. XXIV, Polytechnic Press, Brooklyn, NY.

6. Riddle, W. E., .1. C. Wileden, .1, H. Sayler, A. R. Segal, and A. M. Stavely.
"Behavior Modeling During Software Design" IEEE Transactions on Soft­
ware Engineering, Vol. SE-4, No.4, July 1978, pp. 283-292.

7. Zave, P., and R. T. Yeh. "Executable Requirements For Embedded Sys­
tems." Proceedings'of the Fifth International Conference on Software En­
gineering, San Diego, California, 1981.

Requirements Definition and Its Interface to SARA 379

8. Heninger, K. "Specifying Software Requirements For Complex Systems:
New Techniques and Their Application." IEEE Transactions on Software
Engineering, Vol SE-6, No.1, January 1980.

9. Teichroew, D., and E. A. Hershy III. "PSLlPSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information Pro­
cessing Systems." IEEE Transactions on Software Engineering, Vol. SE-3,
No.1, January 1977, pp. 41-48.

10. Gardner, R.1. "A Methodology for Digital System Design Based on Struc­
tural and Functional Modeling." Ph.D. dissertation in Computer Science,
University of California, Los Angeles, January 1975.

11. Estrin, G. "Modeling for Synthesis-The Gap Between Intent and Be­
havior." Proceedings of the Symposium on Design Automation and Micro­
processors, Palo Alto, California, February 24-25, 1977, IEEE, Piscataway,
New Jersey, 1977, pp. 54-59.

12. Estrin, G. "A Methodology for Design of Digital Systems-Supported by
SARA at the Age of One." Proceedings of the National Computer Confer­
ence, Anaheim, California, June 1978.

13. Winchester, J. W. "Requirements Definition and Its Interface to the SARA
Design Methodology for Computer-Based Systems." UCLA Technical Re­
port, UCLA-ENG-8092, January, 1981.

14. Razouk, R., M. Vernon and G. Estrin. "Evaluation Methods in SARA­
The Graph Model Simulator." 1979 Conference on Simulation, Measure­
ment and Modeling of Computer Systems, Boulder, Colorado, August 1979.

15. Razouk, R. R. "Computer-Aided Design and Evaluation of Digital Com­
puter Systems." UCLA Technical Report, UCLA-ENG-8055, February
1981.

16. Penedo, M. H. "The Use of a Module Interface Description in the Synthesis
of Reliable Software Systems." UCLA Technical Report, UCLA-ENG-
8091, January 1981.

17. Vernon, M., D. Patel, and G. Estrin. "A SARA Building Block Model:
Am2909 Microprogram Sequencer." UCLA Internal Memorandum #210,
October 1981.

18. Campos, I. M., and G. Estrin. "SARA Aided Design of Software for
Concurrent Systems." Proceedings of the National Computer Conference,
Anaheim, California, June 1978.

19. Razouk, R., and G. Estrin. "Modeling and Verification of Communication
Protocols in SARA: The X.21 Interface." IEEE Transactions on Comput­
ers, Vol. C-29, No. 12, December 1980, pp. 1038-1052.

20. Teichroew, D. "Overview of the META System." ISDOS Research Pro­
ject, Department of Industriai and Operations Engineering, University of
Michigan, Ann Arbor, Michigan, ISDOS Project META-1 Memorandum,
May 1977.

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

