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Abstract

In this paper, we survey some new results in four areas of domina-
tion in graphs, namely:

(1) the toughness and matching structure of graphs having domi-
nation number 3 and which are “critical” in the sense that if one adds
any missing edge, the domination number falls to 2;

(2) the matching structure of graphs having domination number 3
and which are “critical” in the sense that if one deletes any vertex, the
domination number falls to 2;

(3) upper bounds on the domination number of cubic graphs; and
(4) upper bounds on the domination number of graphs embedded

in surfaces.
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lation, genus.
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1. Introduction

Let G be a finite undirected graph. A set of vertices S ⊆ V (G) dominates the
graph G if every vertex in V (G) either belongs to S or is adjacent to a vertex
in S. The size of any smallest dominating set for G is denoted by γ(G). A
graph G will be said to be k-critical if γ(G) = k, but γ(G + e) = k − 1,
for every edge e ∈ G. The structure of k-critical graphs remains far from
completely understood when γ(G) ≥ 3. In Section 2, we discuss recent
results about the ratio |S|/ω(G − S), where S is a vertex cutset in G and



458 M.D. Plummer

ω(G−S) denotes the number of components in G−S. For obvious reasons,
we refer to these results as “toughness-like” results. We then use these
toughness-like results to obtain new theorems about matchings in 3-critical
graphs.

In Section 3, we turn to vertex-criticality with respect to domination
number. A graph G is k-vertex-critical if γ(G) = k, but γ(G − v) = k − 1,
for every vertex v ∈ V (G). As in the case of edge-criticality, little has been
known heretofore about vertex-criticality when γ ≥ 3. Although it has long
been known that 3-critical graphs of even order must have perfect matchings,
this is not necessarily true for 3-vertex-critical graphs. We will present some
sufficient conditions for 3-vertex-critical even (resp. odd) graphs to contain
perfect (resp. near-perfect) matchings. Additional matching results for these
graphs are also discussed.

In Section 4, we examine domination in cubic graphs; i.e., graphs in
which each vertex has degree 3. Reed [34] conjectured that a connected
cubic graph with n vertices can always be dominated using no more than
d(n + 1)/3e vertices. This ten year old conjecture was only very recently
found to be false by Kostochka and Stodolsky [23]. However, we present
some positive results related to Reed’s conjecture; namely, we have shown
[22] that with sufficiently large girth, cubic graphs will have domination
number arbitrarily close to Reed’s bound.

Finally, in Section 5, we investigate some domination questions for
graphs embedded in surfaces. Matheson and Tarjan [30] showed that ev-
ery planar triangulation (i.e., planar graph in which every face is a triangle)
of order n can be dominated using no more than bn/3c vertices. In this final
section, we show that the slightly weaker bound dn/3e holds for triangula-
tions of the torus and of the Klein bottle.

Other terminology and notation will be introduced below as needed.

2. 3-Critical Graphs

The first so-called “toughness result” for 3-critical graphs is due to Sumner
and Blitch [36].

Theorem 2.1. Let G be a connected 3-critical graph. Then if S is a vertex
cutset in G, G− S has at most |S|+ 1 components.

The next theorem represents a sharpening the Sumner-Blitch result. Let
ω(G− S) denote the number of components in the graph G− S.
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Theorem 2.2. Let G be a connected 3-critical graph and let S be a vertex
cutset in G. Then

(a) if |S| ≥ 6, ω(G− S) ≤ |S| − 2;
(b) if |S| ≥ 4, ω(G− S) ≤ |S| − 1;
(c) if |S| = 3, then ω(G−S) ≤ 3, and if G−S has exactly three components,

each component is complete and at least one of them is a singleton;
(d) if |S| = 2, then ω(G−S) ≤ 3, and if G−S has exactly three components,

then G must the the graph shown in Figure 2.1 with n = 2; and
(e) if |S| = 1, then ω(G − S) = 2, and exactly one of the components of

G−S is a singleton. Furthermore, G has at most three cutvertices. If it
has two, then G is a graph of the type shown in Figure 2.1 with n ≥ 2,
while if it has three, it is the graph shown in Figure 2.1 with n = 1.

n > 0
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Figure 2.1

Part (a) of the preceeding theorem is Theorem 2.1 of [2]. Part (b) follows
immediately from Lemma 6 of [36] and Lemma 3 of [10]. Parts (c) and (d)
are proved in Theorem 2.1 of [1]. As for the “missing case” in the Theorem
2.2 above, we have the following result (Theorem 2.2, [2]).

Theorem 2.3. If G is a connected 3-critical graph, S is a vertex cutset with
4 ≤ |S| ≤ 5, and if each component of G−S has at least three vertices, then
ω(G− S) ≤ |S| − 2.
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Pertaining to part (c) of Theorem 2.2 above, it is not possible to say more
about the number of singleton components, for in Figure 2.2 we present
examples of 3-critical graphs in which G−S has three, two and one singleton
component respectively.
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S
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n > 2

Figure 2.2

As for extending the above results to cutsets of arbitrary size, we offer only
the following conjecture.

Conjecture 2.4. Let G be a connected 3-critical graph, S, a vertex cutset
in G and t, a positive integer. Then if |S| ≥ 2(t + 1), ω(G− S) ≤ |S| − t.

The conjecture is true for t = 1 by part (b) of Theorem 2.2 and for t = 2 by
part (a) of Theorem 2.2. However, the approach used in proving these two
special cases does not readily extend to the case t ≥ 3 and we believe that
a new approach must be found.

The next theorem, which has come to be called the “arrow theorem”, is
used extensively in proving the toughness results above and also the match-
ing theorems to follow. To state this important result, we introduce some
notation. If u, v and w are vertices of graph G and u and v dominate G−w,
we will write [u, v] −→ w. Note that if G is 3-critical, and u and v are
non-adjacent vertices of G, then γ(G + uv) = 2 and therefore there must be
a vertex x ∈ V (G) such that either [u, x] −→ v or [v, x] −→ u.
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Theorem 2.5. Let G be a connected 3-critical graph and let S be an inde-
pendent set of n ≥ 2 vertices in V (G).

(i) Then the vertices of S can be ordered as a1, a2, . . . , an in such a way
that there exists a sequence of distinct vertices x1, x2, . . . , xn−1 so that
[ai, xi] −→ ai+1 for i = 1, 2, . . . , n− 1.

(ii) If, in addition, n ≥ 4, then the xi’s can be chosen so that x1x2 · · ·xn−1

is a path and S ∩ {x1, . . . , xn−1} = ∅.

The case n ≥ 4 was proved in [36]; the cases n = 2 and 3 were proved in [18].
We now turn our attention to the matching properties of 3-critical

graphs. Part (a) of the next theorem is historically the first result on
matchings in 3-critical graphs and is due to Sumner and Blitch [36]. It
follows immediately from Theorem 2.1 above and Tutte’s theorem on per-
fect matchings. Part (b) is an easy consequence of the Gallai-Edmonds
theorem on matchings.

Theorem 2.6. Let G be a connected 3-critical graph. Then

(a) if |V (G)| is even, G contains a perfect matching, while
(b) if |V (G)| is odd, G contains a near-perfect matching.

Over the past thirty years or so, considerable attention has been paid to
the matching structure of graphs and, in particular, a canonical decompo-
sition theory of graphs has been developed. Not surprisingly, much subse-
quent attention has fixed on the “atoms” or indecomposable structures in
this theory. Among these are the factor-critical graphs and the bicritical
graphs. A graph G of odd order is said to be factor-critical if G − v con-
tains a perfect matching, for all v ∈ V (G) and a graph G of even order
is called bicritical if G − u − v contains a perfect matching, for all pairs
of distinct vertices u, v ∈ V (G). A 3-connected bicritical graph is called a
brick. The structure of bicritical graphs in general, and of bricks in partic-
ular, has turned out to be quite complicated. (See [27].) For several recent
papers on bicritical graphs and bricks, we refer the reader to [14, 28, 12, 13,
31, 32].

Ananchuen and the author proved the following ([3], Theorem 2.1).

Theorem 2.7. If G is an even 3-connected 3-critical graph with mindeg
G ≥ 4, then G is a brick.
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The minimum degree bound in the above theorem is best possible as there
are 3-connected 3-critical graphs having minimum degree 3 which are not
bicritical. Two such graphs are shown in Figure 2.3. The first is due to
Sumner and Blitch [36]. (In each graph, G−x−y has no perfect matching.)
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Figure 2.3

If the graph under consideration is claw-free, we can relax both the con-
nectivity and minimum degree hypotheses somewhat as seen in the next
theorem ([3], Theorem 3.3).

Theorem 2.8. Let G be a 3-critical 2-connected claw-free graph of even
order. Then if mindeg G ≥ 3, G is bicritical.

Note that both the connectivity condition and the minimum degree condi-
tion are sharp in the above theorem as it is clear that every bicritical graph
must be 2-connected and have minimum degree 3.

For graphs of odd order, we have the following result ([3], Theorem 2.4).

Theorem 2.9. Let G be a 2-connected 3-critical graph of odd order. Then
G is factor-critical.

The lower bound on connectivity in the above theorem is best possible as the
3-critical graphs shown in Figure 2.1 (with n even) are not factor-critical.
The concepts of factor-criticality and bicriticality have been generalized as
follows. Let G be a graph on n vertices and suppose k is a positive integer
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with k < n/2. Then G is k-factor-critical if G − S has a perfect matching
for every set of vertices S ⊂ V (G) with |S| = k. The next theorem is found
in [4].

Theorem 2.10. Let G be a 4-connected 3-critical graph of odd order and
suppose mindeg G ≥ 5. Then G is 3-factor-critical.

It should be noted that the minimum degree bound stated as an hypothesis
in the preceding theorem is best possible. In Figure 2.4 we exhibit a 3-critical
4-connected graph having minimum degree 4 and odd order, but which is
not 3-factor-critical.

Figure 2.4

If the graph G is claw-free, we can relax both the connectivity and the
minimum degree hypotheses of Theorem 2.10 slightly and still guarantee
3-factor-criticality.

Theorem 2.11 ([4], Theorem 3.4). Let G be a 3-connected claw-free 3-
critical graph of odd order. Then if mindeg G ≥ 4, G is 3-factor-critical.

Both the connectivity and minimum degree bounds stated as hypotheses in
the preceding theorem are best possible. Indeed, Favaron has proved ([15],
Theorems 2.5 and 2.6) that for all k ≥ 0, every k-factor-critical graph of
order n > k is k-(vertex)-connected and for all k ≥ 1, every k-factor-critical
graph of order n > k is (k + 1)-edge-connected (and hence has minimum
degree at least k + 1).
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An infinite family of graphs satisfying the hypotheses of Theorem 2.11 is
presented in [4] along with two conjectures concerning analogs of Theorems
2.10 and 2.11 for k-factor-critical graphs for k ≥ 4.

3. 3-Vertex-Critical Graphs

A second kind of domination criticality may be defined in terms of vertex
deletion. Let us say that a graph G is k-vertex-critical if γ(G) = k, but
γ(G − v) = k − 1, for every vertex v ∈ V (G). Brigham et al. [8, 9] and
Fulman et al. [19, 20] were the first to undertake the study of vertex-
criticality. From the point of view of matchings, the properties of 3-vertex-
critical graphs differ quite dramatically from those of the 3-critical graphs
treated in Section 2. For example, by Theorem 2.6 above, every connected
even 3-critical graph must have a perfect matching and every connected odd
3-critical graph must have a near-perfect matching. Such is not true for
connected 3-vertex-critical graphs, as will be seen below.

So what might be some reasonable conditions one might place on a 3-
vertex-critical graph sufficient to guarantee the existence of a perfect (or
near-perfect) matching? One of the classical theorems about matchings is
the following, due independently to Sumner [35] and Las Vergnas [26].

Theorem 3.1. Every connected claw-free graph of even order has a perfect
matching.

Our next two results [5, 6] can be considered as a variations on this classical
result.

Theorem 3.2. If G is a K1,5-free 3-vertex-critical graph of even order, then
G has a perfect matching.

Theorem 3.3. If G is a K1,5-free 3-vertex-critical graph of odd order at
least 11 with mindeg G > 0, then G has a near-perfect matching.

The extra assumption that the order be at least 11 in Theorem 3.3 is nec-
essary, for in Figure 3.1 we exhibit a 3-vertex-critical K1,5-free of odd order
9 which does not have a near-perfect matching.
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Figure 3.1

In the odd order case, we also have the following result [6].

Theorem 3.4. If G is a K1,4-free 3-vertex-critical graph of odd order with
minimum degree at least 3, then G is factor-critical.

We now present a new family of 3-vertex-critical graphs. (See [5].) Let k
be any integer with k ≥ 5. We proceed to construct a graph which we will
call H

k,(k
2)−k

. The vertex set will consist of two disjoint subsets of vertices

called central and peripheral respectively. Let {v1, . . . , vk} denote the set of
central vertices. The subgraph induced by these central vertices will be the
complete graph Kk with the Hamilton cycle v1 · · · vk deleted. The peripheral
vertices will be

(
k
2

)
in number and will be denoted by the symbol ∼ {i, j},

where the (unordered) pair {i, j} (i 6= j) ranges over all the
(
k
2

)
subsets of

size 2 of the set 1, . . . , k, except those having j = i + 2 where i + 2 is read
modulo k. The neighbor set of peripheral vertex ∼ {i, j} will be precisely the
set of all central vertices, except i and j. Figure 3.2 shows the graph H6,9.

Note that for k ≥ 6, the graph H
k,(k

2)−k
is (k − 2)-connected, but does

not contain a perfect matching, even when
(
k
2

)
is even.

At this point, we offer the following two conjectures. (See [5] and [6]
respectively.)

Conjecture 3.5. If G is a 3-vertex-critical graph of even order and K1,7-
free, then G contains a perfect matching.
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Conjecture 3.6. If G is a 2-connected 3-vertex-critical graph of odd order
with minimum degree at least 3, then G is factor-critical.

We remark that the hypothesis that G be 2-connected in Conjecture 3.6 is
necessary, for we have examples of connected 3-vertex-critical graphs of odd
order and minimum degree at least 3 which have cutvertices and which are
not factor-critical.

If a 3-vertex-critical graph is also claw-free, more can be said. The
following theorem, due independently to Favaron, Flandrin and Ryjáček
[16] and to Liu and Yu [27], is useful here.

Theorem 3.7. If G is a (k + 1)-connected claw-free graph of order n, and
if n− k is even, then G is k-factor-critical.
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In [7] the following result is found.

Theorem 3.8. Let G be a connected claw-free 3-vertex-critical graph. Then

(a) G is 2-connected;
(b) if G is of even order or if mindeg G ≥ 3, then G is 3-connected; and
(c) if mindeg G ≥ 5, then G is 4-connected.

The next result is then immediate by Theorems 3.7 and 3.8.

Theorem 3.9. Let G be a connected claw-free 3-vertex-critical graph. Then

(a) if G has odd order, G is factor-critical;
(b) if G has even order, G is bicritical; and
(c) if G has odd order and mindeg G ≥ 5, G is 3-factor-critical.

4. Efficient Domination of Cubic Graphs

Some ten years ago, Reed [Re] made the following interesting conjecture.

Conjecture 4.1. If G is a connected cubic graph on n vertices, then
γ(G) ≤ dn/3e.

This conjecture attracted the attention of a number of graph theorists until,
very recently, it was shown to be false by A.V. Kostochka and B.Y. Stodol-
sky [23] who produced an infinite family of counterexamples, the smallest
of which has 60 vertices and γ = 21. All of these counterexamples have
cutvertices. Even more recently, I have learned from these two authors [24]
that they have now constructed 2-connected counterexamples as well. At
present, it seems that Reed’s conjecture remains unsettled when the graphs
are 3-connected, however.

So what is the correct upper bound for γ for the family of cubic graphs?
In the same paper containing Conjecture 4.1, Reed proved that if G has
mindeg G ≥ 3, then γ(G) ≤ (3/8)|V (G)|. In a more recent paper,
Kawarabayashi, Saito and the author [22] have obtained another result re-
lated to this question for graphs of large girth.

Theorem 4.2. Let G be a connected graph with a 2-factor F and let k be
any positive integer. If F has at least two components and the order of each
component is at least 3k, then γ(G) ≤ 3k+2

9k+3 |V (G)|.
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Every 2-edge-connected cubic graph has a 1-factor by Petersen’s classical
result and hence has a 2-factor. There are then two cases to handle in order
to derive the next theorem. If the 2-factor has two components, then the
conclusion of Theorem 4.2 is immediate. If, however, the 1-factor has only
one component, i.e., the 1-factor is a Hamilton cycle, a separate argument
can be made. Hence we have the next result.

Theorem 4.3. Let k be any positive integer. Then every 2-edge-connected
cubic graph G of girth at least 3k satisfies γ(G) ≤ 3k+2

9k+3 |V (G)|.

Note that for 2-edge-connected cubic graphs of girth at least nine, the bound
of Theorem 4.3 is better than Reed’s 3/8 bound for minimum degree at
least 3.

If a cubic graph has a Hamilton cycle, then it trivially satisfies Reed’s
bound of dn/3e. But recently the author asked whether or not it is true
that if G is a cubic Hamiltonian graph on n vertices, then γ(G) ≤ bn/3c.
Cropper, Greenwell, Hilton and Kostochka [11] have now shown that the
answer is “yes” in exactly two out of three cases, modulo 3.

Theorem 4.4. Let G be a cubic graph on n ≥ 4 vertices which has a
Hamilton cycle. Then it is true that γ(G) ≤ bn/3c, when n ≡ 0(mod 3) and
when n ≡ 1(mod 3), but not necessarily true when n ≡ 2(mod 3).

Note added in proof. As this paper was going to press, the author learned
of the following two even more recent results by Kostochka and Stodolsky
[25].

Theorem 4.5. If G is a connected cubic graph with n > 8 vertices, then
γ(G) ≤ 4n/11.

Theorem 4.6. If G is a connected cubic graph with n vertices and girth at
least g, then

γ(G) ≤ n

(
1
3

+
8

3g2

)
.

It is interesting to compare Theorems 4.2 and 4.6. For graphs of large girth,
the bound in Theorem 4.6 is better than that in Theorem 4.2. However
Theorem 4.2 is more general in its application than Theorem 4.6 in that in
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Theorem 4.2 it is only the girth of a 2-factor which is required to be large.
Short cycles, on the other hand, are permitted to exist.

5. Domination of Graphs Embedded in Surfaces

In this final section, we investigate some problems involving the domination
of graphs embedded in surfaces. It is well-known that the problem of deter-
mining the domination number of a graph is NP-complete, even when the
graph is planar. (See [21].) A triangulated disc is a graph embedded in the
plane such that all faces of the embedding are triangles, with possibly one
exception. A triangulation (of the plane or sphere) is a graph embedded in
the plane such that all faces are triangles. In [30], Matheson and Tarjan
proved that a triangulated disc of order n can be dominated using no more
than bn/3c vertices. They also provide an infinite family of extremal graphs
to show that this upper bound is tight. In [33], Zha and the present author
investigate the extension of this result to the projective plane, torus and
Klein bottle.

An embedding of graph G on a surface S, denoted Φ : G −→ S, is a
triple (S, G, V (G)) such that G is a closed subset of the surface S and V (G)
is a finite subset of G such that the connected components of G − V (G)
are a finite number of open 1-cells. As usual, an element of V = V (G) is
called a vertex, the closure of each 1-cell of G−V (G) is called an edge and a
connected component of S−G is called a face of Φ(G). The representativity
(or face-width) of a graph embedded on a surface S is the smallest number
k such that S contains a non-contractible closed curve that intersects the
graph in k vertices. If Φ is an embedding of graph G on surface S, and
there exists a subset K of Φ which contains all the vertices of G and which
is bounded by a subgraph of G, we call K a spanning subset of Φ. If the
spanning subset is homeomorphic to a topological disc, we call it a spanning
disc of Φ. Note that if an embedded graph of order n has a spanning disc,
then one can immediately conclude via Matheson-Tarjan, that it can be
dominated using no more than bn/3c of its vertices. In [17] it is shown that
every 3-connected graph in the projective plane has a spanning disc, and
hence again by Matheson-Tarjan, it follows that every triangulation G on n
vertices embedded in the projective plane has γ(G) ≤ bn/3c.

However, when one considers embeddings on the torus, the situation
changes. If one considers the dual embedding of K7 on the torus (said
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embedding is necessarily unique under surface homomeorphism), this em-
bedding contains no spanning disc. (The underlying graph of this dual
embedding is sometimes known as the Heawood graph.) Hence one cannot
apply Matheson-Tarjan to bound the domination number from above.

Hence we must take a different approach. In order to state the next
theorem, we present some notation and terminology. Let H be a subgraph
of a graph G. A bridge B is a subgraph of G which is either an edge with
both endvertices in H or the union of a connected component K of G−H
together with the edges which join K to H and their incident vertices. If B
is a bridge of H, then we call each vertex of B ∩H a vertex of attachment
of B on H.

Next, let C be a cycle in graph G and let u and v be two vertices of
C. Assign a clockwise orientation to C. Then C[uv] denotes the path of C
from u to v and similarly, [vu] denotes the path of C from v to u, where
both paths are chosen to follow the clockwise orientation.

Theorem 5.1. Let G be a 3-connected graph and Φ : G −→ T be a 3-
representative embedding of G on the torus T . Let f be any face of the
embedding. Then Φ(G) contains a spanning cylinder Y which contains face
f and is bounded by two disjoint homotopic cycles C1 and C2 such that

(1) T−Y only contains edges each of which joins a vertex on C1 to a vertex
on C2.

(2) Y contains a closed disc Df such that Df contains f and is bounded by
a null homotopic cycle P = C1[x2x1] ∪ Px1y1 ∪ C2[y2y1] ∪ Px2y2, where
x1 and x2 are two vertices on C1, y1 and y2 are two vertices on C2 and
Px1y1 and Px2y2 are paths joining C1 and C2. All bridges of Df in Y
are either edges contained in Y −Df joining Px1y1 to Px2y2 or possibly
in D1 or D2 where D1 has {x1, x2} as its vertices of attachment and
D2 has {y1, y2} as its vertices of attachment. Moreover, both Di’s are
discs and each is bounded by a null homotopic cycle of G.

(3) The underlying graph of Y is 2-connected.
(4) If, in addition, Φ is a triangulation, then Y −Df contains edges x1x2

and y1y2.

It is helpful here to consider Figure 5.1.
In essence, what is guaranteed by Theorem 5.1 is that the graph G

embedded on the torus has a spanning subgraph consisting of three discs
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attached as shown in Figure 5.1 (where one or both of D1 and D2 may be
degenerate, i.e., may consist of a single edge).
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Figure 5.1

Clearly, any set dominating this spanning subgraph will automatically dom-
inate the entire graph G.

The bn/3c bound of Matheson and Tarjan is an immediate corollary to
the following result also found in their paper.

Theorem 5.2. Every triangulated disc on n vertices has a partition of its
vertex set into three dominating sets (and hence can be dominated using no
more than bn/3c vertices). Moreover, every two consecutive vertices on the
boundary cycle belong to different sets of this partition.

So we proceed to dominate each of D1, D2 and Df separately, with the help
of Theorem 5.2, and combine the three dominating sets in a suitable way so
as to dominate the whole of G.

An analog of Theorem 5.1 for the Klein bottle is also proved in [33]. One
then combines these two theorems with Theorem 5.2 to prove the following.

Theorem 5.3. If G is a triangulation of the torus or of the Klein bottle,
then γ(G) ≤ d|V (G)|/3e.
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Actually, Matheson and Tarjan did not think their bound best possible for
triangulations of the plane, and ventured the following conjecture.

Conjecture 5.4. If n is sufficiently large and G is a planar triangulation
of order n, then γ(G) ≤ bn/4c.

We end with an extension of their conjecture.

Conjecture 5.5. If |V (G)| is sufficiently large and G triangulates some
surface (orientable or non-orientable), then γ(G) ≤ b|V (G)|/4c.
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Graphes (Paris, 1974) Cahiers Centre Études Rech. Opér. 17 (1975) 257–260.

[27] G. Liu and Q. Yu, On n-edge-deletable and n-critical graphs, Bull. Inst. Com-
bin. Appl. 24 (1998) 65–72.



474 M.D. Plummer

[28] L. Lovász, Matching structure and the matching lattice, J. Combin. Theory
(B) 43 (1987) 187–222.

[29] L. Lovász and M.D. Plummer, Matching Theory, Ann. Discrete Math. 29
(North-Holland, Amsterdam, 1986).

[30] L. Matheson and R. Tarjan, Dominating sets in planar graphs, European J.
Combin. 17 (1996) 565–568.

[31] S. Norine and R. Thomas, Generating bricks, preprint, 2005.

[32] S. Norine and R. Thomas, Minimal bricks, J. Combin. Theory (B) (2005), (to
appear).

[33] M.D. Plummer and X. Zha, On certain spanning subgraphs of embeddings with
applications to domination, 2005, (submitted).

[34] B. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5
(1996) 277–295.

[35] D.P. Sumner, 1-factors and anti-factor sets, J. London Math. Soc. 13 (1976)
351–359.

[36] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory
(B) 34 (1983) 65–76.

Received 23 November 2005


