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mini
= (— l)m~l-Bm+n        (m + n even, mn > 0).
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MINKOWSKI'S THEOREM ON NONHOMOGENEOUS
APPROXIMATION

IVAN NIVEN1

For 6 irrational, let y be any real number such that y = 8a+b has

no solution in integers a and b. We give a short proof of Minkowski's

classic result that there are infinitely many pairs of integers satisfying

F<l/4, where F=F(6, y, x, y)=|x| -|öx+y+y|. First we prove

that given any real numbers a and ß there exists an integer u such

that \u— ß\ <1 and such that at least one of the following holds:

(A)  | w - a | • | « - 0 |   gl/4;   \u- a\ -\u- ß\   g   \ ß - a\ /2.

If ß is an integer, set u=ß. Otherwise define the integer n by n<ß

<n + l. Ii n^a^n + 1 then \n— a\ -\n + l—a\ ^1/4 and similarly

for ß, and so

|»-a|-|w-/3|-|»+l-a|-|»+l-j8|   g 1/16.

Hence u = n or u = n + l gives inequality (Ai). The cases n>ct and

a>n + l are symmetric, and we treat n>a. We note that

2(n - «)»'*(» + 1 - ßy2(ß - ny2(n + 1 - a)1'2

á (» - a)(n + 1 - ß) + (ß - n)(n +l-a)=ß-a
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and so (A2) must hold for u = n or u = n + l.

Now by the pigeon-hole method [l, p. 1 or 2, p. 42] it is known

that there exist infinitely many pairs of integers h, k such that

k\ '\kO — h\ <1. For each such pair choose integers r, s such that

rh - sk + yk\  ^ 1/2. Apply (A) with
.

a = r/k

and

ß= (r9-s+y)/(kd-h),

and define x = r — uk, y= — s+uh. Then we get | 0x+y+y| < | kd — h\

and F<l/4 from (Ai), F^l/4 from (A2). Since k9 — h can be made

arbitrarily small, and since dx+y+y^O, we get infinitely many pairs

x, y satisfying F^ 1/4. But at most one pair can give F= 1/4, because

Oxi + yi + y = ± (4xi)_1    and    0x2 + y2 + y = ± (4x2)-1

would imply the rationality of 0(xi — x2)+yi — y2 and hence of 8. This

proof can be readily extended to Minkowski's theorem on the prod-

uct of two linear forms, as will be shown elsewhere. A proof that 1/4

is the best possible constant is given in [l, p. 49].
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