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THE SET OF BALANCED ORBITS OF MAPS

OF S1 AND S3 ACTIONS

JAN JAWOROWSKI

Abstract. Suppose that the group G = S1 or G = S3 acts freely on a space X and

on a representation space V for G. Let /: X -» V. The paper studies the size of the

subset of X consisting of orbits over which the average of / is zero. The result can

be viewed as an extension of the Borsuk-Ulam theorem.

1. The average of a map. Let / be a map from S" to R". The classical

Borsuk-Ulam theorem says that the set Af= {x g S"\fx = f(-x)} is nonempty.

The formula f(-x) — fx may be viewed as the average of / at the point x, with

respect to the antipodal Z2-actions on the source space S", and on the target space

R". Thus the Borsuk-Ulam theorem can be expressed by saying that for any map /:

S" -» R" there is a point where the average of / (with respect to the antipodal

actions) is zero.

The average can be defined for any map of a G-space into a representation space,

provided that the transformation group G admits a Haar integral, as is the case for

compact groups. A theorem proved by Liulevicius in [5] can be expressed as follows:

If G is a non tri vial compact Lie group acting freely on Sm and freely and

orthogonally on the unit sphere in a representation space V of dim R V < m then for

any map /: Sm -» V there exists an x g Sm where the average of / is zero.

(1.1) Definition. Let X be a G-space and let V be a finite-dimensional

representation space of G. Let /: X -* F be a (continuous) map.Then the average of

f is the map Av/: X -» V defined by

(Avf)x = fg-1f(gx)dg.

We note the following properties:

(1.2) For any map /: X -» V, Av/: X -» V is an equivariant map.

(1.3) If /: X -* F is equivariant, then Av/ = /.

2. The set of balanced points.

(2.1) Definition. Let v be a G-space and let F be a finite-dimensional

representation space of G. A map /: X -» V is said to be balanced at a point x G X

if (Av/)x = 0. (We will also say then that x is a balanced point of /.) Let A¡ denote

the set of points of X where / is balanced. Then At is an invariant subset of X; it is
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the union of orbits consisting of balanced points. Note that

(2.2) Af=A(Avf)=(AvfY10.

(2.3) Example. Let a: X -» X be an involution of X and /: X -» R" be a map of

Jf into R", with the antipodal involution on R". Then A, — {x g S | fx = /(ax)}.

Thus the Borsuk-Ulam theorem says that any map /: S" -» R" is balanced at

some point: A¡+ 0. Various extensions of the Borsuk-Ulam theorem have been

concerned with the size of the set Af of balanced points of / for Z2-actions.

3. The index. A useful invariant of a free involution a: X -* X on a space X is its

characteristic class, u(X) g H1(X/a; Z2); it is the 1st Stiefel-Whitney class of the

orbit map X -» X/a, which is a double covering. The index of X, Ind( A"), is the

largest integer n such that u"(X) ¥= 0. The index of a free involution was defined by

Yang [7] and Conner and Floyd [1]. Fadell, Husseini and Rabinowitz [3, 4] extended

the concept of index to actions of compact Lie groups G other than Z2, including

nonfree actions. In this paper we are concerned with the cases G = S1 or G = S3,

i.e., G is the unit sphere in F where F is the field of complex numbers, C, or

quaternions, H. Let d be the dimension of F over R, that is, d = 2 for F = C, and

d = 4 for F = H.

The universal space Ec for these groups is the infinite dimensional sphere and the

classifying space Ec/G — Bc is the infinite projective space PœF. The cohomology

of Bc is a polynomial algebra over Z on a single generator wF g Hd(Px¥).

If G acts freely on a space X, then X admits an equivariant map <i>: X -» Ec. The

characteristic class of the action is u¥(X) = (<p/G)*uv g Hd(X/G). We define the

index, IndF(.Y), to be the highest integer n such that uF(X) is of an infinite order

in H"d(X/G). If SF = sd("+1)-1 is the unit sphere in F"+1 with the standard

(scalar multiplication) action of G, we will simply write uF(SF) = uF. The index of

SF is n.

The following proposition can be proved in the same way as Proposition 2, part

(ii), in Dold [2]:

(3.1) Proposition. If Sf is the sphere with the standard action and SF denotes that

sphere with an arbitrary free action, then there exists an equivariant map <p\ SF -» SF.

Such a map can be constructed as in [2] because P„F is a cell complex whose

dimension does not exceed the dimension of the sphere SF.

(3.2) Corollary. IndF(SF) = IndF(5F) = n.

Proof. The inequality IndF(5F) 3s IndF(SF) follows from (3.1). On the other

hand, Ind^Sp) cannot exceed n since the covering dimension of SF/G is at most

dn as the fibre of the orbit map SF -» SF/G is Sd"x, a manifold.

4. Main result. If A' is a G-space, we will usually denote by X the orbit space

X/G. If 4>: X -» Y is a G-map from X to some space Y, £ = <p/G: X -» Y will

denote the induced map of the orbit space.

We will be using the Alexander-Spanier cohomology with integer coefficients.

The main result of this paper is the following theorem. It may be viewed as an

extension of the theorems of Borsuk-Ulam and Yang to actions of S1 and S3.
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(4.1) Theorem. Let G = S1 or G = S3, respectively, and let G act freely on a space

X and orthogonally and freely outside the origin on a representation space V for G over

F. Letf: X -» Vbe a map. Then lndF(Af) > IndF(^) - dimFK

By (3.2) we have

(4.2) Corollary. If Sf is the unit sphere in F" + 1 with any free action of G and f:

SF —* V is a map of SF into an orthogonal representation space V for G over F, free

outside the origin, then IndF(^) > n — dimFK

(4.3) Corollary. The covering dimension of A, is at least d(n — k) + d — 1,

where k = dim pi7.

This is because Hd(n~k)Äf * 0 and Af -> Äf is a bundle with fibre Sd~1.

Actually, a theorem more general than (4.1) will be proved in §6.

5. Comments on the equivariant cohomology. In the proof we will be using the

equivariant cohomology //<*. If X is a G-space then HgX = H*(ECXC X), where

G acts on EG X X by g(e, x) = (ge, gx) and Ec X G X = (Ec X X)/G. The projec-

tion Ec X X -* Ec induces a map Ec X G X -* EG/G — Bc which is a bundle with

fibre X If G acts trivially on X, then Ec X G X = Bc X X. If G acts freely on X,

then the projection EGX X -y X induces a map EG X G X -» X/G = X which is a

bundle with a contractible fibre EG; in this case H¿X = H *X.

If • denotes a single point space then //*(•) = H*BG; in fact, the constant map

EG -» • induces an isomorphism H¿*( ■ ) = H¿EC = H *BG. This ring (in our case of

G = S1 or G = S3) is polynomial algebra on a generator uF g HdPxF.

Let V be a representation space for G with dim R V = m and let V0 = V — (0).

Since the map EG X G V -» BG induced by the first projection is an orientable

bundle with fibre V, it has its Thorn class U(V) g Hm(EG XG V, EG XG V0) =

Hc(V,V0). The restriction of U(V) to V will be denoted by U'(V). The isomor-

phism 77*: HmBG = HGV induced by the bundle projection m: EG XG V -* BG

maps the Euler class e(ir) to U'(V): U'(V) = ir*e(-n). The class e(-n) will also be

called the Euler class of the action on V and will be denoted by e(V).

(5.1) Proposition. Let X be a free G-space, let <j>: X -» EG be a classifying map for

X and let f: X -* V be any equivariant map. Thenf*tr* = <b*.

Proof. Let c: EG -* Fk be the constant map to 0. Consider the diagram

EGXGX - EGXGV

lXc*i /lXcC ¿»

p

Eg * a E-G ~* "G

Since the fibre V of m is contractible, and the fibre EG of p is contractible, the

two triangles are homotopy commutative. Applying the cohomology, we have

</>* = (/>(! xG<b))*=/%*.
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(5.2) Proposition. If G (= Sl or S3) acts on V = Fk by scalar multiplication,

thene(Fk) = uF g HdkPkF.

Proof. In Hdk(Fk,F¿¡) -^ HdGkFk £ HdkBG = HdkPkF, the first arrow is an iso-

morphism since HdkFk = HdkPk_xF = 0 and Hdk~lFÏ s Hdk~lPk_xF = 0. It fol-

lows that e(Fk) = tr*-lU'(Fk) = ukF.

(5.3) Proposition. Let V be an orthogonal representation space for G over F, free

outside the origin. Then the Euler class e(V) ¥= 0.

Proof. Let V = F* be the representation space with the standard (scalar multipli-

cation) action of G and let S(V) = SF and S(V) denote the unit sphere with the

corresponding free actions. By (3.1), there is an equivariant map <#>: S(V) -» S(V)

which extends to an equivariant map t^: V -» V. It follows that \p*U'(V) = U'(V)

which is nonzero by (5.2). Therefore U'(V) # 0 and e(V) = -n*-lU'(V) # 0.

6. Proof of the Theorem. We will prove the following theorem and show that (4.1)

is a consequence of it.

(6.1) Theorem. Suppose that G (= S1 or S3, respectively) acts freely on a space X

and orthogonally on a representation space V for G over F. Let f: X -* V be a map. If

the Euler class e(V) + 0, then lndF(Af) > IndF(X) - dimFK

Proof. By (1.2), (1.3) and (2.3) we can assume that / is equivariant; otherwise we

can replace / by Av/. Let Ind^X) = n so that u"(X) is of infinite order and let

k = dimFK. We want to show that uF~k(Af) = uF~k(X) | Af is of infinite order. By

the continuity of the Alexander-Spanier cohomology, it suffices to show that for

every invariant neighborhood N of Af in X, the restriction uF~k( X) \ N is of infinite

order.

The map / can be viewed as an equivariant map of pairs /: ( X, X - A/) -» (V, V0).

Let fN: (N, N - A/) -» (V, V0) be the restriction of /, let i denote the inclusion

X -» (X, X - Af) or V -* (V, V0) and let e: (N, N-Af)-* (X, X - Af) be the

excision map. Then

i*e*-l((uF~k(X)\N)uf*{u(V)\(N,N-Af)))

= i*(unF-k(X) Uf*U(V)) = u"F-k(X) Uf*i*U(V)

= uF~k(X) Uf*U'(V) = u"F-k(X) Uf*tr*e(V).

Since HkBG = HkPkF is freely generated by uF, e(V) = muF, where m is a

nonzero integer since e(V) =£ 0.

Now, by (5.1),

uF~k(X) Uf*ir*e(V) = uF~k(X) U<¡>*(mwF)

= m • uF~k(X) U <J>*4 = m ■ uF~k(X) U uF(X)

= m-u"F(X)

is of infinite order.

Finally, Theorem (6.1) and Proposition (5.3) imply Theorem (4.1).
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