
On the Complexity of Nonrecursive XQuery and

Functional Query Languages on Complex Values

CHRISTOPH KOCH

Saarland University, Saarbrücken, Germany

This article studies the complexity of evaluating functional query languages for complex values
such as monad algebra and the recursion-free fragment of XQuery. We show that monad algebra
with equality restricted to atomic values is complete for the class TA[2O(n), O(n)] of problems
solvable in linear exponential time with a linear number of alternations if the query is assumed
to be part of the input. The monotone fragment of monad algebra with atomic value equality
but without negation is NEXPTIME-complete. For monad algebra with deep value equality, that
is, equality of complex values, we establish TA[2O(n), O(n)] lower and exponential-space upper
bounds. We also study a fragment of XQuery, Core XQuery, that seems to incorporate all the
features of a query language on complex values that are traditionally deemed essential. A close
connection between monad algebra on lists and Core XQuery (with “child” as the only axis) is
exhibited. The two languages are shown expressively equivalent up to representation issues. We
show that Core XQuery is just as hard as monad algebra with respect to query and combined
complexity, and that it is in TC0 if the query is assumed fixed. As Core XQuery is NEXPTIME-
hard, the best-known techniques for processing such problems require exponential amounts of
working memory and doubly exponential time in the worst case. We present a property of queries
– the lack of a certain form of composition – that virtually all real-world XQueries have and
that allows for query evaluation in PSPACE and thus singly exponential time. Still, we are able
to show for an important special case – Core XQuery with equality testing restricted to atomic
values – that the composition-free language is just as expressive as the language with composition.
Thus, under widely-held complexity-theoretic assumptions, the language with composition is an
exponentially more succinct version of the composition-free language.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages – query lan-
guages; I.7.2 [Document and Text Processing]: Document Preparation – markup languages

General Terms: Languages, Algorithms

Additional Key Words and Phrases: Complex values, Monad algebra, Nested-relational algebra,
conservativity, XML, XQuery, Complexity, Expressiveness

Author’s address: Lehrstuhl für Informationssysteme, Universität des Saarlandes, Im Stadtwald,
D-66123 Saarbrücken, Germany, koch@infosys.uni-sb.de
The results of this article are based on [Koch 2005a], “On the Complexity of Nonrecursive XQuery

and Functional Query Languages on Complex Values”, Proc. 24th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), Baltimore, Maryland, 2005,
and on [Koch 2005b], “On the Role of Composition in XQuery”, which was presented at the 8th
International Workshop on the Web and Databases (WebDB), Baltimore, Maryland, 2005.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–0??.

1. INTRODUCTION

Complex values form part of various data models for advanced database applica-
tions, such as object-oriented, object-relational, and semistructured data models.
A large amount of theoretical work on query languages for complex values has
been carried out (e.g. [Jaeschke and Schek 1982; Kuper and Vardi 1993b; Abite-
boul and Beeri 1995; Hull and Su 1989; Grumbach and Vianu 1995; Tannen et al.
1992; Grumbach and Milo 1996; Hull and Su 1993; Buneman et al. 1995; Abite-
boul and Hillebrand 1995; Paredaens and Van Gucht 1988; Wong 1996; Dantsin
and Voronkov 1997; Libkin and Wong 1997; Vorobyov and Voronkov 1998; Dantsin
and Voronkov 2000]), and this has laid the foundations for object-oriented query
languages as well as SQL 1999 or XQuery.

Earlier complexity studies on query languages for complex values have almost en-
tirely focused on logic- [Kuper and Vardi 1993a] and particularly logic programming-
based query languages [Vorobyov and Voronkov 1998; Dantsin and Voronkov 2000;
Dantsin et al. 2001], and fixpoint languages (e.g. [Grumbach and Vianu 1995]).
However, the query languages considered by many researchers to be most natural
for complex values (such as complex value algebra without powerset [Abiteboul and
Beeri 1995; Abiteboul et al. 1995], its syntactic variant monad algebra [Tannen et al.
1992; Buneman et al. 1995], and XQuery) are functional.

Monad algebra. Monad algebra is a clean, compositional, variable-free func-
tional query language that derives its power to manipulate complex values from
its support for defining higher-order operations. It was shown expressively equiva-
lent to a number of other important complex-value query languages such as nested
relational algebra [Jaeschke and Schek 1982] and complex value algebra without
powerset in earlier research [Tannen et al. 1992]. (Complex value algebra with
powerset [Kuper and Vardi 1993b; Abiteboul and Beeri 1995; Grumbach and Milo
1996] can take hyperexponential runtime. Queries that really need the powerset
operator are usually too costly to evaluate.)

Since some of these languages were developed driven by practical requirements
rather than from first principles as is the case for monad algebra, and nevertheless
all the languages ended up with the same expressive power, it appears that the
expressiveness of these languages on complex values is “the right one” to many
researchers and plays a role analogous to that of the power of first-order logic (or
relational algebra) on the relational model.

One known result [Suciu and Tannen 1997] is that monad algebra is in TC0 with
respect to data complexity (i.e., if the query is assumed fixed [Vardi 1982]). How-
ever, the complexity of monad algebra if the query is assumed variable (query/com-
bined complexity [Vardi 1982]) is open. In this article, we study the complexity of
monad algebra under the latter assumption.

XQuery. XQuery is destined to become the dominant data-transformation query
language for XML data and to take a role analogous to the one occupied by SQL
for relational databases.

It is folklore that full XQuery is Turing-complete, but it is also obvious that
queries without recursion are guaranteed to terminate already in straightforward
functional implementations of the XQuery language. Recursion in XQuery is rarely
used in practice (see also [XQueryUseCases 2005]); recursive XML transformations

are usually implemented in XSLT.
In essence, XQuery is a quite natural typed functional programming language

for XML; still it is sometimes criticized by the research community as huge and
clumsy. In this article we study a substantial recursion-free fragment of XQuery,
which we call Core XQuery. It seems that Core XQuery contains all and only the
features one would expect from a functional query language for unranked trees in
the spirit of complex-value algebra without powerset.1

Little foundational research on XQuery has been done to date. There are only
some cautious first attempts at finding clean formalizations of and algebras for the
language [Hidders et al. 2004; Fernandez et al. 2000; World Wide Web Consortium
2005]. Most other recent work has focused on engineering good query processors
for XQuery [Ludäscher et al. 2002; Marian and Siméon 2003; Florescu et al. 2003;
Fernandez and Siméon 2004; Koch et al. 2004].

In this article, we attempt a first closer look at the complexity of XQuery, or
more precisely, of the Core XQuery fragment. We attempt to do this in a principled
manner, establishing connections to earlier, well-studied formalisms for functional
queries on complex-value databases [Paredaens and Van Gucht 1988; Tannen et al.
1992; Buneman et al. 1995; Wong 1996; Grumbach et al. 1996; Libkin and Wong
1997]. Indeed our results on the complexity of monad algebra quite directly yield
a characterization of the complexity of Core XQuery.

Contributions. The technical contributions of this article are as follows.

—We introduce the Core XQuery language, a simple yet powerful nonrecursive
fragment of XQuery.

—Monad algebra on lists is incomparable with Core XQuery in the strict sense
due to differences in the data models employed (trees versus complex values).
In particular, Core XQuery cannot simulate tuples.2 Nevertheless, we exhibit a
close connection between XQuery and monad algebra on lists and show that the
Core XQuery queries that use only the child axis for navigation in data trees
capture monad algebra on lists up to representation issues (using mappings that
factor these differences in the data models out).

The established mappings are efficiently computable. This allows us to prove
complexity results interchangeably for monad algebra and Core XQuery, but it
also gives a very concise formal semantics to Core XQuery – through monad
algebra.

—We show that monad algebra (on sets, lists and bags) and Core XQuery, both
with equality on atomic values but without negation, are NEXPTIME-complete
with respect to query/combined complexity.

This gives a negative answer (under the complexity-theoretic assumption that
PSPACE 6= NEXPTIME) to the longstanding open question [Van den Bussche
2005] whether there is a polynomial-time mapping from nested-relational algebra
on flat relations to classical (flat) relational algebra (which is just PSPACE-

1Core XQuery is not to be confused with the XQuery Core [World Wide Web Consortium 2005],
which is a much larger fragment of XQuery for which this expressive correspondence with monad
algebra, nested relational algebra, and similar languages does not hold.
2Full XQuery can, however – using either position arithmetics or attributes.

complete [Stockmeyer 1974], see also [Abiteboul et al. 1995] for a more recent
exposition).

—We show that monad algebra and Core XQuery in the presence of negation
and equality on atomic values are complete for TA[2O(n), O(n)] with respect to
query/combined complexity.

—For the case of our query languages with deep equality, we obtain an EXPSPACE
upper bound. A TA[2O(n), O(n)] lower bound follows from the fact that negation
(and therefore universal quantification “every” in XQuery) is easily definable
using deep equality.
Note that the EXPSPACE upper bound is a rather robust one and should extend
to all or at least a much larger part of nonrecursive XQuery.

—We show that Core XQuery is in TC0 with respect to data complexity.

Core XQuery is NEXPTIME-hard with respect to query complexity, and as a
consequence, it is commonly believed that any query evaluation algorithm for non-
recursive XQuery must consume doubly exponential time and exponential space for
query evaluation in the worst case (cf. e.g. [Johnson 1990]). This is by an exponen-
tial factor worse than the complexity of relational algebra or calculus [Stockmeyer
1974].

We present a syntactic property – the lack of a certain form of composition –
that virtually all real-world XQueries have and which renders composition-free Core
XQuery just as hard as relational algebra.

By composition, informally, we refer to the assignment of all or part of a con-
structed data value to a variable or the use of a constructed value in a where-
condition. A data value is called constructed iff it is defined by an XQuery expres-
sion other than an XPath statement. For example, the query

<books_2004>

{ for $x in /bib/book where $x/year=2004 return

<book>

{$x/title}

<authors>

{ for $y in $x/author return

<author> {$y/lastname} </author>

}

</authors>

</book>

}

</books_2004>

is a composition-free query (so nesting queries, by using FLWR-statements in the
return clauses of other FLWR statements, is not a problem) while

<books>

{ let $x := <a>{ for $w in /bib/book return {$w} }

for $y in $x/b return $y/*

}

</books>

Monad algebra and Core XQuery with composition:
with negation without negation

deep equality in EXPSPACE; TA[2O(n), O(n)]-hard

equality on atomic values TA[2O(n), O(n)]-complete NEXPTIME-complete

Core XQuery without composition:
with negation without negation

deep equality PSPACE-complete NP-complete
equality on atomic values PSPACE-complete NP-complete

Table I. Query/combined complexity of monad algebra and Core XQuery.

is not composition-free because it uses a let-expression that assigns a constructed
tree to variable $x. The equivalent query

<books>

{ for $y in (for $w in /bib/book return {$w}) return $y/* }

</books>

is still not composition-free because the “in”-expression of the outer for-loop con-
tains a for-loop. However, there is an equivalent composition-free query,

<books>

{ for $w in /bib/book return $w }

</books>

Our contributions regarding composition-free Core XQuery are as follows.

—It is shown that composition-free Core XQuery can be evaluated in polynomial
space and thus also in singly exponential time. In fact, composition-free nonrecur-
sive XQuery is PSPACE-complete with respect to query/combined complexity.

—We show that composition-free Core XQuery without negation is NP-complete.

—Still, we are able to show for an important special case – equality is restricted
to atomic values – that composition-free Core XQuery is just as expressive as
Core XQuery with composition, i.e., composition-free Core XQuery with atomic
equality is closed under composition. Thus, under the usual complexity-theoretic
assumptions, the language with composition is exponentially more succinct than
the composition-free language.

Table I summarizes our complexity results for query and combined complexity.
Since the variables in composition-free XQuery range only over subtrees of the input
tree, supporting deep value equality has no influence on the complexity of queries,
differently from the case of Core XQuery with composition.

To the best of the author’s knowledge, this is the first work characterizing the
complexity of XQuery. The mappings to and from monad algebra also give an
argument that Core XQuery is a well-designed language that offers the “right”
degree of expressive power.

Nonrecursive composition-free XQuery is an important class of queries, and in-
deed, most practical XQueries belong to this class. (For instance, only a handful
of the XML Query Use Case queries [XQueryUseCases 2005] employ composition.)

Composition-free (Core) XQuery is also popular among implementors of limited
prototype XQuery engines, e.g. [Koch et al. 2004]. Our preliminary expressiveness
results show that restricting oneself to implementing composition-free Core XQuery
does not cause a loss of generality, at least if equality checking is limited to atomic
value equality. The expressiveness result also gives a partial explanation for why
practical XQueries tend to be composition-free, as observed above.

Note that other functional languages such as monad algebra do not seem to have
natural “composition-free” fragments that remain expressive.

A major motivation of this work is to define simple but relevant fragments of
XQuery suitable for research prototype implementations and theoretical study (see
also [Hidders et al. 2004] for another attempt towards the latter goal). Indeed,
composition-free Core XQuery may allow for special, efficient implementation tech-
niques because all XQuery variables only range over nodes in the input tree (never
over nodes from intermediate query results).

Related work. It seems that the most relevant work regarding the problems
studied in this article – apart from the characterization of the data complexity of
monad algebra in [Suciu and Tannen 1997] – is on the complexity of nonrecursive
logic programming.

For nonrecursive logic programming, a full complexity characterization [Dantsin
et al. 2001] has been obtained for the most common forms of complex values (that is,
values built from sets, lists, bags, tuples, and atomic values) and various classes of
logic programs (with and without negation, range-restriction, and types). It turns
out that the complexity of nonrecursive logic programming is robustly (for vari-
ous kinds of complex values, and with or without range-restriction) NEXPTIME-
complete. In the presence of negation (and necessarily range-restriction), nonrecur-
sive logic programming is known to be in the class TA[2O(n), O(n)] [Vorobyov and
Voronkov 1998] and hard for the class TA[2O(n/ log n), O(n/ logn)] [Voronkov 2004;
Dantsin et al. 2001].

A main difference between functional languages such as monad algebra and
XQuery and logic programming as studied in [Dantsin and Voronkov 1997; Vorobyov
and Voronkov 1998] is the form of nonmonotonicity employed. In functional lan-
guages that have the power to check the equality of complex values, negation is
usually a redundant operation. Equality does introduce nonmonotonicity into the
functional languages, while the seemingly same deep equality in logic programming
languages does not. Nonmonotonicity in the functional languages is different from
and seemingly more powerful than that obtained through negation in nonrecursive
normal logic programming.

For example, in monad algebra, we can compute two different complex values
of doubly exponential size each and then check their equality. A priori, one would
assume that such a check requires a “proof” involving a doubly exponentially sized
proof tree, or in other words, one would assume that comparing two values requires
reading all of their data. However, this is not the case. The upper bounds on
the complexity of nonrecursive logic programming rely on the fact that unifiers in
SLD resolution proofs of nonrecursive logic programs cannot grow beyond singly
exponential size.

The work [Grumbach and Vianu 1995; Kuper and Vardi 1993a] is on more expres-

sive query languages. [Kuper and Vardi 1993a] proves LDM logic without powerset
complete for the class TA[2O(n), O(n)]. Differently from monad algebra, LDM logic
is a logical language with quantification, operates on cyclic data, and cannot express
deep equality.

Structure. The structure of this article is as follows. Section 2 discusses the
notions from complexity theory used in the technical sections of the article and
introduces complex values and monad algebra (on sets, lists, and bags). Section 3
defines the Core XQuery fragment and provides efficiently computable mappings
between monad algebra on lists and Core XQuery. Section 4 gives the EXPSPACE
bound on the query complexity of monad algebra and Core XQuery in the presence
of deep equality. Section 5 presents the complexity results for the languages with
atomic equality, with and without negation. It starts with the upper bounds in
Section 5.1 and follows up with the corresponding lower bounds in Section 5.2.
Section 6 presents our results on the data complexity of XQuery (and summarizes
analogous results for monad algebra). In Section 7 we introduce composition-free
Core XQuery. In Section 7.1, we prove the PSPACE- and NP-completeness results
for the complexity of composition-free Core XQuery. Finally, in Section 7.2, we
prove the expressiveness result that composition-free Core XQuery with atomic
equality captures full Core XQuery with atomic equality.

2. PRELIMINARIES

2.1 Complexity-Theoretic Background

By AC0 we refer to the class of languages recognizable by LOGSPACE-uniform
families of circuits of polynomial size and constant depth using and- and or-gates
of unbounded fan-in. By TC0 we refer to the same class except that in addition
so-called majority-gates are permitted, which compute “true” iff more than half of
their inputs are true. For details on circuit complexity and the notion of uniformity
we refer to [Greenlaw et al. 1995; Johnson 1990].

We assume deterministic, nondeterministic, and alternating Turing machines
known and refer to e.g. [Johnson 1990] for definitions. By DTIME[t(n)] and
NTIME[t(n)], we denote the classes of all problems solvable in time t(n) (where
n is the size of the input) on deterministic and nondeterministic Turing machines,
respectively. By DSPACE[s(n)], we denote the classes of all problems solvable
in space s(n) on deterministic Turing machines. By TA[t(n), a(n)], we denote the
class of problems solvable in time t(n) using a(n) alternations on alternating Turing
machines.

We will use the following abbreviations for complexity classes in this article:

NETIME = NTIME[2O(n)]

NEXPTIME = NTIME[2nO(1)

]

2ETIME = DTIME[22O(n)

]

2EXPTIME = DTIME[22nO(1)

]

LOGSPACE = DSPACE[O(log n)]

EXPSPACE = DSPACE[2nO(1)

]

It is known that AC0 ⊆ TC0 ⊆ LOGSPACE ⊂ NEXPTIME ⊆ TA[2nO(1)

, 1] ⊆

TA[2nO(1)

, nO(1)] ⊆ TA[2nO(1)

, 2nO(1)

] = EXPSPACE ⊆ 2EXPTIME. Moreover,

NETIME ⊆ TA[2O(n), O(n)] ⊆ 2ETIME ⊂ 2EXPTIME

(cf. e.g. [Johnson 1990; Chandra et al. 1981]).
The complexity classes NETIME and 2ETIME are not robust – they are not

closed under LOGSPACE-reductions, as can be verified using a simple padding
argument and the Time Hierarchy theorem [Hartmanis et al. 1965]. We will con-
sider completeness for those classes as well as of TA[2O(n), O(n)] under LOGLIN-
reductions , under which they are known to be closed (cf. e.g. [Dantsin et al. 2001]).
By a LOGLIN reduction, we denote a LOGSPACE reduction that produces output
of linear size. TA[2O(n), O(n)] has important complete problems from logic, such as
deciding the Theory of Real Addition [Berman 1980; Ferrante and Rackoff 1975].

There are a number of alternative ways of stating the query evaluation problem.
In this article, we study the complexity of Boolean queries. For both monad algebra
and XQuery, we think of a nonempty collection (set, list, or bag) as “true” and an
empty one as “false”.

We study three kinds of complexity of query evaluation, data complexity (where
queries are assumed to be fixed and data variable, that is, part of the input), query
complexity (where the query is variable and the data is assumed to be fixed), and
combined complexity (where both data and query are considered variable) [Vardi
1982].

2.2 Complex Values and Monad Algebra on Sets

We now introduce monad algebra on sets. We consider complex values constructed
from sets, tuples, and atomic values from a single-sorted domain3. Types are terms
of the grammar

τ ::= Dom | {τ} | 〈A1 : τ1, . . . , Ak : τk〉

where k ≥ 0 and A1, . . . , Ak are called attribute values.
Consider the query language on complex values consisting of expressions built

from the following operations (the types of the operations are provided as well):

(1) identity

id : x 7→ x τ → τ

(2) composition4

f ◦ g : x 7→ g(f(x))
f : τ → τ ′, g : τ ′ → τ ′′

f ◦ g : τ → τ ′′

(3) constants from Dom ∪ {∅, 〈〉} (〈〉 is the nullary tuple)

(4) singleton set construction

sng : x 7→ {x} τ → {τ}

3All results in this article immediately generalize to many-sorted domains.
4Again, our convention throughout the article is that (f ◦ g)(x) = g(f(x)), not f(g(x)).

(5) application of a function to every member of a set

map(f) : X 7→ {f(x) | x ∈ X}
f : τ → τ ′

map(f) : {τ} → {τ ′}

(6) unnesting sets of sets:

flatten : X 7→
⋃

X {{τ}} → {τ}

(7) pairing

pairwithA1
: 〈A1 : X1, A2 : x2, . . . , An : xn〉 7→

{〈A1 : x1, A2 : x2, . . . , An : xn〉 | x1 ∈ X1}

〈A1 : {τ1}, A2 : τ2, . . . , An : τn〉 → {〈A1 : τ1, . . . , An : τn〉}

(pairwithAi
for i > 1 is defined analogously.)

(8) tuple formation

〈A1 : f1, . . . , An : fn〉 : x 7→ 〈A1 : f1(x), . . . , An : fn(x)〉

f1 : τ → τ1, . . . , fn : τ → τn
〈A1 : f1, . . . , An : fn〉 : τ → 〈A1 : τ1, . . . , An : τn〉

(9) projection

πAi
: 〈A1 : x1, . . . , Ai : xi, . . . , An : xn〉 7→ xi

πAi
: 〈A1 : τ1, . . . , An : τn〉 → τi

The language just defined has a nice theoretical foundation from programming
language theory, that of structural recursion on sets extended by a small amount
of machinery for creating and destroying tuples [Tannen et al. 1992]. Formally, the
language above is a Cartesian category with a strong monad on it (where “strong”
refers to so-called tensorial strength introduced by the “pairwith” operation). We
call this languageM [Tannen et al. 1992].

We use flatmap(f) as a shortcut for map(f) ◦ flatten. Observe that projec-
tion π is applied to tuples rather than to sets of tuples as in relational algebra.
For example, the relational algebra expression πAB corresponds to the expression
map(〈A : πA, B : πB〉) in M.

Example 2.1. The Cartesian product f × g can be defined as 〈1 : f, 2 : g〉 ◦
pairwith1 ◦ flatmap(pairwith2).

Observe the difference from the product of relational algebra. For instance, the
query id×id on a set of pairs S computes {〈〈x1, x2〉, 〈x3, x4〉〉 | 〈x1, x2〉, 〈x3, x4〉 ∈ S}
rather than {〈x1, x2, x3, x4〉 | 〈x1, x2〉, 〈x3, x4〉 ∈ S}. 2

It is customary to define Boolean queries (“predicates”) as queries that produce
values of type {〈〉}, i.e., that either return {〈〉} (“true”) or ∅ (“false”) [Tannen et al.
1992]. Note that the logical conjunction γ ∧ δ of two predicates γ and δ can be
computed as γ × δ.

By positive monad algebraM∪, we denoteM extended by the set union operation
∪. This language has a number of nice properties [Tannen et al. 1992; Buneman

et al. 1995], but it is known to be incomplete as a practical query language because
it cannot yet express a value equality predicate

(Ai = Aj) : 〈A1 : τ1, . . . , Ak : τk〉 → {〈〉}.

Equality of atomic values, (Ai =atomic Aj) with τi = τj = Dom is defined as

〈A1 : x1, . . . , Ak : xk〉 7→ {〈〉 | xi = xj}.

In the following we will also consider “deep” equality of arbitrary complex values,
denoted =deep, which is =atomic on atomic values and inductively holds on tuple
values 〈A1 : x1, . . . , Ak : xk〉, 〈A1 : y1, . . . , Ak : yk〉 of the same type iff x1 =deep

y1∧· · ·∧xk =deep yk and on set values X , Y of the same type iff for all x ∈ X there
is a y ∈ Y such that x =deep y and vice versa. We will use the symbol = whenever
a statement is made about both forms of equality.

If we extend M∪ by any nonempty subset of the operations deep value equality
(A =deep B), testing set membership (A ∈ B) or containment (A ⊆ B), selection
σA=B, set difference “−”, set intersection ∩, or nesting5, we always get the same
expressive power.6 We will call any one of these extended languages full monad
algebra.

Theorem 2.2 [Tannen et al. 1992].

M∪[=deep] ≡M∪[σ] ≡M∪[−] ≡M∪[∩] ≡M∪[⊆] ≡M∪[∈] ≡M∪[nest].

Moreover, generalizing selections to test against constants or to support “∈”,
“⊆” or allowing for Boolean combinations of conditions does not increase the ex-
pressiveness of full monad algebra [Tannen et al. 1992].

Example 2.3. Given a Boolean predicate γ, selection σγ can be expressed as
flatmap

(
〈1 : id, 2 : id ◦ γ〉◦pairwith2◦map(π1)

)
. Predicate (A ⊆ B) can be expressed

inM∪[=deep] as 〈A : πA, A
′ : πA ∩ πB〉◦(A =deep A

′) where f ∩g := (f×g)◦σ1=2◦
map(π1). A predicate (f ⊆ g) can be expressed as 〈1 : f, 2 : g〉 ◦ (1 ⊆ 2). 2

Example 2.4. Given a complex value of type 〈R : {τ}, S : {τ}〉, difference R−S
can be implemented in M∪[σ] as

pairwithR ◦map
(
〈R : πR, SR : 〈R : πR, S : πS〉◦pairwithS◦σR=S〉

)
◦σS=∅◦map(πR).

The idea is to compute, for each element r of R, the set SR of elements in S that
are equal to r and then to select those elements r of R for which SR is empty. 2

Theorem 2.2 demonstrates that full monad algebra (w.l.o.g.,M∪[=deep]) is a very
robust notion. It can serve as an “expressiveness benchmark” for query languages
on complex-value databases. Indeed, it has been shown that full monad algebra is
a conservative extension of relational algebra.

By a flat relational database, we denote a relational database in the classical sense
[Codd 1970; Abiteboul et al. 1995]. In our data model, a (flat) relational database

5The “nest” operation of complex value algebra without powerset [Abiteboul and Beeri 1995]
groups tuples by some of their attributes. For example, nestC=(B)(R) on relation R(AB) computes
the value {〈A : x, C : {〈B : y〉 | 〈A : x, B : y〉 ∈ R}〉 | (∃y)〈A : x, B : y〉 ∈ R}.
6No analogous statement can be made about flat relational algebra.

can be represented as a tuple of (flat) relations, where a (flat) relation of arity k is
a set of tuples of atomic values, i.e. a value of type {〈A1 : Dom, . . . , Ak : Dom〉}.

Theorem 2.5 [Paredaens and Van Gucht 1988]. A mapping from a (flat)
relational database to a (flat) relation is expressible in M∪[=deep] if and only if it
is expressible in relational algebra.

A generalized version of Theorem 2.5 can be found in [Wong 1996].

2.3 Monad Algebra on Lists and Bags

We will also consider monad algebra on listsM
[]
∪ and bagsM

{||}
∪ in this article (see

also [Tannen et al. 1992; Buneman et al. 1995; Libkin and Wong 1997]). We will be
parsimonious with notation here, but this should not lead to confusion throughout
the article. We will use the same syntax and operation names as for monad algebra
on sets, but now, for instance, ∪ on lists denotes the concatenation of two lists and
“flatten” concatenates the list-typed members of a list in order of appearance. For
bags, these operations ignore order but preserve duplicates. Of course, two lists are
equal iff they are of the same length and for each i, the i-th members of the two
lists are equal. Two bags are equal iff each member of either bag occurs the same
number of times in both bags.

For bags, we will also consider the additional operations “unique”, which sim-
ply eliminates duplicates from bags, and “monus” (a powerful version of differ-
ence which allows to express arithmetics in monad algebra on bags), defined such
that b monus b′ is the bag consisting of the elements x of b with multiplicity
#x(b monus b′) = max(0,#x(b)−#x(b′)); for instance,

{|a, a, a, b, b, b, c, d|} monus {|a, a, b, c, e|} = {|a, b, b, d|}.

In [Libkin and Wong 1997] it was shown that adding either of these two operations
strictly increases the expressive power of the language (and adding both makes the
language yet stronger).

We also consider the extension ofM
[]
∪ by a further operation “true” which evalu-

ates to [〈〉] (true) on a list if it is nonempty and to [] (false) otherwise. We use “true”
to eliminate duplicate entries from list-typed truth values (e.g., from [〈〉, . . . , 〈〉]).

3. CORE XQUERY

We consider the fragment of XQuery with abstract syntax

query ::= () | 〈a〉query〈/a〉 | query query | var | var/axis :: ν

| for var in query return query

| if cond then query

cond ::= var = var | query

where a denotes the XML tags, axis the XPath axes 7, var a set of XQuery variables
$x, $x1, $x2, . . . , $y, $z, . . . with a distinguished root variable (which is the unique

7For simplicity, particularly of the following semantics, we only consider the child and the de-
scendant axis, but some complexity upper bounds in this article hold for all XPath axes. Such
theorems refer to “all axes”.

[[()]]k(~e) := []

[[〈a〉α〈/a〉]]k(~e) := [〈a〉[[α]]k(~e)〈/a〉]

[[α β]]k(~e) := [[α]]k(~e) + [[β]]k(~e)

[[$xi]]k(t1, . . . , tk) := [ti]

[[$xi/χ :: ν]]k(t1, . . . , tk) := return list [t′1, . . . , t
′
l] of subtrees of ti such that

{v | χti(rootti , v) ∧ labti

ν (v)} = {roott
′
1 , . . . , roott

′
l}

and roott
′
1 <ti

doc · · · <
ti

doc root
t′l

[[for $xk+1 in α return β]]k(~e) := let [[α]]k(~e) = [t1, . . . , tl];

return [[β]]k+1(~e, t1) + · · ·+ [[β]]k+1(~e, tl)

[[if φ then α]]k(~e) := if [[φ]]k(~e) is nonempty then [[α]]k(~e) else []

[[$xi = $xj]]k(t1, . . . , tk) := if ti = tj then [〈yes/〉] else []

Fig. 1. Semantics of Core XQuery.

free variable in the query), and ν a node test (either a tag name or “*”). We refer
to this fragment as Core XQuery, or XQ for short.

For simplicity, we will work with pure node-labeled unranked ordered trees, and
by atomic values, we will refer to leaves (or equivalently, their labels). This requires
to assume an infinite labeling alphabet, but for our results this does not cause a
problem.8

XQuery supports several forms of equality. We will not try to use the same syntax
(=, eq, or deep equal) as in the current standards proposal – it is not clear whether
the syntax has stabilized. Throughout this article, equality is by value, that is, by
value as an ordered unranked tree or equivalently by value of the corresponding
XML document as a text string9. Other notions of equality such as equality of
node identifiers will not be considered. We will write =deep and =atomic for deep
and atomic equality, respectively. We will use = for statements that apply to both
forms of equality.

Our only other divergence from XQuery syntax is that we assume if-expressions of
the form “if φ then α” rather than “if φ then α else β”. Of course, our if-expressions
can be considered as a shortcut for “if φ then α else ()” and else-branches can be
simulated using negation, “if not(φ) then β”.

We use the shortcuts 〈a/〉 for 〈a〉()〈/a〉 and $x/a for $x/child::a.
We define the semantics of an XQ expression α with k free variables using a

function [[α]]k – given in Figure 1 – that takes a k-tuple ~e of trees as input. On
input tree t, query Q evaluates to [[Q]]1(t). The symbol + in Figure 1 denotes list
concatenation, by subtrees of t we refer to subtrees induced by a node of t and all
of its descendants in t, <t

doc is the preorder depth-first left-to-right traversal order

8An equivalent alternative would be a separate infinite value domain, but this would only cause
heavier notation.
9We leave concerns regarding normalization of whitespace aside here.

through tree t, χt is the binary axis relation χ on t, for instance, Childt(u, v) is
true iff node v is a child of node u in tree t, roott is the root node of tree t, labt

∗

is true on all nodes of t, and labt
a, for a a tag name, is true on those nodes of t

labeled a. All XQ queries evaluate to lists of trees. Values can only be assigned
to variables in for-expressions, which assure that variables always bind to single
trees rather than lists. For the restricted syntax of Core XQuery, this semantics is
(observationally) consistent with XQuery as currently undergoing standardization
with the W3C [World Wide Web Consortium 2005].

In our definition of the syntax of Core XQuery, we have been economical with
operators introduced. Since a condition is true iff it evaluates to a nonempty
collection,

true := 〈nonempty/〉

φ or ψ := φ ψ

φ and ψ := if φ then ψ

some $x in α satisfies φ := for $x in α return φ

$x = 〈a/〉 := some $y in 〈a/〉 satisfies $x = $y

(let $x := 〈a〉α〈/a〉) β := for $x in 〈a〉α〈/a〉 return β

Using deep equality, we can define negation,

not φ :=
(
φ =deep ()

)
.

Conditions “every $x in α satisfies φ” can be defined using “not” and “some”.
The following result follows immediately from these definitions.

Proposition 3.1. Let X be a set of operations and axes.

—Each XQ [true, and, or, some, let,X] query can be translated in LOGLIN into an
equivalent XQ [X] query.

—Each XQ [=deep, not, every,X] query can be translated in LOGLIN into an equiv-
alent XQ [=deep,X] query.

Next, we provide mappings between Core XQuery (using only the child axis, since
there is no feature corresponding to e.g. the descendant axis in monad algebra)
and monad algebra on lists. These show the equivalence of these languages up to
representation issues , but our main aim is to provide reductions for the study of
the complexity of XQuery.

Translation from Core XQuery to M
[]
∪. We recursively map the data tree t to

a complex value C(t) as follows: Each tree node with label a and children sub-
trees t1, . . . , tn (n ≥ 0) is mapped to a tuple 〈label : a, children : [C(t1), . . . , C(tn)]〉.
Moreover, the function C′ maps a list of trees [t1, . . . , tn] to the list-typed complex
value [C(t1), . . . , C(tn)].

Modulo representation issues captured in the tree translation function C, there
is an equivalent monad algebra query for each XQ [=, child, not] query, for = either
=deep or =atomic.

Lemma 3.2. There is a mapping MA : XQ [=, child, not] → M
[]
∪ [=,not] such

that for each XQ [=, child, not] query Q,

MA : XQ [=, child, not]→ [〈N : varname, V : τ〉]→ [τ ′]

MA(α β) := MA(α) ∪MA(β)

MA(()) := []

MA(〈a〉α〈/a〉) := 〈label : a, children : MA(α)〉 ◦ sng

MA($x) := σN=$x ◦map(πV)

MA($x/∗) := σN=$x ◦ flatmap(πV ◦ πchildren)

MA($x/a) := σN=$x ◦ flatmap(πV ◦ πchildren ◦ σlabel=a)

MA(for $x in α return β) := 〈1 : id, 2 : MA(α)〉 ◦ pairwith2 ◦

flatmap
(
(π1 ∪ (〈N : $x, V : π2〉 ◦ sng)) ◦MA(β)

)

MA(if α then β) := 〈1 : id, 2 : MA(α) ◦ true〉 ◦ pairwith2 ◦

flatmap(π1 ◦MA(β))

MA(not α) := MA(α) ◦map(〈〉) ◦ not

MA($x = $y) := 〈1 : σN=$x, 2 : σN=$y〉 ◦ pairwith1 ◦

flatmap(pairwith2) ◦ σ1.V =2.V

Fig. 2. Mapping from XQ [=, child, not] toM
[]
∪ [=, not].

(1) for any XML tree t, C′([[Q]]1(t)) = MA(Q)
(
[〈N : $ROOT, V : C(t)〉]

)
,

(2) MA(Q) can be computed in space O(log |Q|), and

(3) |MA(Q)| = O(|Q|).

Proof. Consider the function MA of Figure 2. It is easy to verify by induction
that MA satisfies the invariant that for all XQ expressions α and k-ary environments
~e = (t1, . . . , tk) such that the free variables of α are included in {x1, . . . , xk},

C′([[α]]k(~e)) = MA(α)([〈N : x1, V : C(t1)〉, . . . , 〈N : xk, V : C(tk)〉]).

We check this for the two most interesting cases, expressions $x (or $x/a, or
$x/∗) which access the tree associated with variable $x in the environment and
for-expressions which extend the environment by a new variable.

Let E = [〈N : x1, V : C(t1)〉, . . . , 〈N : xk, V : C(tk)〉].

—We compute MA($xi)(E) = (σN=$xi
◦ map(πV))(E). We have σN=$xi

(E) =
[〈N : $xi, V : C(ti)〉] and map(πV)([〈N : $xi, V : C(ti)〉]) = [C(ti)] = C′([ti]).
Since [[$xi]]k(t1, . . . , tk) = [ti], the induction hypothesis holds for expressions $xi.

—We compute MA(for $xk+1 in α return β)(E). Let [[α]]k(t1, . . . , tk) = [t′1, . . . , t
′
l].

By the induction hypothesis, MA(α)(E) = [C(t′1), . . . , C(t′l)]. But then

(〈1 : id, 2 : MA(α)〉 ◦ pairwith2)(E) = [〈1 : E, 2 : C(t′1)〉, . . . , 〈1 : E, 2 : C(t′l)〉].

If we apply flatmap((π1 ∪ (〈N : $xk+1, V : π2〉 ◦ sng)) ◦MA(β)) to this we get

MA(β)(E ∪ [〈N : $xk+1, V : C(t′1)〉]) ∪ · · · ∪MA(β)(E ∪ [〈N : $xk+1, V : C(t′l)〉]).

Applying the induction hypothesis l times yields

C′([[β]]k+1(t1, . . . , tk, t
′
1)) ∪ · · · ∪C

′([[β]]k+1(t1, . . . , tk, t
′
l))

which in turn is equal to C′([[for $xk+1 in α return β]]k(t1, . . . , tk)).

By definition, a query has one free variable (“$ROOT”). Claim (1) of our theorem,
which is the restriction of the induction hypothesis to k = 1, follows immediately.
Regarding claims (2) and (3), it is easy to check by inspection of Figure 2 that MA
can be computed in LOGSPACE and that the result is of linear size. 2

For atomic equality, σ1.V =2.V in the definition of MA is to be implemented as

σ1.V.label=atomic2.V.label. Note that on a XQ [=, child] query Q, MA(Q) is a M
[]
∪ [=]

query.

Translation from M
[]
∪ to Core XQuery. Let T be the following canonical trans-

lation from complex values to trees:

T (〈A1 : v1, A2 : v2〉) = 〈tup〉〈a1〉T (v1)〈/a1〉〈a2〉T (v2)〈/a2〉〈/tup〉

T ([v1, . . . , vn]) = 〈list〉T (v1) . . . T (vn)〈/list〉

Note that T is not the inverse of the mapping C that we introduced above to
map from XML trees to complex values constructed from tuples and lists.

LetM
[],(·,·)
∪ denote the monad algebra queries on lists and pairs (rather than on

tuples of arbitrary arity). For both =deep and =atomic, we have

Lemma 3.3. There is a mapping XQ : M
[]
∪ [=] → XQ [=, child] such that for

each M
[]
∪ [=] query Q,

(1) for any complex value v, T (Q(v)) = [[XQ(Q)($ROOT)]]1
(
T (v)

)
,

(2) XQ(Q) can be computed in space O(log |Q|), and

(3) If Q is a M
[],(·,·)
∪ query, |XQ(Q)| = O(|Q|).

Proof. The proof of (1) is by induction, with (1) as the induction hypothe-
sis, on the mapping XQ of Figure 3. Both in the figure and the proof, we will
use expressions of the form “$x/ν/ν′” as short syntax for “for $x′ in $x/ν re-
turn $x′/ν′”. For example, for XQ(Ai = Aj)($x), complex value v must be a tu-
ple 〈A1 : v1, . . . , Ak : vk〉 and T (v) = 〈tup〉〈a1〉T (v1)〈/a1〉 . . . 〈ak〉T (vk)〈/ak〉〈/tup〉.
But then [[$x/ai/∗]](T (v)) = T (vi) and [[$x/aj/∗]](T (v)) = T (vj). Thus

[[XQ(Ai = Aj)($x)]]1(T (v)) = [[〈list〉{if (some $y in $x/ai/∗ satisfies

some $z in $x/aj/∗ satisfies

($y = $z)) then 〈tup/〉}〈/list〉]]1(T (v))

=

{
〈list〉〈tup/〉〈/list〉 . . . T (vi) = T (vj)
〈list/〉 . . . otherwise

= T ((Ai = Aj)(v)).

The restriction of tuples to arity ≤ 2 in (3) is needed because |XQ(pairwithi)($x)|
is linear in the arity of tuples. It is easy to verify that XQ satisfies (2) and (3). 2

XQ(〈A1 : f1, . . . Ak : fk〉)($x) := 〈tup〉〈a1〉XQ(f1)($x)〈/a1〉 . . .

〈ak〉XQ(fk)($x)〈/ak〉〈/tup〉

XQ(πi)($x) := {$x/ai/∗}

XQ(sng)($x) := 〈list〉{$x}〈/list〉

XQ(f ◦ g)($x) := {for $y in XQ(f)($x) return XQ(g)($y)}

XQ(map(f))($x) := 〈list〉{for $y in $x/∗ return XQ(f)($y)}〈/list〉

XQ(id)($x) := {$x}

XQ(flatten)($x) := 〈list〉{$x/list/∗}〈/list〉

XQ(pairwithi)($x) := 〈list〉{for $y in $x/ai/list/* return 〈tup〉

〈a1〉{$x/a1/∗}〈/a1〉 . . . 〈ai−1〉{$x/ai−1/∗}〈/ai−1〉

〈ai〉{$y}〈/ai〉

〈ai+1〉{$x/ai+1/∗}〈/ai+1〉 . . . 〈ak〉{$x/ak/∗}〈/ak〉

〈/tup〉}〈/list〉

XQ(f ∪ g)($x) := 〈list〉{(XQ(f)($x))/∗}{(XQ(g)($x))/∗}〈/list〉

XQ(Ai = Aj)($x) := 〈list〉{if (some $y in $x/ai/∗ satisfies

some $z in $x/aj/∗ satisfies

($y = $z)) then 〈tup/〉}〈/list〉

XQ(c)($x) :=







〈list/〉 . . . c = []
〈tup/〉 . . . c = 〈〉
〈c/〉 . . . otherwise

XQ(true)($x) := {if $x then 〈nonempty/〉}

Fig. 3. Mapping fromM
[]
∪ [=] to XQ [=, child].

As mentioned before, many query languages for complex values that were devel-
oped earlier, such as nested relational algebra [Jaeschke and Schek 1982], complex
value algebra without powerset [Abiteboul and Beeri 1995], and monad algebra
[Tannen et al. 1992], share the same expressive power. Core XQuery is an interest-
ing fragment of XQuery because it captures precisely this degree of expressiveness,
which is commonly deemed “right” for nested, deeply structured data.

4. QUERY COMPLEXITY OF LANGUAGES WITH DEEP EQUALITY

Before we embark on our study of the query complexity of languages with deep
equality, let us make an observation.

Proposition 4.1. There are LOGLIN reductions that

—given a complex value v, compute an M∪ (M
{||}
∪ ,M

[]
∪) expression that evaluates

to v on an arbitrary (e.g. empty) database.

—given an XML tree v, compute an XQ expression that evaluates to v on an
arbitrary XML tree.

That is, both monad algebra and Core XQuery have the power to construct arbi-
trary values from scratch. Since these languages are obviously closed under compo-
sition and all complexity classes we will consider for query complexity throughout
this article are closed under LOGLIN-reductions, we may subsequently focus on
query complexity; combined complexity is no harder.

4.1 Size Bounds on Values

It is possible to write queries in monad algebra (or equally in M
{||}
∪ or M

[]
∪ and

thus, by Lemma 3.3, in Core XQuery) that compute values of doubly exponential
size.

Proposition 4.2. There is anM∪ query Q that computes a value of size 22Ω(|Q|)

.

Proof. Consider the query Q

φ{0,1} ◦ (id× id) ◦ · · · ◦ (id× id)
︸ ︷︷ ︸

m times

where φ{0,1} = (0 ◦ sng) ∪ (1 ◦ sng) computes the set {0, 1} and m is linear in |Q|.
Query Q computes the set of all nested pairs (=binary trees) of depth m with labels
from {0, 1} at the leaves. There are 22m

such nested pairs. 2

For the converse,

Proposition 4.3. The values computable by M∪[=] queries are of size 22O(n)

,
where n is the size of the input (i.e., database and query).

Proof. Let the function Cf (n), for each M∪[=] expression f , be defined resp.
bounded as follows: For constants, it is O(1); for the operation id, it is |n|; for sng,
it is |n|+ O(1); for flatten, σ, and π, it is |n|, for pair construction 〈1 : f, 2 : g〉, it
is Cf (n) + Cg(n) + O(1); for union f ∪ g, it is Cf (n) + Cg(n); for pairwith, it is
n2 +O(1); and finally, for f ◦ g, it is Cg(Cf (n)).

It is easy to see that Cf provides us with an upper bound on the size of the value
obtained by applyingM∪[=] expression f on a value of size n.

For n > 1, pairwith is the locally costliest operation, so let us assume that Q
consists of the composition of |Q| operations with this cost as an upper bound.
In particular, this will provide an overestimation of the size of the computed
value because for n > 1, Cf (n) + Cg(n) + O(1) < Cpairwith ◦ · · · ◦ pairwith

︸ ︷︷ ︸
|f|+|g| times

(n) =

(· · · (((n2 +O(1))2 +O(1))2 +O(1)) · · ·)2 +O(1). Now,

|[[Q]](D)| ≤ CQ(|D|) ≤ (· · · ((|D|

|Q| times
︷ ︸︸ ︷
2 +O(1))2 +O(1)) · · ·)2 +O(1)

≤ (· · · (((|D|+O(|Q|))

|Q| times
︷ ︸︸ ︷
2)2) · · ·)2 ≤ 22O(|D|+|Q|)

2

Given an input value of size 22O(n)

, each operation ofM∪[=] can be evaluated on

the input in time 22O(n)

on a random access machine. There are |Q| ≤ n operations,

and |Q| · 22O(n)

= 22O(n)

. Thus,

Corollary 4.4. M∪[=] is in 2ETIME w.r.t. combined complexity.

4.2 A Space Bound

By Lemma 3.2 and Proposition 4.3, we cannot compute values of more than doubly
exponential size in Core XQuery. Pointers into such values take only exponential
space. It is not hard to design an algorithm which does not materialize intermediate
results (trees) but uses pointers into such trees and counters to keep track of the
current state of the computation and to recompute trees on demand, and which
runs in exponential space.

Theorem 4.5. XQ [=deep, child, descendant] is in EXPSPACE w.r.t. query com-
plexity.

Proof. Let Symbol be the set of opening and closing tags 〈a〉, 〈/a〉 for each
label a of our labeling alphabet. We use a list iterator design pattern with methods
getNext: → Symbol and atEnd: → Boolean. Such an iterator has an internal
counter p initially set to (list position) 1; atEnd() is true if p is greater than the
size of the list; if atEnd() is false, getNext() outputs the p-th element of the list
and increments p by one; thus, getNext() can be used to iterate over the elements
of the list and output them element by element. Given an iterator i, let l(i) denote
the list over which i iterates.

Consider the semantics definition of Figure 1. For each Core XQuery expression
α with k free variables it defines a function [[α]]k that maps k-tuples ~e of trees to a
list of trees, the semantics of expression α on environment ~e.

For each expression α, let Iterator[[α]]k be a function that maps a k-tuple ~j of
iterators with l(jm) = em, for 1 ≤ m ≤ k, to an iterator i such that l(i) = [[α]]k(~e).
Obviously it is possible to define such iterators: e.g. for getNext() we just compute
em = l(jm), for each jm, and store it in memory. Then we compute [[α]]k(~e) and
return its p-th symbol (the current position of the iterator).

This algorithm is not yet good because it takes too much space – we already
know from Proposition 4.2 and Lemma 3.3 that trees produced by Core XQuery
queries can be of doubly exponential size. However, we need to modify the direct
functional implementation of our semantics definition of Figure 1 only moderately
to obtain an iterator-based algorithm which does not need to explicitly store the
subtrees ~e to compute [[α]]k(~e) and return the p-th symbol. Instead, we can work
directly using the iterators for ~e and never have to materialize large trees or lists.

This is rather straightforward; the most interesting case is probably the for-
expressions, for which we can implement getNext() as follows.

Symbol Iterator[[for $xk+1 in α return β]]k(~e).getNext() begin

Integer p′ := 1;
Iterator[[α]]k(~e) i;

for m = 1 to i→count() do begin

Iterator[[β]]k+1(~e, i→get(m)) j;

while not j→atEnd() do begin

Symbol s := j→getNext();

p′ := p′ + 1;
if (this→p = p′ − 1) then begin p := p+ 1; return s end

end

end;
fail

end

Here, given an iterator i over a list of trees represented by a well-formed string of
opening and closing tags, we have assumed additional methods “count” and “get”
on i such that count() returns the number of trees in the list l(i) and get(m) returns
an iterator over the m-th tree in that list. Both can be easily implemented using
a counter that maintains the number of opening minus the number of closing tags
seen left of the current position.

Now let us consider the space requirements of such an iterator-based evaluation
technique. Observe first that there is again a doubly exponential upper bound
on the size of Core XQuery results – this follows immediately from Lemma 3.2
and Proposition 4.3. But then, a position inside any such value – tree or list of
trees – can be represented by a binary number of singly exponential length. For
query Q, at any time, we need to store the state of no more than O(|Q|) iterators
in memory, one for each distinct variable, and each such state consists of only a
constant number of exp-sized counters and of O(|Q|) references to other iterators.
Thus, our algorithm takes singly exponential space. 2

Note that this EXPSPACE algorithm is quite robust and allows to add a num-
ber of XQuery features that we excluded from XQ , such as counting, (document
position) arithmetics, and duplicate elimination.

Monad algebra with deep equality inherits the same upper bound.

Theorem 4.6. M∪[=deep], M
[]
∪ [=deep] and M

{||}
∪ [=deep,monus, unique] are in

EXPSPACE w.r.t. query complexity.

Proof. The case of M
[]
∪ [=deep] follows immediately from Lemma 3.3 and The-

orem 4.5.
M∪[=deep] and M

{||}
∪ [=deep,monus, unique] work analogously: We use the list-

based algorithm for evaluating monad algebra on bags, and the only aspect that
has to be modified is the checking of equality. Indeed, the remaining operations of

M∪[=deep] and M
{||}
∪ [=deep,monus, unique] are indifferent to orders in collection-

typed values. When we want to check whether two bags identified by expressions
e1 and e2 are equal, we can do this by checking whether for each member of [[e1]] or
[[e2]], its multiplicity in [[e1]] is the same as in [[e2]]. By previous arguments, a binary
counter for counting members of a list requires only singly exponential space.

The operations “monus” and “unique” can be evaluated using similar counting
techniques.

Deep set equality, forM∪[=deep], can be implemented by modifying the equality
check on bags to recursively verifying, for each element v of the two sets, whether
at least one element equal to v occurs in the other set. 2

5. QUERY COMPLEXITY OF LANGUAGES WITH ATOMIC EQUALITY

Next we consider the complexity of monad algebra and XQuery with atomic equal-
ity, both with and without negation. It is folklore that by extendingM∪ by equality
on atomic values =atomic, we still cannot express nonmonotone operations such as
equality of sets or negation. We can safely generalize =atomic to equality of arbi-
trary complex values that do not include sets, =mon, defined inductively as =atomic

on atomic values and v1 =mon w1 ∧ · · · ∧ vk =mon wk on tuples 〈v1, . . . , vk〉 and
〈w1, . . . , wk〉. Of course this generalization does not improve upon the expressive-
ness ofM∪[=atomic].

Proposition 5.1. M∪[=atomic] captures M∪[=mon].

Proof. Of course, everyM∪[=atomic] query is also aM∪[=mon] query. For the
other direction, we can define =mon using =atomic given the type τ of the values to
compare. Viewing each such tuple type as a ranked tree t, we simply define (A =τ

mon

B) as the conjunction (implemented as the Cartesian product) of the equality pred-
icates (A.π =atomic B.π) for each attribute path π in t from the root to a leaf. For
example, for type τ = 〈C : 〈D : Dom, E : 〈F : Dom, G : Dom〉〉, H : Dom〉,

(A =τ
mon B) := (A.C.D =atomic B.C.D) × (A.C.E.F =atomic B.C.E.F)×

(A.C.E.G =atomic B.C.E.G) × (A.H =atomic B.H).

(By definition, these types must be constructed from tuples and atomic values.) 2

5.1 Upper Bound Results

We now come to address the observation made in the Introduction that while
monad algebra queries may compute complex values of doubly exponential size
(Proposition 4.2), resolution proofs for nonrecursive logic programs are always of
only singly exponential size. The latter observation is known to yield a NEXPTIME
upper bound for nonrecursive logic programming [Dantsin and Voronkov 1997].
The proof of the following theorem shows that monad algebra with atomic value
equality is in NEXPTIME. The proof idea is a refinement of the one in [Dantsin and
Voronkov 1997] – and in fact, as shown in the electronic appendix, monad algebra
can be efficiently reduced to nonrecursive logic programming.

Theorem 5.2. M∪[=atomic] is in NEXPTIME w.r.t. query complexity.

Proof. Without loss of generality, we may assume that all monad algebra op-
erations are unary. This requires only a slight change of notation when we use the
union operation ∪: Rather than writing f ∪ g, we write 〈A : f,B : g〉 ◦ ∪.

We employ nested paths that can be thought of as terms constructed from con-
stants and a single binary function symbol f . A constant c is written as c as a
path. Inductively, if t, t′ are terms and p, p′ are their respective representations as
paths, then the term f(t, t′) is represented as a path as p.p′ if t is atomic and as
(p).p′ otherwise. Left f -term children are considered Skolem functions generating
new path labels. For example, the term f(f(x, y), f(z, f(u, v))) will be written as
(x.y).z.u.v, and is understood as a path w.z.u.v where w is a label generated from
and identified by x.y.

[[id]](P) := P

[[c]](P) := {m.c | m.p ∈ P}

[[πA]](P) := {m.p | m.A.p ∈ P}

[[sng]](P) := {m.1.p | m.p ∈ P}

[[flatten]](P) := {m.(i.j).p | m.i.j.p ∈ P}

[[A =atomic B]](P) := {m.1.〈〉 | m.A.p,m.B.p ∈ P} ∪ {m.1 | m.A.p ∈ P}

[[πA ∪ πB]](P) := {m.(1.i).p | m.A.i.p ∈ P} ∪

{m.(2.i).p | m.B.i.p ∈ P}

[[pairwithAj
]](P) := {m.i.Aj.p | m.Aj .i.p ∈ P} ∪

{m.i.Ak.p
′ | m.Aj .i.p,m.Ak.p

′ ∈ P ∧ j 6= k}

[[f ◦ g]](P) := [[g]]([[f]](P))

[[map(f)]](P) := [[map e]]([[f]]([[map b]](P)))

[[〈A1 : f1, . . . , Ak : fk〉]](P) := {m.A1.p | m.p ∈ [[f1]](P)} ∪ · · · ∪

{m.Ak.p | m.p ∈ [[fk]](P)}

Fig. 4. A path-based alternative semantics for monad algebra.

We view every complex value as a deterministic tree, i.e., a tree in which each
node v is uniquely identified by the path of labels from the root to v. We are able to
uniquely assign such labels – even the elements of an index set to the elements of a
set value, as we are considering query complexity and construct every set value from
scratch (see Proposition 4.1). Such a deterministic tree is of course fully described
by the set of root-to-leaf paths occurring in it.

Figure 4 shows an alternative semantics ofM∪[=atomic] in terms of deterministic
trees. Each query maps a deterministic tree given as a set of paths to a deterministic
tree given as a set of paths. Here, P always denotes a set of paths, p, p′, p1, . . . , pk

denote paths, andm, i, j denote indexes of set members. The symbol 〈〉 (denoting an
empty tuple) is to be understood as a constant and a path of length one. By map b
and map e (“map-begin” and “map-end”, respectively), we refer to the following
two operations:

[[map b]](P) := {(m.i).p | m.i.p ∈ P}

[[map e]](P) := {m.i.p | (m.i).p ∈ P}.

Let the mappings U τ be a family of functions that map deterministic trees (rep-
resented by sets of paths) to complex values of type τ as follows: UDom({c}) = c,

U{τ}({i1.v1,1, . . . , i1.v1,n1 , . . . , im.vm,1, . . . , im.vm,nm
}) :=

{U τ ({v1,1, . . . , v1,n1}), . . . , U
τ ({vm,1, . . . , vm,nm

})},

U 〈A1:τ1,...,Ak:τk〉({A1.v1,1, . . . , A1.v1,n1 , . . . , Ak.vk,1, . . . , Ak.vk,nk
}) :=

〈A1 : U τ1({v1,1, . . . , v1,n1}), . . . , Ak : U τk({vk,1, . . . , vk,nk
})〉.

Claim: Given a M∪[=atomic] expression f : τ → τ ′ and a set of paths P which

represents a complex value of type {τ},

U{τ ′}([[f]](P)) = map(f)(U{τ}(P)).

Proof of Claim: By induction. For f not higher-order, that is, not of the form
“map(g)”, “g◦h”, or “〈A1 : f1, . . . , Ak : fk〉”, this follows immediately from the def-
inition of [[·]]. For example, for sng : τ → {τ}, U{{τ}}([[sng]](P)) = U{{τ}}({m.1.p |
m.p ∈ P}) = {{U τ({p | m.p ∈ P})} | ∃p′ m.p′ ∈ P} = map(sng)(U{τ}(P)).

For f = g ◦ h with g : τ → τ ′ and h : τ ′ → τ ′′, let P ′ = [[g]](P) and
P ′′ = [[h]](P ′). Then by the induction hypothesis, U τ ′

(P ′) = map(g)(U{τ}(P))
and U{τ ′′}(P ′′) = map(h)(U τ ′

(P ′)). Thus map(h)(map(g)(U{τ}(P))) = map(g ◦
h)(U{τ}(P)) = U{τ ′′}(P ′′) = U{τ ′′}([[g ◦ h]](P)).

For f = map(g) and g : τ → τ ′, let P ′ = [[map b]](P), let P ′′ = [[g]](P ′), and
let P ′′′ = [[map e]](P ′′). Then, U{τ}(P ′) = flatten(U{{τ}}(P)) and (m.i) 7→ (m, i)
is a bijection: We can “undo” map b using map e. By the induction hypothesis,
U{τ ′}(P ′′) = map(g)(U{τ}(P ′)). Since flatten◦map(g) ≡ map(map(g))◦flatten and
P ′′′ is obtained by nesting P ′′ using θ, U{{τ ′}}(P ′′′) = map(map(g))(U{{τ}}(P)).

For f = 〈A1 : f1, . . . , Ak : fk〉 : τ → 〈A1 : τ1, . . . , Ak : τk〉 with fl : τ → τl (1 ≤
l ≤ k), assume the induction hypothesis holds for the fl. For each m, each of the
sets {m.Al.p | m.p ∈ [[fl]](P)} of the definition of [[〈A1 : f1, . . . , Ak : fk〉]] contributes
the paths for one attribute value Al of the tuple to be constructed for the element
with index m of U{τ}(P). By a simple regrouping of the terms in these sets, we
can verify that our hypothesis holds for f .

This establishes a formal connection between the semantics of monad algebra
given in Section 2.2 and the one given by [[·]]. In particular, since each value v of
type τ can also be read as a monad algebra expression v : (·)→ τ which constructs
it, U{τ}([[v]]({1.〈〉})) = map(v)({〈〉}) = {v}, and for Q : τ → τ ′,

U{τ ′}([[v ◦Q]]({1.〈〉})) = map(v ◦Q)({〈〉}) = v ◦Q ◦ sng = (Q ◦ sng)(v).

We have introduced map b and map e as shortcuts for studying the map opera-
tion. By definition,

[[map b ◦ f ◦map e]](P) = [[map(f)]](P)

for path-sets P . From now on, we assume that queries use map b and map e rather
than map; thus we rewrite queries using this equivalence in the beginning.

An example demonstrating the construction of the deterministic tree for

〈A : {1, 2}, B : {2, 3}〉 ◦ pairwithA◦

map(pairwithB ◦map(A =atomic B)) ◦ flatten ◦ flatten

is shown in Figure 5.
Now we can exploit the very restricted structure of the definition of [[·]] to get an

evaluation algorithm for Boolean queries that runs in NEXPTIME. Of course, a
Boolean query is a set-typed query that is taken as true iff its result is nonempty.
Thus, for evaluating query Q on input value v, we only need to guess a path p and
check that it is in [[v ◦ Q]]({1.〈〉}). We can do this recursively: To check whether
path p is in [[f]], we need to guess and check at most two paths for subexpressions.
Two paths need to be guessed and checked only for “pairwith” and =atomic – see

(a): 1 ◦ sng (b): (1 ◦ sng) ∪ (2 ◦ sng) (c): 〈A : (b), B : ((2 ◦ sng) ∪ (3 ◦ sng))〉
b

b

1

1

1

b

b

1

1

1.1

2

2.1

b

b

1

b

A

1

1.1

2

2.1

b

B

2

1.1

3

2.1

(d): (c) ◦ pairwithA (e): (d) ◦ map b
b

b

1

b

1.1

1

A
b

B

2

1.1

3

2.1

b

2.1

2

A
b

B

2

1.1

3

2.1

b

b

1.(1.1)

1

A
b

B

2

1.1

3

2.1

b

1.(2.1)

2

A
b

B

2

1.1

3

2.1

(f): (e) ◦ pairwithB

b

b

1.(1.1)

b

1.1

1

A

2

B

b

2.1

1

A

3

B

b

1.(2.1)

b

1.1

2

A

2

B

b

2.1

2

A

3

B

(g): (f) ◦ map b
b

b

(1.(1.1)).1.1

1

A

2

B

b

(1.(1.1)).2.1

1

A

3

B

b

(1.(2.1)).1.1

2

A

2

B

b

(1.(2.1)).2.1

2

A

3

B

(h): (g) ◦ (A =atomic B) (i): (h) ◦map e (j): (i) ◦map e (k): (j)◦flatten (l): (k)◦flatten
b

b

(1.(2.1)).1.1

〈〉

1

b

b

1.(2.1)

b

1.1

〈〉

1

b

b

1

b

2.1

b

1.1

〈〉

1

b

b

1

b

(2.1).1.1

〈〉

1

b

b

1

〈〉

((2.1).1.1).1

Fig. 5. Construction of deterministic tree for 〈A : {1, 2}, B : {2, 3}〉 ◦pairwithA ◦map(pairwithB ◦
map(A =atomic B)) ◦ flatten ◦ flatten.

flatten: 1.(((2.1).1.1).1).〈〉

flatten: 1.((2.1).1.1).1.〈〉

map e: 1.(2.1).(1.1).1.〈〉

map e: (1.(2.1)).(1.1).1.〈〉

A =atomic B: ((1.(2.1)).1.1).1.〈〉

map b: ((1.(2.1)).1.1).A.2

pairwithB: (1.(2.1)).(1.1).A.2

map b: (1.(2.1)).A.2

pairwithA: 1.(2.1).A.2

〈A,B〉: 1.A.(2.1).2

∪: 1.(2.1).2

sng: 1.1.2

const: 1.2

(1.(2.1)).B.(1.1).2

1.(2.1).B.(1.1).2

1.A.(2.1).2

1.(2.1).2

1.1.2

1.2

1.B.(1.1).2

1.(1.1).2

1.1.2

1.2

((1.(2.1)).1.1).B.2

(1.(2.1)).(1.1).B.2

(1.(2.1)).B.(1.1).2

1.(2.1).B.(1.1).2

1.A.(2.1).2

1.(2.1).2

1.1.2

1.2

1.B.(1.1).2

1.(1.1).2

1.1.2

1.2

Fig. 6. Proof tree for query 〈A : {1, 2}, B : {2, 3}〉 ◦ pairwithA ◦ map(pairwithB ◦
map(A =atomic B)) ◦ flatten ◦ flatten. The operation carried out at some node can
be looked up at the node of the same depth in the leftmost path of the proof tree.

the definition of [[·]] – and thus only in these two cases the computation branches
out. For example, to verify that path m.i.B.p′ is in [[f ◦ pairwithA]](P), we have to
guess a path p and check that m.i.A.p,m.B.p′ ∈ [[f]](P). The remaining paths of
[[f]](P) do not need to be computed. The “proof tree” for path 1.〈〉 thus computed
has branching factor two and depth O(|v|+ |Q|). Each path grows by concatenation
along a path of the proof tree. No copies of paths are concatenated, thus paths have
polynomial size and the entire nondeterministic algorithm takes only exponential
time. To illustrate this, Figure 6 shows the proof tree for the running example from
above. 2

Theorem 5.3. M∪[=atomic, not] is in TA[2O(n), O(n)] w.r.t. query complexity.

Proof. The proof is by a straightforward generalization of the previous proof.
Consider a nondeterministic Turing machine implementation of the recursive al-
gorithm for guessing and verifying that [[v ◦ Q]]({1.〈〉}) is nonempty which was
described in the proof of Theorem 5.2. To support the “not” operation as well, we
just need to be able to check whether a given path m.1.〈〉 is in [[f ◦ not]](P). We do
this by a universal computation – now of course on an alternating Turing machine
– that verifies that for no i and p, the path m.i.p is in [[f]](P). (That is, we verify
that by making the assumption that m.i.p is in [[f]](P), all possible computation

paths reject.) Since there can be only linearly many occurrences of “not” in the
input query, this can be done by an alternating Turing machine in exponential time
with linearly many alternations. 2

Our upper bounds are inherited by the other language dialects,

Proposition 5.4. With respect to query complexity, the languages

(1) M
{||}
∪ [=atomic], M

[]
∪ [=atomic], and XQ [=atomic, child] are in NEXPTIME;

(2) M
{||}
∪ [=atomic,not], M

[]
∪ [=atomic,not], and XQ [=atomic, child, not] are in

TA[2O(n), O(n)] under LOGLIN-reductions.

Proof. Regarding monad algebra on lists and bags, the proofs of Theorems 5.2
and 5.3 work without modifications. Actually, our encoding using deterministic
trees treats collections as lists, and thus preserves both order and multiplicities
of members. If only equality on atomic values is available, however, we cannot
distinguish between sets, lists, and bags in queries.

The bounds on Core XQuery follow from those on monad algebra on lists estab-
lished here and in Lemma 3.2. 2

The complexity classes in which our XQuery evaluation problems reside are large
enough that minor extensions, such as also supporting the descendant axis, do not
matter.10

Theorem 5.5. With respect to combined complexity,

—XQ [=atomic, child, descendant, not] is in TA[2O(n), O(n)], and

—XQ [=atomic, child, descendant] is in NEXPTIME.

Proof. (1) We first extendM
[]
∪ by a new operation “descmap” that, on a value

C(t) representing a tree t (using the representation function C of Section 3), com-
putes the list of values C(t′) corresponding to the subtrees t′ of t in document
order. It is now easy to modify the LOGLIN-reduction of Lemma 3.2 to map

any XQ [=atomic, child, descendant] query to a correspondingM
[]
∪ [=atomic,descmap]

query. Finally, we modify the algorithm of the proof of Theorem 5.2 to process
queries involving descmap. Guessing a descendant of the root node of tree t, that
is, guessing a subtree of t, simply requires to guess a prefix of a path in the deter-
ministic tree representation of C(t). This is easy, and the entire algorithm remains
in NEXPTIME.

For (2), the proof is the same except that we use the algorithm of the proof of
Theorem 5.3 and obtain a TA[2O(n), O(n)] upper bound. 2

5.2 Lower Bounds

In this section we establish lower bounds matching the upper bounds of Theo-
rems 5.2 and 5.3. We first prove our results again for monad algebra on sets and
then carry them over to the other languages. We start with the monotone fragment.

10It is folklore that computing the nodes of a tree reachable from a given node via any given axis
can be done in LOGSPACE. For the descendant axis, this problem is LOGSPACE-complete [Cook
and McKenzie 1987], cf. also [Gottlob et al. 2005].

Theorem 5.6. M∪[=atomic] is NEXPTIME-hard w.r.t. query complexity.

Proof. The proof is by a LOGSPACE-reduction from NEXPTIME Turing ma-
chine acceptance. There are two main difficulties that we face in this reduction:
We have to (i) deal with Turing machine tapes and configurations of exponential
size and have to (ii) model the accepting computations of the Turing machine of
exponential length succinctly – the M∪[=atomic] query that must achieve this has
to be computable in LOGSPACE and thus must be of polynomial size in the size
of the input on the tape. Regarding (i) we basically reuse the query from the proof
of Proposition 4.2 (used there to show that monad algebra queries can compute
values of doubly exponential size) to generate a set of exponentially-sized nested
pairs that contains encodings of all possible tape configurations. Nested pairs allow
for an ordered representation whose elements can be uniquely addressed by short
queries. The technically most involved part of the proof builds a query which de-
fines the successor relation over these configurations. Difficulty (ii) is addressed
using the reachability method of Savitch’s theorem (cf. e.g. [Papadimitriou 1994]).

Let M = (QM , qM
0 , δM , FM) be a nondeterministic Turing machine (NTM) that

runs in time 2nO(1)

on inputs of size n. We simulate the computation of M in
M∪[=atomic]. Each run of M is a sequence of configurations of length 2K(n), for a
suitable k and K(n) = nk. (We may assume w.l.o.g. that terminating computation
paths of M remain in a final state until time 2K(n) by appropriate design of M .)
Each configuration of M consists of a read/write tape, a current state, and a posi-
tion marker on the tape. Of course every 2K(n) time NTM computation uses tape
space bounded by 2K(n).

Modeling configurations.

—Each tape of a configuration is modeled as a tuple of arity 2K(n) (or more pre-
cisely, nested pairs of nesting depth K(n)) of tape symbols.
Let Σ = {s1, . . . , sc} be the (fixed) tape alphabet ofM . Rather than representing
the current position of the read/write head on the tape separately from the tape,
we will assume a valid tape over extended tape alphabet Σ′ = Σ ∪ {⊲s⊳ | s ∈ Σ}
to contain a single symbol ⊲s⊳ (with s ∈ Σ) on the tape that indicates that this
tape position stores symbol s and is the current position of the read/write head.

We can compute the set of all (2 · c)2
K(n)

such tapes in M∪ as

Tapes := φΣ′ ◦ (id× id) ◦ · · · ◦ (id× id)
︸ ︷︷ ︸

K(n) times

where φΣ′ is an appropriateM∪ expression that computes Σ′.11

As a result of this construction, some elements of set Tapes do not correspond
to valid Turing tapes because they contain either zero or more than two markers
indicating the current position of the read/write head on the tape. We will deal
with this later.

—A superset of all possible configurations is

Configs := (Tapes ×QM) ◦map(〈t : π1, q : π2〉).

11I.e., φΣ′ := s1 ◦ sng ∪ · · · ∪ sc ◦ sng ∪ ⊲s1 ⊳ ◦sng ∪ · · · ∪ ⊲sc ⊳ ◦sng.

—The start configuration, consisting of the input tape, the start state, and the
position marker at position 0 of the tape is obtained as follows.
We compute the start tape as the input x, with |x| = n, padded with (2K(n)−n)
#-symbols (denoting unused tape space) and with the first position marked, but
in our nested pairs representation.
Let query φx define the nested pair of depth ⌈log2 n⌉ representing x padded by
(2⌈log2 n⌉ − n) #-symbols, and with the first position marked. (This is easy to
compute in LOGSPACE.) E.g., for input x = 01101, the value computed12 is

〈〈〈⊲0⊳, 1〉, 〈1, 0〉〉, 〈〈1,#〉, 〈#,#〉〉〉.

The start tape is

φstart := 〈1 : φx, 2 : φempty〉 ◦ φpad ◦ · · · ◦ φpad
︸ ︷︷ ︸

K(n)−⌈log2 n⌉−1 times

with

φpad = 〈1 : id, 2 : 〈1 : π2, 2 : π2〉〉 and φempty := #◦〈id, id〉 ◦ 〈id, id〉 ◦ · · · ◦ 〈id, id〉
︸ ︷︷ ︸

⌈log2 n⌉ times

.

This takes the value computed by φx – which contains the input and some padding
up to 2⌈log2 n⌉ symbols, pairs it with a sequence of #-symbols of the same length
(computed by φempty), and then iteratively doubles the length of the tape by
appending two copies of the second half of the already computed tape (because
the second half consists exclusively of #-symbols). By this trick, there is a fixed
expression φpad that we can compose our query with to double the length of the
value produced.
The start configuration is

Cstart := 〈t : φstart, q : qM
0 〉.

Observe that Cstart is a valid configuration with precisely one tape head position
marker.

—The accepting configurations are those configurations in which the state is an
element of the set FM = {f1, . . . , f|F M |} of accepting states of M :

AcceptingConfigs := Configs ◦ (σq=atomic f1 ∪ · · · ∪ σq=atomic f
|F M |

).

—In the following, we test equality of nested pairs (tape segments) and configura-
tions of exponential size. We can define an equality test =mon of linear size on
tapes and tape segments using only =atomic inductively as follows. On values of
type Dom, =mon is =atomic. Otherwise, on pairs 〈1 : τ1, 2 : τ2〉,

(A =mon B) :=
(
(πA ◦ φ)× (πB ◦ φ)

)
◦ σ1.T=atomic 2.T ◦ σ1.V =mon2.V ◦

(id× id) ◦ σ1.1.T=atomic“1” ◦ σ2.1.T=atomic“2” ◦map(〈〉)

12It may be advisable to have a special symbol indicating the left end of the tape on its leftmost
position to help the machine avoid running out of bounds. We assume such a symbol part of the
input, rather than of our construction.

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2

C′ q′10 0 0 0 0 00 1 0 1 1 1 1 1

C q010 0 0 0 0 00 1 1 1 1 1 1 1

0

△

△

(q′, 0, +1) ∈ δM (q, 1)

Fig. 7. Zooming into the tapes to find a valid tape change resulting from a computation step of
M .

where φ :=
(
〈T : 1, V : π1〉 ◦ sng∪ 〈T : 2, V : π2〉 ◦ sng

)
. For configurations C,C′,

(C =mon C
′)⇔ (C.t =mon C

′.t ∧C.q =atomic C
′.q).

—Next we define anM∪[=atomic] expression φsucc that computes the pairs of con-
figurations 〈C,C′〉 such that C′ is a possible successor of C, i.e., computable
using the transition relation δM of M in one step.

Here the exponential size of the configurations is a problem; φsucc has to be chosen
carefully in order not to be of exponential size. We achieve this as follows. We
start with the Cartesian product of Configs – all pairs of configurations, even
many that are invalid because they have zero or more than two head markers.
For each pair, we make working copies w,w′ of the tapes. We achieve this by the
M∪ expression

φprepare−succ := Configs ◦ (id× id) ◦map(〈s : id, w : πC.t, w
′ : πC′.t〉).

For w′ to be a possible successor of w, the two tapes may differ at at most two
consecutive tape positions (if the tape head moved, otherwise they may only
differ at at most one position), and these positions must contain the read/write
head position marker. We synchronously “zoom into” the working copies to find
these two positions using the following three rules:

(1) If w.2 = w′.2 (i.e., the second halves of the tapes are equal), replace w by
w.1 and w′ by w′.1.

(2) If w.1 = w′.1 (i.e., the first halves of the tapes are equal), replace w by w.2
and w′ by w′.2.

(3) If w.1.1 = w′.1.1 and w.2.2 = w′.2.2 (i.e., the first and last quarters of the
tapes are equal) replace w by newly constructed pair 〈1 : w.1.2, 2 : w.2.1〉 and
w′ by 〈1 : w′.1.2, 2 : w′.2.1〉 (that is, by the second and third quarters).

All three cases may apply at the same time because the tapes of two valid con-
figurations C,C′, where C′ is a successor of C, can be equal. An example of
iterative zooming is shown in Figure 7. There, we look at a nested pair term of
depth four (covering a tape of length 16) and the tape change occurs at positions
5 and 6 (if we count starting at 0). We first zoom into the left (using Rule 1)
and from there into the right half (using Rule 2). Now both halves differ, but
the first and fourth quarter do not, so we can use Rule 3 to zoom down to the

differing tape positions 6 and 7. In general, we obtain a tape sequence of length
two by zooming into a tape (which is of length 2K(n)) K(n)− 1 times.
In our encoding in M∪[=atomic], we compute the union of all triples (s, w,w′)
such that s is a pair of configurations with tapes t = uwv and t = uw′v and
w and w′ are of length 2 (i.e., w and w′ are – if any – the only corresponding
sequences in t, t′ that differ). Now we have to make sure that w and w′ contain
the position marker.
This can be expressed in M∪[=atomic] as follows:

φwitness−succ := φprepare−succ ◦ φzoom−in ◦ · · · ◦ φzoom−in
︸ ︷︷ ︸

K(n)−1 times

◦φmarker

where13

φzoom−in := (σ12⊲34⊳ ◦ π12⊲34⊳ ∪ σ⊲12⊳34 ◦ π⊲12⊳34 ∪ σ1⊲23⊳4 ◦ π1⊲23⊳4)

σ12⊲34⊳ := σw.1=monw′.1

π12⊲34⊳ := map(〈s : πs, w : πw.2, w
′ : πw′.2〉)

σ⊲12⊳34 := σw.2=monw′.2

π⊲12⊳34 := map(〈s : πs, w : πw.1, w
′ : πw′.1〉)

σ1⊲23⊳4 := σw.1.1=monw′.1.1 ◦ σw.2.2=monw′.2.2

π1⊲23⊳4 := map
(
〈s : πs, w : πw ◦ 〈1 : π1.2, 2 : π2.1〉, w

′ : πw′ ◦ 〈1 : π1.2, 2 : π2.1〉〉
)

and φmarker selects those tuples for which w,w′ are two tapes of length two that
contain the read/write head marker:

φmarker := (σw.1=atomic⊲s1⊳ ∪ · · · ∪ σw.1=atomic⊲sc⊳∪

σw.2=atomic⊲s1⊳ ∪ · · · ∪ σw.2=atomic⊲sc⊳∪).

Now, for each 〈s : X,w : Y,w′ : Z〉 ∈ [[φwitness−succ]], either C = C′ or Y, Z are
precisely the at most two adjacent positions of the tapes of C and C′ that can
differ if C′ is to be a successor of C. We encode the valid successors with respect
to transition relation δM by a union of expressions that amount to selecting every
pair of tapes that matches one of the transition rules encoded in δM :

φsucc := φwitness−succ ◦ (σγ1 ∪ · · · ∪ σγm
) ◦map(πs)

For instance, if (q′, b,+1) ∈ δ(q, a), one σγi
is to select the triples 〈s : 〈S : 〈t :

u ⊲ a ⊳ sv, q : q〉, S′ : 〈t : ub ⊲ s ⊳ v, q : q′〉〉, w : ⊲a ⊳ s, w′ : b ⊲ s⊳〉 ∈ [[φwitness−succ]].
(Details are omitted for lack of space, but it is important to note that the values
that we are dealing with are atomic, so we only need equality on atomic values.)
As for Configs , φsucc contains pairs 〈C,C′〉 of invalid configurations. However,
whenever C is a valid configuration, C′ is indeed a possible successor configuration
on M . It follows by induction that, starting from valid configuration Cstart, we
will only reach valid configurations via the successor relation φsucc.

Modeling computations. Now we are ready to model accepting computations
of M . Here the problem is the possibly exponential running time. We use a simple

13Here and later, πA1.··· .Am
:= πA1

◦ · · · ◦ πAm
.

recursive divide-and-conquer approach in the spirit of the usual proof of Savitch’s
theorem (cf. e.g. [Papadimitriou 1994]). Let ψi be the pairs of configurations 〈C,C′〉
such that C is reachable from C′ in 2i steps. We define ψi as

ψ0 := φsucc

ψi+1 := ψi ◦ (id× id) ◦ σ1.C′=2.C ◦map(〈C : π1.C , C
′ : π2.C′〉)

Note that the definition of ψi+1 uses ψi only once, thus the formula remains com-
putable in LOGSPACE.

There is an accepting computation path of length 2K(n) iff there is a pair 〈C,C′〉
in ψK(n) such that C = Cstart and the state of C′ is in FM . We can phrase this as

φaccept :=
((
〈1 : Cstart, 2 : ψK(n)〉 ◦ pairwith2 ◦ σ1=mon2.C ◦

map(π2.C′)
)
×AcceptingConfigs

)

◦map([1 =mon 2]) ◦ flatten.

(Again we only employ equality on configurations.)
It is not difficult to see that the M∪[=atomic] query φaccept constructed is of

polynomial size – a detailed discussion can be found below in the proof of Lemma 5.7
– and can be computed in LOGSPACE. The entire problem is formulated as the
query (e.g., the input x is constructed from constants and pairs) and φaccept does not
make use of an input value. Thus we have shown thatM∪[=atomic] is NEXPTIME-
hard with respect to query complexity (i.e., for a fixed database). 2

Lemma 5.7. For the construction of the proof of Theorem 5.6, (a) |φaccept| =
O(K(n))2. (b) If =mon is available as a built-in, φaccept can be defined such that
|φaccept| = O(K(n)).

Proof. Part (a) of the lemma can be easily verified by inspection of the proof
of Theorem 5.6:

|Configs | = O
(
K(n)

)
,

|Cstart| = O
(
K(n)

)
,

|AcceptingConfigs | = |Configs |+O(1) = O
(
K(n)

)
,

| =mon | = O
(
K(n)

)
,

|φprepare−succ| = O(|Configs |),

|φzoom−in| = O(| =mon |),

|φwitness−succ| = O(|Configs |) +O(|φzoom−in| ·K(n)) = O
(
K(n)2

)
,

|φsucc| = |φwitness−succ|+O(1) = O
(
K(n)2

)
,

|ψK(n)| = |φsucc|+O
(
K(n) · | =mon |

)
= O

(
K(n)2

)
,

|φaccept| = |Cstart|+ |ψK(n)|+ |AcceptingConfigs | = O
(
K(n)2

)

From this it is also clear that (b) if we use built-in =mon operation rather than
our defined monotone equality operation, then |φaccept| = O

(
K(n)

)
. 2

Corollary 5.8. M∪[=mon] is NETIME-hard under LOGLIN-reductions (with
respect to query complexity).

Theorem 5.9. M∪[=mon,not] is TA[2O(n), O(n)]-hard under LOGLIN-reduc-
tions (with respect to query complexity).

Proof. The proof is by a LOGLIN-reduction from TA[2O(n), O(n)] Turing ma-
chine acceptance. Let M = (QM

∃ , Q
M
∀ , q

M
0 , δM , FM) be an alternating Turing ma-

chine (ATM) that runs in time 2O(n) with O(n) alternations on inputs of size n.
We simulate the computation of M in M∪[=mon, not]. Each run of M is a tree

of configurations of depth 2k·n, for a suitable constant k. We may assume w.l.o.g.
that terminating computation paths of M are no longer than 2k·n, i.e., the depth
of the computation tree of M is bounded by 2k·n.

By Lemma 5.7, if we use a built-in operation =mon, the sizes of all formulas of
the proof of Theorem 5.6 are linear in the size of K(n). Now, we fix K(n) = k · n,
for some constant k.

We use the formulae Cstart,Configs ,AcceptingConfigs , and φsucc as constructed
in the proof of Theorem 5.6. We define a modified version of ψk·n which computes
the set of computation paths of length up to 2k·n (this can be realized by adding
“stay transitions” 〈C,C〉, for C ∈ Configs to φsucc) and where the states of the
intermediate configurations are all from Q∃ if the state of the first configuration is
from Q∃ and are all from Q∀ otherwise. We can define this as

ψi+1 := ψi ◦ (id× id) ◦σ1.C′=2.C ◦σ1.C.q∈QM
∃ ⇔2.C.q∈QM

∃
◦map(〈C : π1.C , C

′ : π2.C′〉).

Now that we only need to consider tapes of size 2k·n, the monad algebra expres-
sions only occupy space O(n), thus so far we have a LOGLIN reduction.

Let the sets of configurations Ai be inductively defined as

A1 := {C | ∃C′ (C,C′) ∈ ψk·n ∧

C′ ∈ AcceptingConfigs ∧ C.q ∈ QM
∃ }

Ai+1 := {C | ∃C′ (C,C′) ∈ ψk·n ∧

C′ ∈ (Configs −Ai) ∧ C.q ∈ Q
M
∃ ⇔ C′.q 6∈ QM

∃ }

Clearly, C ∈ Ai for odd i means that C.q ∈ QM
∃ and that C is eventually

accepting; C ∈ Ai for even i means that C.q ∈ QM
∀ and that C is not eventually

accepting (both via i alternations and in 2i steps).
W.l.o.g., we may assume that FM ⊆ QM

∃ . By this assumption FM ⊆ A1, and
thus the final transitions leading to accepting states may be universal, rather than
just existential. We will now be somewhat sloppy and assume that the number
of alternations K(n) = O(n) we ask for is always odd. This is to keep the argu-
ment short, but a slight modification of the construction allows to eliminate the
assumption.

Then, M accepts its input precisely if Cstart is eventually accepting with K(n)
alternations, that is, iff Cstart ∈ AK(n).

It is not difficult to construct AK(n) in monad algebra. We only remark that
difference A−B on sets of nested tuples can be defined using =mon and “not” as

{a ∈ A |6 ∃b b ∈ B ∧ a =mon b}

or, in monad algebra on pair 〈1 : A, 2 : B〉,

pairwith1 ◦ flatmap
(〈
a : π1, c : 〈a : π1, B : π2〉 ◦ pairwithB◦

flatmap(a =mon B) ◦ not
〉
◦ pairwithc ◦map(πa)

)

Formula φaccept is obviously of linear size, and thus the construction in LOGLIN. 2

Considering again =atomic as a built-in, our LOGSPACE-reduction of the proof
of Theorem 5.6 for configurations and φsucc (with K(n) = nk) in combination with
the construction for computations (Ai and φaccept) of the proof of Theorem 5.9
yields

Corollary 5.10. M∪[=atomic,not] is TA[2nO(1)

, nO(1)]-hard under LOGSPACE-
reductions (query complexity).

We can give a more precise lower bound.

Theorem 5.11. M∪[=atomic,not] is TA[2O(n), O(n)]-hard under LOGLIN-re-
ductions (query complexity).

Proof. To allow for a query φaccept of linear size overall, we have to rephrase
both φwitness−succ and ψK(n) to use our formula defining =mon via =atomic only
a constant number of times. We can do this now that we have negation and thus
equality of a set of nested tuples available. We only sketch the idea here briefly,
but it is the same for the two cases. Rather than testing equality linearly many
times, we postpone the testing of equality on pairs of tuples until we have collected
all the pairs in a set and we can test equality of them all at once. We demonstrate
the idea for ψK(n). Let

ψ′
0 := φsucc ◦map

(
〈1 : id, 2 : ∅〉

)

ψ′
i+1 := (id× id) ◦ σ1.C.q∈QM

∃ ⇔2.C.q∈QM
∃
◦

map
(〈

1 : 〈C : π1.1.C , C
′ : π2.1.C′〉,

2 : π1.2 ∪ π2.2 ∪ 〈1 : π1.1.C′ , 2 : π2.1.C〉 ◦ sng
〉)

Now we are interested in those pairs of configurations (c, c′) s.t.

〈1 : 〈C : c, C′ : c′〉, 2 : S〉 ∈ ψ′
K(n)

and for all 〈1 : t, 2 : t′〉 ∈ S, t =mon t
′. We can define this as

ψK(n) := ψ′
K(n) ◦map

(
〈1 : π1, 2 : π2 ◦ all-equal〉 ◦ pairwith2 ◦map(π1)

)
◦ flatten

where all-equal := map((1 =mon 2) ◦ [not]) ◦ flatten ◦ not.
For φwitness−succ, we proceed analogously. We define φzoom−in to be a mapping

from sets of tuples 〈s : (C,C′), w : t, w′ : t′,mbe : S〉 (where (s : (C,C′), w : t, w′ : t′)
is as in the proof of Theorem 5.6 and S is a set of pairs yet to be checked to be
equal – mbe is short for “must be equal”) to sets of tuples of the same type. We
replace e.g. σ12⊲34⊳ ◦ π12⊲34⊳ in φzoom−in by

map
(〈
s : πs, w : πw.2, w

′ : πw′.2,mbe : 〈w : πw.1, w
′ : πw′.1〉 ◦ sng ∪

πmbe ◦map
(
〈w : πw.1, w

′ : πw′.1〉 ◦ sng ∪ 〈w : πw.2, w
′ : πw′.2 ◦ sng〉

)
◦ flatten

〉)

That is, in each such step we add the values that were checked to be equal using
=mon in φzoom−in – here, for σ12⊲34⊳ ◦π12⊲34⊳, w.1 and w′.1 – and add them to mbe.
Before we do that, we split the pairs (t, t′) of mbe into their immediate constituents
(as shown in the bottom two lines of the monad algebra expression above). This is
necessary to assure that all members of mbe are of the same type. However, it has
a nice side-effect. By this restructuring, after the last zoom-in step, the members
of mbe are pairs of atomic values , and we actually do not need =mon here at all
and can use =atomic instead.

Note that we could not have used this construction in the proof of Theorem 5.6
because now we need negation to check that for each pair (t, t′) in mbe, t =atomic

t′. (This can be done using the “all-equal” predicate defined above, with =atomic

replacing =mon.) 2

Since “not” is equivalent to (id = ∅),

Corollary 5.12. M∪[=deep] is TA[2O(n), n]-hard under LOGLIN-reductions
(query complexity).

The queries constructed in our lower bound proofs are from flat relations to flat
relations (we may assume this since we actually use no input data value). Since
relational algebra is in PSPACE w.r.t. combined complexity (cf. e.g. [Abiteboul
et al. 1995]), PSPACE is closed under composition, and presumably PSPACE 6=
NEXPTIME, it seems unlikely that there is even a PSPACE reduction fromM∪[=]
on flat relations to relational algebra in the spirit of the Conservativity Theorem
of Paredaens and Van Gucht ([Paredaens and Van Gucht 1988], Theorem 2.5).
This gives a partial negative answer (or more precisely, a negative answer modulo a
widely-held complexity-theoretic assumption) to an open question of some standing.

Proposition 5.13. With respect to query complexity, the languages

(1) M
{||}
∪ [=atomic,not], M

{||}
∪ [=deep], M

[]
∪ [=atomic,not], and M

[]
∪ [=deep] are

TA[2O(n), O(n)]-hard under LOGLIN-reductions;

(2) M
{||}
∪ [=atomic] and M

[]
∪ [=atomic] are NEXPTIME-hard.

Proof. The lower bound proofs for sets work without modifications on lists and
bags – we actually do not compare collections except in the definition of Ai of the
proof of Theorem 5.9, where we compute differences. But here, we define difference
R − S as a filter (using “map”) that computes those elements of R for which no
element of S with the same value exists. For lists, this will preserve order of the
elements in R and for bags it will preserve their multiplicities. For the correctness
of our reduction this does not matter, as long as we interpret nonempty collections
of type [〈〉] resp. {|〈〉|} (possibly with duplicates) as true and empty collections as
false. 2

Corollary 5.14. With respect to query complexity,

—XQ [=deep, child] and XQ [=atomic, child, not] are TA[2O(n), O(n)]-hard under
LOGLIN-reductions;

—XQ [=atomic, child] is NEXPTIME-hard.

Proof. This follows immediately from the previous results on M
[]
∪ and the

LOGLIN-reduction fromM
[]
∪ [=] to XQ [=, child] of Lemma 3.3. 2

6. DATA COMPLEXITY

Next we consider the data complexity of our query languages.

6.1 Data Complexity of Monad Algebra

It is quite easy to conclude from Theorem 2.5 (conservativity over relational algebra)
that the data complexity of M∪[σ] must be rather low. For the following three
results, we assume that the input is given as a string using symbols 〈, 〉, {, }, “,”,
and additional characters to represent atomic values.

Proposition 6.1 Folklore, [Suciu and Tannen 1997]. M∪[=] is in TC0

w.r.t. data complexity.

Since the proof in [Suciu and Tannen 1997] is somewhat involved, an alternative
direct proof is provided in the electronic appendix to this article.

For monad algebra on lists and bags,

Proposition 6.2 (Folklore). M
{||}
∪ [=,monus] and M

[]
∪ [=] are in TC0 w.r.t.

data complexity.

“Parsing” and accessing nested data is described in the proof of Proposition 6.1
and implementing the various operations of monad algebra is not difficult. (See also
the similar proof that Core XQuery is in TC0 – Theorem 6.6). It is folklore that
the majority gates of TC0 circuits are powerful enough to support the arithmetics
required to implement bag operations such as bag difference.

For a result that suggests that this is a good bound,

Proposition 6.3 [Grumbach et al. 1996]. There areM
{||}
∪ [=,monus] queries

that are not in AC0.

6.2 Data Complexity of XQ

By Proposition 6.2, M
[]
∪ [=] is in LOGSPACE with respect to data complexity.

Since LOGSPACE is closed under composition (cf. [Papadimitriou 1994]) and the
mapping C is clearly in LOGSPACE,

Corollary 6.4. XQ [=deep, child] is in LOGSPACE w.r.t. data complexity.

We can improve on this result. The data complexity of XQuery is so low that
we need to be careful about how the XML data is represented. We distinguish the
cases of representation by a DOM tree (i.e., a pointer structure) and representation
by a string (an XML document). As we show, the complexity is (presumably)
slightly lower on strings than on trees, even though the former require parsing the
input. It turns out that the complexity bounds are precisely the same as for XPath
[Gottlob et al. 2005].

Theorem 6.5. XQ [=deep, child, descendant] is LOGSPACE-complete under NC1-
reductions (data complexity) if the input is given as a DOM tree.

Proof. Let us assume that for a given XQuery, the results of all its subqueries
are already given as input. Then we can evaluate the query in LOGSPACE because
all the space we need is a fixed number of log-sized registers for the variables of the
query. (We only need a logarithmic number of bits to store a node id of the input).

A fixed query consist of a fixed number of compositions. Since LOGSPACE is
closed under compositions (cf. [Papadimitriou 1994]), we can compose the algorithm
just discussed for the individual subqueries into a single LOGSPACE algorithm that
intuitively computes the query by precomputing its subqueries bottom-up (w.r.t.
the syntax tree of the query).

LOGSPACE-hardness follows from the fact that directed tree reachability is
LOGSPACE-complete under NC1-reductions [Cook and McKenzie 1987] and di-
rected tree reachability (checking whether node w is reachable from node v in tree
t) can be easily encoded by mapping t to a XML tree in which only v has label “v”
and only w has label “w”. Then the query

for $x in $root/descendant::v return
for $y in $x/descendant::w return 〈true/〉

tests reachability of w from v. 2

If the input is given as a character string, the query evaluation problem is (pos-
sibly) easier.14

Theorem 6.6. XQ [=deep, child, descendant] is in TC0 w.r.t. data complexity if
the XML input is given as a character string.

Proof. We show a stronger result, that every Core XQuery expression can be
encoded as a TC0 reduction that transforms the input data into the query result.

By FOM , we denote first-order logic extended with majority quantifiers M [Bar-
rington et al. 1990]. A formula Myφ(~x, y) is true if φ(~x, y) is true for more than
half of the positions y of the input. It is known that TC0 is equivalent to the class
of languages recognizable using FOM sentences [Barrington et al. 1990].

The reduction is encoded in FOM. A FOM reduction [Barrington et al. 1990] is
a set of FOM formulae, consisting of a formula “size” s.t. size(s) iff the size of the
string is s and a formula posa for each a ∈ Σ s.t. posa(i) iff the i-th symbol of the
string is “a”. It is known [Barrington et al. 1990] that FOM can express predicates
x = y+ z and x = #y φ(y), such that x is the number of positions y for which φ(y)
holds. We use Σ{y | φ(~x, y)} as a shortcut for #u ∃y : φ(~x, y) ∧ 1 ≤ u ≤ y.

We assume the document to be encoded using an alphabet of opening and match-
ing closing tags. For the sake of simplicity of this proof, but without loss of gener-
ality, we assume that base values (e.g. strings) are encoded as subdocuments, using
opening and closing tags. The input is a well-formed sequence of opening and clos-
ing tags. We identify nodes by the position of their opening tag in the (input) string.
The input is represented using a predicate size[[$ROOT]] s.t. size[[$ROOT]](n) iff n
is the size of the input and predicates posa[[$ROOT]] s.t. posa[[$ROOT]](i) iff the

14The same observation has been made for XPath in [Gottlob et al. 2005].

size[[ǫ]]k(~e, s) :⇔ s = 0

posl[[ǫ]]k(~e, i) :⇔ false

size[[〈a〉α〈/a〉]]k(~e, s) :⇔ ∃s′ : size[[α]]k(~e, s′) ∧ s = 2 + s′

posl[[〈a〉α〈/a〉]]k(~e, i) :⇔ ∃s : size[[〈a〉α〈/a〉]]k(~e, s) ∧

(i = 1 ⇒ l = 〈a〉) ∧
`

1 < i < s ⇒ posl[[α]]k(~e, i − 1)
´

∧

(i = s ⇒ l = 〈/a〉)

size[[α β]]k(~e, s) :⇔ ∃s1∃s2 : s = s1 + s2 ∧ size[[α]]k(~e, s1) ∧ size[[β]]k(~e, s2)

posl[[α β]]k(~e, i) :⇔ ∃s : size[[α]]k(~e, s) ∧
`

i ≤ s ⇒ posl[[α]]k(~e, i)
´

∧
`

i > s ⇒ ∃i′ : i′ = i − s ∧ posl[[β]]k(~e, i′)
´

size[[for $xk+1 in α return β]]k(~e, s) :⇔ s = Σ{s′ | ∃j : item[[α]]k(~e, j) ∧ size[[β]]k+1(~e, j, s
′)}

posl[[for $xk+1 in α return β]]k(~e, i) :⇔ ∃s∃j0 : s = Σ{s′ | ∃j : j < j0 ∧

item[[α]]k(~e, j) ∧ size[[β]]k+1(~e, j, s
′)} ∧

∃s′ : item[[α]]k(~e, s + 1) ∧ size[[β]]k+1(~e, s + 1, s′)} ∧

s < i ≤ s + s′ ∧ posl[[β]]k+1(~e, s + 1, i − s)

size[[$xi/χ :: a]]k(~e, s) :⇔ s = Σ{j′ − j + 1 | axisχ[[$xi]]k(~e, 1, j) ∧ node[[$xi]]k(~e, j, j′)}

posa[[$xi/χ :: a]]k(~e, i) :⇔ ∃s∃j0 : s = Σ{j′ − j + 1 | ∃j : j < j0 ∧

axisχ[[$xi]]k(~e, 1, j) ∧ node[[$xi]]k(~e, j, j′)} ∧

∃s′∃j′0 : axisχ[[$xi]]k(~e, 1, j0) ∧ node[[$xi]]k(~e, j0, j
′

0)} ∧

s′ = j′0 − j0 + 1 ∧

s < i ≤ s + s′ ∧ posl[[$xi]]k(~e, i − s + j0 − 1)

size[[$xi]]k(x1, . . . , xk, s) :⇔ ∃j : node[[expr($xi)]]i−1(x1, . . . , xi−1, xi, j) ∧

s = j − xi + 1

posl[[$xi]]k(x1, . . . , xk, i) :⇔ posl[[expr($xi)]]i−1(x1, . . . , xi−1, xi + i − 1)

size[[$root]]k(~e, s) :⇔ size(s)

posl[[$root]]k(~e, i) :⇔ posl(i)

size[[if Φ then α]]k(~e, s) :⇔
`

cond[[Φ]]k(~e) ⇒ size[[α]]k(~e, s)
´

∧
`

(¬cond[[Φ]]k(~e)) ⇒ s = 0
´

posl[[if Φ then α]]k(~e, i) :⇔ posl[[α]]k(~e, i)

Fig. 8. FOM encoding of the Core XQuery evaluation problem.

i-th symbol of the input is “a”. Let

node[[α]]k(~e, i, i′) :⇔
∨

〈a〉∈Σ

pos〈a〉[[α]]k(~e, i) ∧ pos〈/a〉[[α]]k(~e, i′)∧

#u(i < u < i′ ∧ pos〈a〉[[α]]k(~e, u)) = #u(i < u < i′ ∧ pos〈/a〉[[α]]k(~e, u))

That is, node[[α]]k(~e, i, i′) is true iff i and i′ are the positions of an opening tag and
a matching closing tag. Since we may assume that the document is well-formed, a
sufficient condition for i′ being the closing tag matching the opening tag i is that
the number of opening tags 〈a〉 between i and i′ is the same as the number of closing
tags 〈/a〉 (i.e., other tags do not have to be considered).

Now, our XQ [=deep] query Q can be encoded by FOM formulas posl[[Q]]k and
size[[Q]]k as shown in Figure 8 (for most XQ constructs), with

cond[[$xi =deep $xj]]k(~e) :⇔ ∃s : size[[$xi]]k(~e, s) ∧ size[[$xj]]k(~e, s) ∧

∀p : 1 ≤ p ≤ s⇒
∧

l∈Σ

posl[[$xi]](~e, p)⇔ posl[[$xj]](~e, p)

axisdescendant[[α]]k(~e, i, j) :⇔ ∃i′, j′ node[[α]]k(~e, i, i′) ∧ node[[α]]k(~e, j, j′) ∧

i < j ∧ j′ < i′

axischild[[α]]k(~e, i, j) :⇔ ∃i′, j′ node[[α]]k(~e, i, i′) ∧ node[[α]]k(~e, j, j′) ∧

i < j ∧ j′ < i′ ∧

6 ∃l, l′ : node[[α]]k(~e, l, l′) ∧ i < l < j ∧ j′ < l′ < i′.

item[[α]]k(~e, i) :⇔ ∃i′ : node[[α]]k(~e, i, i′)∧ 6 ∃j, j′ : node[[α]]k(~e, j, j′) ∧

j < i ∧ i′ < j′

Note that in posl[[α]]k(~e, i), size[[α]]k(~e, s), ~e denotes the environment for k vari-
ables, indicating positions/nodes assigned to known variables.

Let the defining expression for a variable $x, expr($x), be α if $x is introduced
in an XQ expression “for $x in α return β”.

Considering the problem of deciding whether the root node of the query result
has a child as the decision problem for query evaluation, we encode it in FOM (for
query Q) as ∃s : size[[Q]]1(1, s) ∧ s > 2. 2

Remark 6.7. To get an intuition for the reduction of Figure 8, consider again
our XQ semantics definition of Figure 1. There, the environments ~e are tuples
of valuations of XQuery variables (i.e., trees). Consider the reformulation of the
semantics [[·]] of Figure 1 that we get if we assume that the value of each variable
$xi in an environment is an integer that indicates the position of the starting tag of
the node it binds to in the value of expr ($x). To get a correct semantics definition

along these lines, we make the following replacements:

[[$xi]]k(t1, . . . , tn) := [[expr($xi)]]i−1(t1, . . . , ti−1)

[[for $xk+1 in α return β]]k(~e) := let i1, . . . , in be the start positions of the

n elements in [[α]]k(~e);

return [[β]]k+1(~e, i1) + · · ·+ [[β]]k+1(~e, in)

The remaining definitions of Figure 1 stay the same. Here, concatenation is of
course that of strings rather than that of lists.

We illustrate this semantics with an example. Consider the query “for $x in
$root/a return $x” on input string $root = “〈c〉〈d〉〈/d〉〈a〉〈/a〉〈a〉〈c〉〈/c〉〈/a〉〈/c〉”.
We can evaluate the query by first binding $x to the node identified by position 1 in
[[expr($x)]]0 = “〈a〉〈/a〉〈a〉〈c〉〈/c〉〈/a〉” and outputting [[$x]]1(1) = “〈a〉〈/a〉”. Sec-
ond we bind $x to position 3 in [[expr($x)]]0 and return [[$x]]1(3) = “〈a〉〈c〉〈/c〉〈/a〉”.

The previous proof employs a direct encoding of this altered semantics in FOM.

7. COMPOSITION-FREE XQ

Composition-free Core XQuery, XQ−[not], is the fragment of Core XQuery obtained
by the grammar

query ::= () | 〈a〉query〈/a〉 | query query

| var | var/axis :: ν

| for var in var/axis :: ν return query

| if cond then query

cond ::= var = var | var = 〈a/〉 | true

| some var in var/axis :: ν satisfies cond

| cond and cond | cond or cond | not cond

The keyword “every” can again be obtained from “some” and “not”. Testing
whether condition $x/χ :: ν (where χ is an axis and ν is a node test) can be
matched is of course possible as “some $y in $x/χ :: ν satisfies “$y = $y”. Positive
composition-free Core XQuery XQ− is again obtained by removing negation “not”
from the language.

For our expressiveness proof below, we will use a variant of XQ− with less syntax,
i.e. in which conditions are defined using the usual query operations rather than
“some”, “and”, and “or”.

Let XQ∼ denote the XQ queries

—which do not contain “let”-expressions,

—for which for each expression “for $x in α return β”, α is of the form $y/ν, and

—which in addition support conditions $z = 〈a/〉.

XQ∼ and XQ− are expressively equivalent.

Proposition 7.1. XQ∼ = XQ−.

Proof. ⇒: For a mapping from XQ∼ to XQ−, we define an appropriate trans-
lation function f that we use to rewrite all maximal if-conditions (i.e., conditions

of if-expressions that are not subexpressions of if-expressions):

f(α β) := f(α) or f(β)

f(for $y in $x/ν return α) := some $y in $x/ν satisfies f(α)

f(if φ then α) := f(φ) and f(α)

f(not φ) := not f(φ)

f(〈a〉α〈/a〉) := true

On all other kinds of expressions, f is the identity.
⇐: For a mapping from XQ− to XQ∼, we only need to eliminate “true”, “some”,

“and”, and “or” using their definitions from Section 3. 2

Example 7.2. It is easy to verify that the query

<result>

{ for $x in $root/a return

if not(for $y in $x/b return if $y/c then ($y/d $y/e))

then $x/f }

</result>

is XQ∼. The corresponding XQ− query is

<result>

{ for $x in $root/a return

if not(some $y in $x/b satisfies ($y/c and ($y/d or $y/e)))

then $x/f }

</result> 2

The mappings from the proof of Proposition 7.1 can be implemented efficiently,
thus our complexity results established below will hold for both XQ− and XQ∼.

7.1 Complexity Results for XQ−

We now provide our complexity characterization of composition-free Core XQuery.
As announced in the Introduction, the query evaluation problem for XQ− is in
polynomial space with respect to combined complexity.

Proposition 7.3. XQ−[=deep, all axes,not] is in space O(|Q|·log |t|), where |Q|
is the size of the query and |t| is the size of the data tree.

Proof. It is easy to check that by definition of the fragment, XQuery variables
always range exclusively over nodes of the input tree. This can be verified by
checking the invariant that each variable is introduced using a “for”-statement
over a collection defined by an expression $x/ν, starting at the root node of the
input tree. Thus there is a straightforward algorithm – direct nested-loop based
evaluation – for XQ− queries that only takes memory to store a pointer into the
input tree (taking space log |t|) for each of the O(|Q|) variables in the query. 2

For the remaining results, we study decision problems and thus Boolean queries.
Since valid XML query results have to consist of at least a root node, we say that
a Boolean (XQ−) query 〈a〉α〈/a〉 returns true iff the root node of the result tree
has at least one child.

Proposition 7.4. XQ−[=atomic, child,not] is PSPACE-hard w.r.t. query com-
plexity.

Proof. The problem is PSPACE-hard already with respect to query complexity
(i.e., when the input tree is fixed). The proof is by reduction from the Quantified
Boolean Formula evaluation problem (QBF), which is PSPACE-complete (cf. [Pa-
padimitriou 1994]).

A QBF Ψ is a formula of the formQ1x1 · · ·Qkxk Φ(x1, . . . xk) where Q1, . . . , Qk ∈
{∀, ∃} and Φ(x1, . . . , xk) is a quantifier-free Boolean formula over the propositional
variables x1, . . . , xk (that is, a formula constructed from x1, . . . , xk and the Boolean
connectives ∧, ∨, and ¬). Let Φ′ be the expression obtained from formula Φ by
replacing all occurrences of ∧, ∨, and ¬ by “and”, “or”, and “not”, respectively,
and replacing each occurrence of variable xi by ($xi =atomic 〈true/〉). Let α be the
XQ query
〈a〉 { if Q′

1 $x1 in $root/* satisfies (· · · (Q′
k $xk in $root/* satisfies Φ′)· · ·)

then 〈yes/〉} 〈/a〉
where Q′

i is “some” if Qi = ∃ and “every” otherwise. Let t be the fixed data tree
consisting of a root node with two children ttrue, tfalse, one with labels “true” and
“false”, respectively.

For a given valuation θ : xi → {true, false} of the propositional variables x1, . . . , xk,
[[Φ′]]k(tθ(x1), . . . , tθ(xk)) is true (i.e., a nonempty list) iff Φ(θ(x1), . . . , θ(xk)) is true.
But then, since “some $xi in $root/*” and “every $xi in $root/*” provide exis-
tential and universal quantification, respectively, over ttrue and tfalse, [[α]]1(t) =
〈a〉〈yes/〉〈/a〉 iff the QBF Ψ is true. 2

Example 7.5. Consider the QBF ∀x∃y((¬x∨y)∧ (x∨¬y)), which is true. This
formula can be phrased as the query

〈a〉

{ if every $x in $root/* satisfies

(some $y in $root/* satisfies

(not $x =atomic 〈true/〉 or $y =atomic 〈true/〉) and

($x =atomic 〈true/〉 or not $y =atomic 〈true/〉)) then 〈yes/〉}

〈/a〉

2

While negation and universal quantification were redundant in XQ [=deep], and
excluding them did not reduce the complexity of the language, it is interesting to
consider the case of XQ− without negation.

Proposition 7.6. XQ−[=deep, all axes] is in NP w.r.t. combined complexity.

Proof. We show this for XQ∼, as it has less syntax than XQ− and we have
LOGSPACE-reductions between the two languages.

We define a nondeterministic procedure for computing part of the result of an
XQ∼[=deep, all axes] query by a modification of the XQ semantics function [[·]] of
Figure 1. Let [[·]]′ be [[·]] restricted to the syntax of XQ∼, with the following ex-
ception: [[for $xk+1 in $xi/χ :: ν return α]]′k(t1, . . . , tk) guesses a subtree tk+1 of ti
such that tk+1 is in [[$xi/χ :: ν]]′k(t1, . . . , tk) and returns [[β]]′k+1(t1, . . . , tk+1).

for $x in () return α ⊢ () (1)

for $x in (〈a〉 α 〈/a〉) return β ⊢ β[$x ⇒ (〈a〉 α 〈/a〉)] (2)

for $x in (α β) return γ ⊢ (for $x in α return γ) (for $x in β return γ)(3)

for $y in (for $x in α return β) return γ ⊢ for $x in α return for $y in β return γ (4)

for $x in (if φ then α) return β ⊢ for $x in α return if φ then β (5)

for $y in $x return α ⊢ α[$y ⇒ $x] (6)

Fig. 9. Rewrite rules for translating for-expressions to XQ∼.

Clearly, this algorithm runs in nondeterministic polynomial time, because each
variable is only assigned a value once, and all other checks are polynomial. It is also
easy to see that the result is sound: If, for a given query Q and data tree t, [[Q]]′1(t)
is nonempty, then so is [[Q]]1(t). The converse can be verified by a straightforward
induction on the syntax of XQ∼. Clearly, [[for $xk+1 in α return β]]k computes a
suitably ordered concatenation of the results [[for $xk+1 in α return β]]′k would pro-
duce if all choices of assignment of a tree from [[α]]k to $xk+1 were tried. Therefore,
emptiness of the former implies, since we may assume our NP algorithm is always
lucky at guessing, emptiness of the latter. 2

Proposition 7.7. XQ−[=atomic, child] is NP-hard w.r.t. query complexity.

Proof. This follows immediately from the NP-hardness of conjunctive (rela-
tional) queries [Chandra and Merlin 1977], and a proof can be given e.g. by re-
duction from 3-Colorability: The fixed data tree consists of a root node and three
children, which are labeled “red”, “green”, and “blue”, respectively.

Given a graph G = (V,E) with V = {v1, . . . , vm} and E = {{vi(1,1), vi(1,2)}, . . . ,
{vi(n,1), vi(n,2)}} (1 ≤ i(·, ·) ≤ m), we construct the query

〈result〉 { for $x1 in $root/* return
. . .

for $xm−1 in $root/* return
for $xm in $root/* return
if (not $xi(1,1) =atomic $xi(1,2)) and ... and

(not $xi(n,1) =atomic $xi(n,2)) then 〈yes/〉 }
〈/result〉

It is easy to verify that indeed this query computes “yes” nodes precisely if G is
3-colorable. Obviously, the query can be computed fromG in logarithmic space. 2

7.2 Expressiveness of XQ−

In this final section, we show that surprisingly, for an important case (atomic equal-
ity and “child” as the only supported axis), composition-free Core XQuery is ac-
tually just as expressive as full Core XQuery. This is true even though XQ− is in
PSPACE and XQ is hard for TA[2O(n), O(n)]. Thus under commonly-held com-
plexity theoretic assumptions, XQ is exponentially more succinct than XQ−.

We use the shortcut (〈a〉α〈/a〉)/χ::ν for $x/χ::ν such that $x has been defined
using “let” as (〈a〉α〈/a〉). Below, “dos” is a shortcut for the “descendant-or-self”

(let $x := 〈a〉{ for $w in $root/* return 〈b〉{$w}〈/b〉 }〈/a〉) for $y in $x/b return $y/∗
elim.let

⊢

for $y in (〈a〉{ for $w in $root/* return (〈b〉{$w}〈/b〉) }〈/a〉)/b return $y/∗
Lem. 7.8

⊢

for $y in (for $w in $root/* return (〈b〉{$w}〈/b〉)) return $y/∗
4

⊢

for $w in $root/* return for $y in (〈b〉{$w}〈/b〉) return $y/∗
2

⊢

for $w in $root/* return (〈b〉{$w}〈/b〉)/∗
Lem. 7.8

⊢

for $w in $root/* return $w

Fig. 10. Example rewriting.

axis; it will be redundant because $x/dos::ν is equivalent to

(if $x/self::ν then $x) $x//ν.

Lemma 7.8. Let a be a label, χ an axis, ν a nodetest, and α an expression from
XQ∼[=atomic, child, descendant, self, dos, not]. Then there is an expression from
XQ∼[=atomic, child, descendant, self, dos, not] equivalent to (〈a〉α〈/a〉)/χ::ν.

Proof. Rules to rewrite each such expression (〈a〉α〈/a〉)/χ::ν into an equivalent
XQ∼[=atomic, child, descendant, self, not] expression are easy to specify:

(〈a〉 α 〈/a〉)/ν ⊢ α/self::ν

(〈a〉 α 〈/a〉)/self::b ⊢ ()

(〈a〉 α 〈/a〉)/self::a ⊢ 〈a〉 α 〈/a〉

(〈b〉 α 〈/b〉)/self::* ⊢ 〈b〉 α 〈/b〉

(〈a〉 α 〈/a〉)//ν ⊢ α/dos::ν

(〈a〉 α 〈/a〉)/dos::∗ ⊢ 〈a〉 α 〈/a〉 (α//∗)

(〈a〉 α 〈/a〉)/dos::a ⊢ 〈a〉 α 〈/a〉 (α//a)

(〈a〉 α 〈/a〉)/dos::b ⊢ α//b

()/χ::ν ⊢ ()

(α β)/χ::ν ⊢ (α/χ::ν) (β/χ::ν)

(for $x in α return β)/χ::ν ⊢ for $x in α return (β/χ::ν)

(if φ then α)/χ::ν ⊢ if φ then (α/χ::ν)

($x/χ::ν)/χ′::ν′ ⊢ for $y in $x/χ::ν return $y/χ′::ν′

(Note that ($x/χ::ν)/χ′::ν′ in the final rule is really equivalent to the for-expression
on the right-hand side of that rule, and is in general not equivalent to $x/χ::ν/χ′::ν′,
as the former may produce duplicates if both χ and χ′ are “descendant”.) 2

Theorem 7.9. XQ∼[=atomic, child, desc, self, not] captures the
XQ [=atomic, child, desc, self, not] queries.

Proof. We first replace each expression of the form “(let $x := 〈a〉α〈/a〉) β” by
an expression β′ := β[$x ⇒ 〈a〉α〈/a〉] obtained by substituting each occurrence of
variable $x in β by 〈a〉α〈/a〉.

We now need to consider where such a replacement of a variable $x by an ex-
pression 〈a〉α〈/a〉 can occur:

(1) Inside an equality $x =atomic α (with α either a variable or a constant 〈b/〉).
To rewrite $x with 〈a〉α〈/a〉, we may assume that α is (); otherwise, we could
not type 〈a〉α〈/a〉 to be an atomic value. Thus we obtain 〈a/〉 =atomic α, which
is XQ∼. Conditions 〈a/〉 =atomic 〈a/〉 and 〈a/〉 =atomic 〈b/〉 are rewritten into
“true” and “not(true)”, respectively.

(2) Inside an expression $x or $x/χ::ν (either in the “in”- expression of a for-loop
or as an expression constructing “output”).
Here rewriting may lead to expressions of the form (〈a〉α〈/a〉)/χ::ν, which is
not XQ syntax. We can eliminate such expressions using Lemma 7.8.

Now the query obtained is already an XQ∼ query if in all expressions “for $x in
α return β”, α is of the form $z or $z/χ::ν. Otherwise, we apply the rewrite rules
from Figure 9. This may again produce expressions (〈a〉α〈/a〉)/χ::ν, by rule (2).
We eliminate such cases again using Lemma 7.8.

It can be verified that the rewrite system thus specified indeed maps any query
from language XQ [=atomic, child, desc, self, not] to an equivalent query in the lan-
guage XQ∼[=atomic, child, desc, self, not]. An example mapping to XQ∼ illustrat-
ing our rewrite system is given in Figure 10. 2

Acknowledgments

I am indebted to Michael Benedikt, Peter Buneman, Leonid Libkin, Nicole Schweik-
ardt, Val Tannen, and Andrei Voronkov for their remarks that helped to improve
an earlier version of this article [Koch 2005a]. I thank Dan Olteanu and Stefanie
Scherzinger for proofreading [Koch 2005b]. Finally, I thank Jan Van den Bussche for
pointing out to me that the question whether there is a polynomial-time mapping
from nested-relational algebra on flat relations to flat relational algebra is considered
a longstanding open problem.

REFERENCES

Abiteboul, S. and Beeri, C. 1995. “The Power of Languages for the Manipulation of Complex
Values”. VLDB J. 4, 4, 727–794.

Abiteboul, S. and Hillebrand, G. G. 1995. “Space Usage in Functional Query Languages”. In
Proc. of the 5th International Conference on Database Theory (ICDT). 439–454.

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Barrington, D. A. M., Immerman, N., and Straubing, H. 1990. “On Uniformity within NC1”.
Journal of Computer and System Sciences 41, 3, 274–306.

Berman, L. 1980. “The Complexity of Logical Theories”. Theor. Comput. Sci. 11, 216–224.

Buneman, P., Naqvi, S. A., Tannen, V., and Wong, L. 1995. “Principles of Programming with
Complex Objects and Collection Types”. Theor. Comput. Sci. 149, 1, 3–48.

Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. 1981. “Alternation”. Journal of the
ACM 28, 1, 114–133.

Chandra, A. K. and Merlin, P. M. 1977. “Optimal Implementation of Conjunctive Queries
in Relational Data Bases”. In Conference Record of the Ninth Annual ACM Symposium on
Theory of Computing (STOC’77). Boulder, CO, USA, 77–90.

Codd, E. F. 1970. “A Relational Model of Data for Large Shared Data Banks”. Commun.
ACM 13, 6 (June), 377–387.

Cook, S. A. and McKenzie, P. 1987. “Problems Complete for Deterministic Logarithmic Space”.

J. Algorithms 8, 385–394.

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. 2001. “Complexity and Expressive
Power of Logic Programming”. ACM Computing Surveys 33, 3 (Sept.), 374–425.

Dantsin, E. and Voronkov, A. 1997. “Complexity of Query Answering in Logic Databases with
Complex Values”. In Proc. LFCS’97, LNCS 1234. 56–66.

Dantsin, E. and Voronkov, A. 2000. Expressive Power and Data Complexity of Query Lan-
guages for Trees and Lists. In Proceedings of the 19th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’00). ACM Press, Dallas, Texas, USA,
157–165.

Fernandez, M., Siméon, J., and Wadler, P. 2000. An Algebra for XML Query. In Proc.
FSTTCS 2000. LNCS 1974. Springer-Verlag, 11–45.

Fernandez, M. F. and Siméon, J. 2004. “Building an Extensible XQuery Engine: Experiences
with Galax (Extended Abstract)”. In Proc. XSYM. 1–4.

Ferrante, J. and Rackoff, C. 1975. “A Decision Procedure for the First Order Theory of Real
Addition with Order”. SIAM J. Comput. 4, 1, 69–76.

Florescu, D., Hillery, C., Kossmann, D., Lucas, P., Riccardi, F., Westmann, T., Carey,
M. J., Sundararajan, A., and Agrawal, G. 2003. “The BEA/XQRL Streaming XQuery
Processor”. In Proc. VLDB 2003. 997–1008.

Gottlob, G., Koch, C., Pichler, R., and Segoufin, L. 2005. “The Complexity of XPath Query
Evaluation and XML Typing”. Journal of the ACM 52, 2 (Mar.), 284–335.

Greenlaw, R., Hoover, H. J., and Ruzzo, W. L. 1995. Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press.

Grumbach, S., Libkin, L., Milo, T., and Wong, L. 1996. “Query Languages for Bags – Expres-
sive Power and Complexity”. SIGACT News 27, 2, 30–44.

Grumbach, S. and Milo, T. 1996. “Towards Tractable Algebras for Bags”. Journal of Computer
and System Sciences 52, 3, 570–588.

Grumbach, S. and Vianu, V. 1995. “Tractable Query Languages for Complex Object Databases”.
Journal of Computer and System Sciences 51, 2, 149–167.

Hartmanis, J., Lewis II, P. M., and Stearns, R. E. 1965. “Hierarchies of Memory Limited
Computations”. In Proc. Sixth Annual IEEE Symposium on Switching Circuit Theory and

Logical Design. 179–190.

Hidders, J., Paredaens, J., Verkammen, R., and Demeyer, S. 2004. “A Light but Formal
Introduction to XQuery”. In Proc. XSYM. 5–20.

Hull, R. and Su, J. 1989. “On Accessing Object-oriented Databases: Expressive Power, Com-
plexity, and Restrictions”. In Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data (SIGMOD’89). 147–158.

Hull, R. and Su, J. 1993. “Algebraic and Calculus Query Languages for Recursively Typed
Complex Objects”. Journal of Computer and System Sciences 47, 1, 121–156.

Jaeschke, G. and Schek, H.-J. 1982. “Remarks on the Algebra of Non First Normal Form
Relations”. In Proc. PODS’82. 124–138.

Johnson, D. S. 1990. “A Catalog of Complexity Classes”. In Handbook of Theoretical Computer
Science, J. van Leeuwen, Ed. Vol. 1. Elsevier Science Publishers B.V., Chapter 2, 67–161.

Koch, C. 2005a. “On the Complexity of Nonrecursive XQuery and Functional Query Languages
on Complex Values”. In Proc. PODS’05.

Koch, C. 2005b. “On the Role of Composition in XQuery”. In Proc. WebDB.

Koch, C., Scherzinger, S., Schweikardt, N., and Stegmaier, B. 2004. “Schema-based
Scheduling of Event Processors and Buffer Minimization for Queries on Structured Data
Streams”. In Proc. VLDB 2004. Toronto, Canada.

Kuper, G. and Vardi, M. Y. 1993a. “On the Complexity of Queries in the Logical Data Model”.
Theor. Comput. Sci. 116, 1&2, 33–57.

Kuper, G. and Vardi, M. Y. 1993b. “The Logical Data Model”. ACM Transactions on Database
Systems 18, 3, 379–413.

Libkin, L. 2004. Elements of Finite Model Theory. Springer.

Libkin, L. and Wong, L. 1997. “Query Languages for Bags and Aggregate Functions”. Journal
of Computer and System Sciences 55, 2, 241–272.

Ludäscher, B., Mukhopadhyay, P., and Papakonstantinou, Y. 2002. “A Transducer-Based
XML Query Processor”. In Proc. VLDB 2002. 227–238.

Marian, A. and Siméon, J. 2003. “Projecting XML Documents”. In Proc. VLDB 2003. 213–224.

Papadimitriou, C. H. 1994. Computational Complexity. Addison-Wesley.

Paredaens, J. and Van Gucht, D. 1988. “Possibilities and Limitations of Using Flat Operators
in Nested Algebra Expressions”. In Proc. PODS. 29–38.

Stockmeyer, L. J. 1974. The Complexity of Decision Problems in Automata Theory. Ph.D.

thesis, Dept. Electrical Engineering, MIT, Cambridge, Mass., USA.

Suciu, D. and Tannen, V. 1997. “A Query Language for NC”. Journal of Computer and System
Sciences 55, 2, 299–321.

Tannen, V., Buneman, P., and Wong, L. 1992. “Naturally Embedded Query Languages”. In
Proc. of the 4th International Conference on Database Theory (ICDT). 140–154.

Van den Bussche, J. 2005. Personal communication.

Vardi, M. Y. 1982. “The Complexity of Relational Query Languages”. In Proc. 14th Annual
ACM Symposium on Theory of Computing (STOC’82). San Francisco, CA USA, 137–146.

Vorobyov, S. and Voronkov, A. 1998. “Complexity of Nonrecursive Logic Programs with
Complex Values”. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’98). 244–253.

Voronkov, A. 2004. Personal communication.

Wong, L. 1996. “Normal Forms and Conservative Extension Properties for Query Languages
over Collection Types”. Journal of Computer and System Sciences 52, 3, 495–505.

World Wide Web Consortium. 2005. “XQuery 1.0 and XPath 2.0 Formal Semantics. W3C
Candidate Recommendation (3 November 2005). http://www.w3.org/TR/xquery-semantics/.

XQueryUseCases 2005. “XML Query Use Cases. W3C Working Draft 15 September 2005”.
http://www.w3.org/TR/xquery-use-cases/.

A. ELECTRONIC APPENDIX

A.1 Reduction from Monad Algebra to Nonrecursive Logic Programming

Proof of Theorem 5.2, Second Version. The proof is by a LOGSPACE-
reduction to the Success Problem of nonrecursive logic programming with function
symbols (but without sets), i.e. the problem of deciding whether a distinguished
Boolean predicate evaluates to true. This problem is known to be NEXPTIME-
complete [Dantsin and Voronkov 1997].

We show that every M∪[=atomic] query can be reduced to a nonrecursive logic
program with a single binary function symbol f . This is the function symbol used
to build paths in the first proof of Theorem 5.2, and we use the same notation
again.

Our predicates are binary and of the form p(X, v), where X is a path prefix
identifying a node w of the deterministic tree representation of our complex value,
and v denotes one of the paths to leaves emanating from w, which together fully
specify the complex value below node w.

—We translate an expression map(f) on path X represented by predicate [[Q]] into

[[Q; start map]](X.i, v) ← [[Q]](X, i.v).

[[Q; map(f)]](X, i.v) ← [[Q; start map; f]](X.i, v).

plus the translation of f mapping from predicate [[Q; start map]] to predicate
[[Q; start map; f]]. That is, on a value identified by path prefix X , we move down
to the set member children of X , the X.i. Then we apply f on the values X.i,
and finally, we return to X .

—We translate an expression 〈A1 : f1, . . . , Ak : fk〉 on path X represented by pred-
icate [[Q]] into

[[Q; 〈A1 : f1, . . . , Ak : fk〉]](X,A1.v) ← [[Q; f1]](X, v)

...

[[Q; 〈A1 : f1, . . . , Ak : fk〉]](X,Ak.v) ← [[Q; fk]](X, v)

plus, for each 1 ≤ i ≤ k, the translation of fi mapping from predicate [[Q]] to
predicate [[Q; fi]].

—Compositions f ◦ g, are read as f ; g and f and g are translated separately. The
result predicate of f is used as the input predicate of g.

—The remaining operations are translated as follows.

[[Q; c]](X, c) ← [[Q]](X, v).

[[Q; pairwithB]](X, i.B.v) ← [[Q]](X,B.i.v).

[[Q; pairwithB]](X, i.A.v) ← [[Q]](X,A.v), [[Q]](X,B.i.w).

[[Q; flatten]](X, (i.j).v) ← [[Q]](X, i.j.v).

[[Q; (A =atomic B)]](X, 1.〈〉) ← [[Q]](X,A.v), [[Q]](X,B.v).

[[Q;πA ∪ πB]](X, (1.i).v) ← [[Q]](X,A.i.v)

[[Q;πA ∪ πB]](X, (2.i).v) ← [[Q]](X,B.i.v)

[[Q;πAi
]](X, v) ← [[Q]](X,Ai.v)

[[Q; sng]](X, 1.v) ← [[Q]](X, v).

By Proposition 4.1, we may assume that our query ignores the input data; so we
assume a predicate [[ǫ]] and a fact [[ǫ]](ǫ, dummy)← . as part of our logic program.

It is not hard to verify that this translation of a query Q in M∪[=atomic] into
a nonrecursive logic program can be effected in LOGSPACE and that indeed the
goal [[Q]](ǫ, i.〈〉) is true iff Q evaluates to true. 2

We consider two examples to illustrate the construction of the logic programs.
To save some space, however, we use short predicate names pi.

Example A.1. The logic program for the query 〈1 : 0 ◦ sng, 2 : 1 ◦ sng〉 ◦ ∪ is

[[ǫ]](ǫ, dummy) ← .
p1(X, 0) ← [[ǫ]](X, v). # constant 0

p2(X, 1.v) ← p1(X, v). # sng
p3(X, 1) ← [[ǫ]](X, v). # constant 1

p4(X, 1.v) ← p3(X, v). # sng
p5(X, 1.v) ← p2(X, v). # create tuple
p5(X, 2.v) ← p4(X, v). # create tuple

p6(X, (1.i).v) ← p5(X, 1.i.v). # union
p6(X, (2.i).v) ← p5(X, 2.i.v). # union

The goal predicate p6 computes the sets of paths of the deterministic tree rep-
resentation of the result value, that is, {π | p6(ǫ, π) is true} = {(1.1).0, (2.1).1}.

2

Example A.2. On values of type {〈A : Dom, B : Dom〉} represented by predi-
cate pinput, the query

map(〈C : πA, D : πB ◦ sng〉)

is encoded as the logic program

p1(X.i, v) ← pinput(X, i.v). # begin map
p2(X, v) ← p1(X,A.v). # πA

p3(X, v) ← p1(X,B.v). # πB

p4(X, 1.v) ← p3(X, v). # sng
p5(X,C.v) ← p2(X, v). # create tuple
p5(X,D.v) ← p4(X, v). # create tuple
p6(X, i.v) ← p5(X.i, v). # end map

with goal p6. 2

The reduction to nonrecursive logic programming of the proof of Theorem 5.2
(second version) can be rather easily extended to a reduction fromM∪[=atomic, not]

to nonrecursive normal logic programming (that is, with negation). All we need to
do is encode the operation “not” as

[[Q; not]](X, 1.〈〉) ← set[[Q]](X), not nonempty[[Q]](X).

nonempty[[Q]](X) ← [[Q]](X, v).

where the “set[[Q]]” predicates are defined alongside the [[Q]] predicates such that
set[[Q]](X) is true iff X is the path prefix of a set, empty or not. This reduction is
not in LOGLIN because of the size of the predicates generated. Even if we replace
the predicate names by shorter ones of the form pi (where i is an integer), they are
of size logn each (where n is the size of the input query in monad algebra) and the
overall size of the logic program is O(n ·log n). (There are linearly many rules.) But
since we can compose this preparation with an ATM run and nonrecursive range-
restricted normal logic programming is known to be in TA[2O(n), O(n)] [Vorobyov
and Voronkov 1998], this shows that

Corollary A.3. M∪[=atomic, not] is in TA[2O(n·log n), O(n ·log n)] w.r.t. query
complexity.

A.2 Data Complexity

Proof of Proposition 6.1. For simplicity, we will here assume that all tuples
are pairs, but the proof immediately generalizes to tuples of higher arity.

We assume complex values given as strings constructed using symbols from al-
phabet Σ consisting of 〈, 〉, {, }, “,”, and character symbols for atomic values.

For example, the value

∗

1

〈〉

2

a

3

A

b

5

B

〈〉

8

c

9

A

d

11

B

of type {〈A : Dom, B : Dom〉} is represented as string “{〈a, b〉, 〈c, d〉}”.
Given a complex value v, we identify (set-, pair-, and atomic) terms of v (i.e.,

nodes of the tree shown above) by the index of the first symbol of the term in the
input string. For instance, the root node is identified with index 1 because the
opening curly brace is the first symbol of the input string. Conversely, if i is the
index of term t in value v, then we use tv(i) to denote t.

Let Iv = {1, . . . , |v|}. Let flat be a function that maps every complex value
v of type τ to a relational structure 〈Set ,Pair ,Atomic〉 with relations Set ⊆ I2

v ,
Pair ⊆ I3

v , and Atomic ⊆ Iv × Dom, where 〈x, y〉 ∈ Set iff there is a set-term
tv(x) in v that has a term tv(y) as member, 〈x, y, z〉 ∈ Pair iff there is a pair-term
t = 〈t1, t2〉 in v with t = tv(x), t1 = tv(y), and t2 = tv(z), and 〈x,w〉 ∈ Atomic iff
there is an atomic term t = w in v with t = tv(x).

For the example value discussed above,

Atomic = {〈3, a〉, 〈5, b〉, 〈9, c〉, 〈11, d〉}

Set = {〈1, 2〉, 〈1, 8〉}

Pair = {〈2, 3, 5〉, 〈8, 9, 11〉}

We have the power of TC0 at hand to define a reduction from our input strings
to the flat relations. We will not go into the details of a TC0 reduction (cf. [Bar-
rington et al. 1990]), these are technical but in this case easy. The only point worth
mentioning is that we can check whether two indexes i, j are the left and right
delimiters of a set or tuple. We show this in FO logic with majority quantifiers
(FOM). By [Barrington et al. 1990], TC0 = FOM. It is also known [Barrington
et al. 1990] that FOM can express predicates x = y+ z and x = #y φ(y), such that
x is the number of positions y for which φ(y) holds.

set-node(i, j) := Q{(i) ∧Q}(j) ∧

x = #u
(
Q{(u) ∧ i < u < j

)
∧

y = #u
(
Q}(u) ∧ i < u < j

)
∧ x = y

tuple-node(i, j) := Q〈(i) ∧Q〉(j) ∧

x = #u
(
Q〈(u) ∧ i < u < j

)
∧

y = #u
(
Q〉(u) ∧ i < u < j

)
∧ x = y

where (Qa)a∈Σ represents the input string and Qa(i) is true iff symbol a is at
position i of the input string. (That is, these formulae state that i, j are positions
of symbols with matching opening and closing delimiters and the number of opening
delimiters occurring between i and j is the same as the number of closing delimiters.)

Atomic nodes can already be defined in FO. Let “node” denote nodes of any of
the three kinds. Now, for instance,

φSet(i, j) := ∃i′, j′ set-node(i, i′) ∧ node(j, j′) ∧ i < j ∧ j′ < i′∧

¬∃k, k′ node(k, k′) ∧ i < k < j ∧ j′ < k′ < i′.

This formula states that i is the identifier of a set-node and j the identifier of one
of its children.

Let theM∪[σ] query Vτ for the type of the input data be defined inductively as

VDom := Atomic ◦map(〈1 : π1, 2 : π2 ◦ sng〉)

V〈A:τ1,B:τ2〉 := Pair ◦map(〈1 : π1, 2 : Vτ1 |π2 × Vτ2 |π3〉)

V{τ} := Set ◦ 〈1 : map(π1), 2 : id〉 ◦ pairwith1 ◦

map
(
〈1 : π1, 2 : π2|π1 ◦ (id× Vτ) ◦

σ1=2.1 ◦map(π2.2) ◦ flatten ◦ sng〉
)

where S|v = 〈1 : v, 2 : S〉 ◦ pairwithS ◦ σ1=2.1 ◦map(π2.2).
For our example, we get Vτ as shown in Figure 11.
It is not difficult to verify that for every complex value v of type τ , Vτ (flat(v)) =
{〈1 : i, 2 : {v}〉}, where i is the identifier of the root of v, and that V ′ := Vτ ◦
map(π2) ◦ flatten computes {v}.

VDom = {〈3, {a}〉, 〈5, {b}, 〈9, {c}〉, 〈11, {d}〉〉

V〈A:Dom,B:Dom〉 = {〈2, 3, 5〉, 〈8, 9, 11〉} ◦map(〈1 : π1, 2 : VDom|π2 × VDom|π3〉)

= {〈2, VDom|3× VDom|5〉, 〈8, VDom|9× VDom|11〉}

= {〈2, {a} × {b}〉, 〈8, {c} × {d}〉}

= {〈2, {〈a, b〉}〉, 〈8, {〈c, d〉}〉}

V{〈A:Dom,B:Dom〉} = {〈1, 2〉, 〈1, 8〉} ◦ 〈1 : map(π1), 2 : id〉 ◦ pairwith1 ◦

map
(
〈1 : π1, 2 : π2|π1 ◦ (id× V〈A:Dom,B:Dom〉) ◦ σ1=2.1 ◦

map(π2.2) ◦ flatten ◦ sng〉
)

= 〈1 : {1}, 2 : {〈1, 2〉, 〈1, 8〉}〉 ◦ pairwith1 ◦

map
(
〈1 : π1, 2 : π2|π1 ◦ (id× V〈A:Dom,B:Dom〉) ◦ σ1=2.1 ◦

map(π2.2) ◦ flatten ◦ sng〉
)

= {〈1 : 1, 2 : {〈1, 2〉, 〈1, 8〉}〉} ◦

map
(
〈1 : π1, 2 : π2|π1 ◦ (id× V〈A:Dom,B:Dom〉) ◦ σ1=2.1 ◦

map(π2.2) ◦ flatten ◦ sng〉
)

= {〈1 : 1, 2 : {2, 8} ◦ (id× V〈A:Dom,B:Dom〉) ◦ σ1=2.1 ◦

map(π2.2) ◦ flatten ◦ sng〉}

= {〈1 : 1, 2 : ({2, 8} × {〈2, {〈a, b〉}〉, 〈8, {〈c, d〉}〉}) ◦ σ1=2.1 ◦

map(π2.2) ◦ flatten ◦ sng〉}

= {〈1 : 1, 2 : {〈2, 〈2, {〈a, b〉}〉〉, 〈8, 〈8, {〈c, d〉}〉〉} ◦

map(π2.2) ◦ flatten ◦ sng〉}

= {〈1 : 1, 2 : {{〈a, b〉}, {〈c, d〉}} ◦ flatten ◦ sng〉}

= {〈1 : 1, 2 : {{〈a, b〉, 〈c, d〉}}〉}

Fig. 11. Vτ for the running example.

By Theorem 2.5, for everyM∪[σ] query from flat relations to flat relations there
is an equivalent relational algebra query. Thus, for any Boolean M∪[σ] query Q,
there is a relational algebra query Q′ ≡ V ′ ◦map(Q) ◦ flatten. Of course,

Q(v)⇔ (V ′ ◦map(Q) ◦ flatten)(flat(v))⇔ Q′(flat(v)).

For a fixed query Q (and thus a fixed type τ), Q′ is fixed and can be evaluated on a
(flat relational) database in AC0 (cf. e.g. [Libkin 2004; Abiteboul et al. 1995]) and
thus in TC0. Preprocessing function flat is in TC0, so we can compose these two
steps and get a TC0 overall bound. 2

