$$
\begin{align*}
\sum_{j=0}^{m} \sum_{k=0}^{n}\binom{m}{j} & \binom{n}{k} \frac{B_{j} B_{k}}{m+n-j-k+1} \tag{3}\\
& =(-1)^{m-1} \frac{m!n!}{(m+n)!} B_{m+n} \quad(m+n \text { even, } m n>0)
\end{align*}
$$

References

1. L. Carlitz, Note on the integral of the product of several Bernoulli polynomials, J. London Math. Soc. vol. 34 (1959) pp. 361-363.
2. Huan-Ting Kuo, A recurrence formula for $\zeta(2 n)$, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 573-574.
3. N. Nielsen, Traité élémentaire des nombres de Bernoulli, Paris, GauthierVillars, 1923.

Duke University

MINKOWSKI'S THEOREM ON NONHOMOGENEOUS APPROXIMATION

IVAN NIVEN ${ }^{1}$

For θ irrational, let γ be any real number such that $\gamma=\theta a+b$ has no solution in integers a and b. We give a short proof of Minkowski's classic result that there are infinitely many pairs of integers satisfying $F<1 / 4$, where $F=F(\theta, \gamma, x, y)=|x| \cdot|\theta x+y+\gamma|$. First we prove that given any real numbers α and β there exists an integer u such that $|u-\beta|<1$ and such that at least one of the following holds:
(A) $|u-\alpha| \cdot|u-\beta| \leqq 1 / 4 ;|u-\alpha| \cdot|u-\beta| \leqq|\beta-\alpha| / 2$.

If β is an integer, set $u=\beta$. Otherwise define the integer n by $n<\beta$ $<n+1$. If $n \leqq \alpha \leqq n+1$ then $|n-\alpha| \cdot|n+1-\alpha| \leqq 1 / 4$ and similarly for β, and so

$$
|n-\alpha| \cdot|n-\beta| \cdot|n+1-\alpha| \cdot|n+1-\beta| \leqq 1 / 16
$$

Hence $u=n$ or $u=n+1$ gives inequality (A_{1}). The cases $n>\alpha$ and $\alpha>n+1$ are symmetric, and we treat $n>\alpha$. We note that

$$
\begin{aligned}
& 2(n-\alpha)^{1 / 2}(n+1-\beta)^{1 / 2}(\beta-n)^{1 / 2}(n+1-\alpha)^{1 / 2} \\
& \quad \leqq(n-\alpha)(n+1-\beta)+(\beta-n)(n+1-\alpha)=\beta-a
\end{aligned}
$$

[^0]and so $\left(\mathrm{A}_{2}\right)$ must hold for $u=n$ or $u=n+1$.
Now by the pigeon-hole method [1, p. 1 or 2, p. 42] it is known that there exist infinitely many pairs of integers h, k such that $|k| \cdot|k \theta-h|<1$. For each such pair choose integers r, s such that $|r h-s k+\gamma k| \leqq 1 / 2$. Apply (A) with
$$
\alpha=r / k
$$
and
$$
\beta=(r \theta-s+\gamma) /(k \theta-h),
$$
and define $x=r-u k, y=-s+u h$. Then we get $|\theta x+y+\gamma|<|k \theta-h|$ and $F<1 / 4$ from (A_{1}), $F \leqq 1 / 4$ from (A_{2}). Since $k \theta-h$ can be made arbitrarily small, and since $\theta x+y+\gamma \neq 0$, we get infinitely many pairs x, y satisfying $F \leqq 1 / 4$. But at most one pair can give $F=1 / 4$, because
$$
\theta x_{1}+y_{1}+\gamma= \pm\left(4 x_{1}\right)^{-1} \quad \text { and } \quad \theta x_{2}+y_{2}+\gamma= \pm\left(4 x_{2}\right)^{-1}
$$
would imply the rationality of $\theta\left(x_{1}-x_{2}\right)+y_{1}-y_{2}$ and hence of θ. This proof can be readily extended to Minkowski's theorem on the product of two linear forms, as will be shown elsewhere. A proof that $1 / 4$ is the best possible constant is given in [1, p. 49].

References

1. J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tract No. 45, 1957.
2. Ivan Niven, Irrational numbers, Carus Mathematical Monographs, No. 11, New York, Wiley, 1956.

University of Oregon

[^0]: Received by the editors April 14, 1961.
 ${ }^{1}$ Supported in part by the Office of Naval Research.

