
Formal Verification of Side Channel
Countermeasures Using Self-Composition

J. Bacelar Almeida∗, Manuel Barbosa∗, Jorge S. Pinto∗, Bárbara Vieira∗

CCTC/Departamento de Informática,
Universidade do Minho, Campus de Gualtar,

4710-057 Braga, Portugal

Abstract

Formal verification of cryptographic software implementations poses significant chal-
lenges for off-the-shelf tools. This is due to the domain-specific characteristics of
the code, involving aggressive optimisations and non-functional security requirements,
namely the critical aspect of countermeasures against side-channel attacks. In this pa-
per we extend previous results supporting the practicality of self-composition proofs
of non-interference and generalisations thereof. We tackle the formal verification of
high-level security policies adopted in the implementation of the recently proposed
NaCl cryptographic library. We formalize these policies and propose a formal verifica-
tion approach based on self-composition, extending the range of security policies that
could previously be handled using this technique. We demonstrate our results by ad-
dressing compliance with the NaCl security policies in real-world cryptographic code,
highlighting the potential for automation of our techniques.

Keywords: Cryptographic algorithms, program verification, program equivalence,
self-composition, side-channel countermeasures.

1. Introduction

Software implementations of cryptographic algorithms and protocols are at the core
of security functionality in many IT products. However, the development of this class
of software products is understudied as a domain-specific niche in software engineer-
ing. The development of cryptographic software is clearly distinct from other areas
of software engineering due to a combination of factors. Cryptographic software en-
gineering is interdisciplinary, drawing on skills from mathematics, computer science
and electrical engineering; it requires developing aggressively optimised code, as light
as possible in terms of computational and communications load, to compensate for

∗Corresponding author
Email addresses: jba@di.uminho.pt (J. Bacelar Almeida), mbb@di.uminho.pt (Manuel Barbosa),

jsp@di.uminho.pt (Jorge S. Pinto), barbarasv@di.uminho.pt (Bárbara Vieira)

Preprint submitted to Science of Computer Programming October 11, 2011

the typically low perceived benefits; finally, it requires writing and optimising code
for heterogeneous architectures, ranging from embedded processors with very limited
computational power, memory and autonomy, to high-end servers with low-latency.

Side-channel countermeasures. One of the most challenging aspects of cryptographic
software implementation is the fact that functional correctness is not a sufficient con-
dition to guarantee security. It is possible (and likely) that a naive implementation of
a theoretically secure cryptographic algorithm is functionally correct, and yet turns out
to be insecure. This is because cryptographic algorithms are designed and validated,
in theory, by idealizing the computational platform in which they will execute: com-
putation is seen as taking place inside a black box, from which only explicitly released
outputs can be extracted. In practice, this is far from the truth, as physical observation
of computational platforms can enable an adversary to recover sensitive information,
often with very little effort. This type of attack is usually called a side-channel attack.

Protection against side-channel attacks is one of the most active areas of research
in applied cryptography, involving both hardware and software implementation as-
pects. On the hardware side, the goal is to devise a platform that aproximates the
idealized black-box mentioned above. Smart-cards, for example, incorporate various
hardware countermeasures to reduce exposure to side-channel attacks, e.g. by mini-
mizing power consumption fluctuations when different operations are executed by the
processor. However, it is not realistic to assume that one can resort to special purpose
hardware whenever one needs to employ cryptography. Furthermore, hardware coun-
termeasures are, by design, meant to thwart specific forms of physical data collection,
which means that there is always room for new sources of leakage to be uncovered
and exploited. Finally, even the most advanced cryptographic hardware cannot protect
against side channel leakage caused by bad software implementation choices.

Software side-channel countermeasures aim to minimize the correlation between
the sensitive inputs to the algorithm and physically observable variations in the behav-
ior of the underlying computational platform, when the algorithm is executing. In this
work we focus on a particular class of countermeasures aiming to eliminate timing de-
pendencies, in both execution and memory access times, that may give rise to so-called
timing attacks. Concretely, code is written so as to ensure that the sequence of executed
instructions (i.e. the control flow) and the sequence of accessed memory addresses are
independent of the sensitive inputs. We refer the interested reader to [15] for details on
programming techniques that make this possible without forsaking performance.

We consider deductive formal verification as a means to obtain further guarantees
that these side-channel countermeasures are correctly deployed in cryptographic soft-
ware implementations. In practice, these guarantees are important not only for the
end-users of the code, but also for developers working, say, in collaborative projects,
in which the eligibility of contributions must be analyzed with respect to well-defined
code quality criteria. Transferral of an increased level of assurance to a third party may
be necessary, for example, in the context of software certification processes.

A formal verification-based approach. Deductive program verification is the area of
Formal Methods that attempts to check properties of software statically with the help
of an axiomatic semantics of the underlying programming language and a proof tool.

2

The area has greatly benefited from recent evolutions, including theoretical develop-
ments in the treatment of linked data structures; the adoption of standard interface
specification languages for writing contracts annotated into the programs; and devel-
opments in automated proof technology, in particular SMT solvers. Verification tools
for languages like C [8], C# [6], or Java [16] are becoming more and more popular.

Our strategy to formally verify compliance to security policies such as those de-
scribed above, which enforce the elimination of control flow and memory access de-
pendencies as countermeasures against timing side-channel attacks, is to view them as
information flow security restrictions. Information flow security refers to a class of se-
curity policies that constrain the ways in which information can be manipulated during
program execution. These properties can be formulated in terms of non-interference
between high-confidentiality input variables and low-confidentiality output variables.
A dual formulation permits capturing security policies that constrain information flow
from non-trustworthy (or low-integrity) inputs, to trusted (or high-integrity) outputs.

Self-composition [7] is a technique that permits formalizing non-interference prop-
erties by considering two copies of the same program: a new program is constructed
consisting of the original program composed with itself, with the caveat that the two
copies of the original program operate over disjoint parts of the state. Non-interference
is specified and verified by defining an appropriate contract for the composed program.

In this work, we build on the results of our previous work, where the applicability
of self-composition, and generalizations thereof to the formal verification of crypto-
graphic software, have been demonstrated. More specifically, we have proposed [3, 4]
a composition-based methodology for proving properties about the semantics of two
(possibly identical) programs. To increase the level of automation, natural invariants
were employed as a device to establish a correspondence between axiomatic properties
of programs and their operational semantics. Natural invariants are particularly useful
for reasoning about pairs of programs with sufficiently close control structures.

One possible application of this approach is to establish the functional correctness
of (cryptographic) programs, by showing that a concrete implementation is function-
ally equivalent to a specification given as a reference implementation. We have in our
previous papers shown that functional correctness can be addressed using a sequence of
equivalence proofs, each one corresponding to a simple refinement, so that the control
structures of the programs in each pairwise equivalence are sufficiently close. Proofs of
non-interference by self-composition are another subclass of problems that can be tack-
led using the same methodology: self-composition is a particularly convenient case, in
which the control structures of both programs are identical.

The applicability of our techniques has been demonstrated on practical examples
of cryptographic code, using an off-the-shelf formal verification tool. Our techniques
solve some of the automation problems that had previously been identified for the self-
composition technique [26]. This work will be revised in more detail in Section 2.

Contributions. In this paper we extend the range of applications of the methods intro-
duced in our previous work, to cope with a set of high-level security policies adopted
by the developers of the recently proposed NaCl [9] (read salt) cryptographic library.
These policies, quoted in Figure 1 from the NaCl specifications, enforce software coun-
termeasures against timing side-channel attacks. The introduction of an instrumented

3

No data-dependent branches. The CPU’s instruction pointer, branch predictor, etc. are not designed to
keep information secret. For performance reasons this situation is unlikely to change. The literature has
many examples of successful timing attacks that extracted secret keys from these parts of the CPU. NaCl
systematically avoids all data flow from secret information to the instruction pointer and the branch predictor.
There are no conditional branches with conditions based on secret information; in particular, all loop counts
are predictable in advance. This protection appears to be compatible with extremely high speed, so there is
no reason to consider weaker protections.

No data-dependent array indices. The CPU’s cache, TLB, etc. are not designed to keep addresses secret. For
performance reasons this situation is unlikely to change. The literature has several examples of successful
cache-timing attacks that used secret information leaked through addresses. NaCl systematically avoids all
data flow from secret information to the addresses used in load instructions and store instructions. There
are no array lookups with indices based on secret information; the pattern of memory access is predictable
in advance. The conventional wisdom for many years was that achieving acceptable software speed for AES
required variable-index array lookups, exposing the AES key to side-channel attacks, specifically cache-
timing attacks. However, the paper “Faster and timing-attack resistant AES-GCM” by Emilia Käsper and
Peter Schwabe at CHES 2009 introduced a new implementation that set record-setting speeds for AES on the
popular Core 2 CPU despite being immune to cache-timing attacks. NaCl reuses these results.

Figure 1: NaCl Security Policies

trace semantics (Section 3.2) plays a key role here, since it makes possible to express
these policies as non-interference properties, thus allowing us to bridge an important
gap between the general, theoretical formulation of security properties employed in our
previous work, and the real-world concerns and coding practices of cryptographers.

We address the problem at the C source code level; our motivation is twofold:

1. Our goal is to enable the formal verification of claims that were, until now, stated
and checked in an informal way. Our solution is designed to respond to the
concrete needs of cryptographers, by focusing on existing security policies and
source-code that are used in real-world applications. In Section 3.3 we provide
formal definitions of these security policies, so that their purpose and reach can
be better understood. We also use these definitions to precisely justify the guar-
antees provided by our formal verification approach.

2. Our solution is based on off-the-shelf formal verification tools and the composi-
tion-based methodology mentioned above (and reviewed in Section 2). By using
existing tools, we are able to anchor the trust that may be deposited in our ap-
proach on a well-established and standard class of tools and techniques. At the
same time, we demonstrate the applicability of existing technology to novel ap-
plication areas, namely the formal verification of countermeasures against wider
classes of side-channel attacks, and we demonstrate the potential for automating
the verification of cryptographic software by self-composition, showing that we
can tackle a wider class of programs than previous approaches in the same line.

Our approach can be summarized as follows. We first define the operational semantics
of a While language with applicative arrays, which explicitly captures the flavour of
side-channel leakage addressed by the NaCl security policies. Concretely, the seman-
tics constructs traces of the memory addresses read or written to by a program, includ-
ing program and data memory. Based on this, we propose a definition of secure pro-
gram in the sense intended by the NaCl developers. This is essentially a termination-
sensitive non-interference requirement stating that the address traces should be inde-
pendent of secret data. Technically, our security notion can be seen as an extension of

4

the Program Counter Model of [19, 25], where we add the capability to handle a wider
range of attacks, including cache timing attacks [23] and branch prediction analysis
attacks [1] by extending the model to cover data memory access patterns.

To formally verify that a program meets the previous definition of security it then
suffices to proceed with the following two steps:

1. One transforms the original program P into one that explicitly collects in its
output state (minimal) additional information about the execution of P; and

2. One then formally verifies (using the composition-based methods introduced
in [3, 4]) that this extra information is independent of secret data.

We theoretically validate this technique by showing that a proof of safety (including
termination) of a program, and a proof of non-interference for the corresponding trans-
formed program, together imply that the original program is indeed secure with respect
to the intended security policy. The details are described in Section 3.

Finally, we discuss how our proof techniques can be deployed using real-world
deductive verification tools, namely the Frama-C framework. We cover in Section 4
practical examples extracted form the NaCl cryptographic library, highlighting the po-
tential for automation of the program transformation and self-composition proofs using
natural invariants. In doing so, we answer questions raised in [25, 26] regarding the fea-
sibility of addressing these problems using off-the-shelf verification tools. Concretely,
we show that it is possible to carry out verification directly over the composed program,
for a much wider class of programs than was previously achieved. Furthermore, we do
not need to transform the input program into a more convenient form that goes around
the limitations of the verification framework. In Sections 4 and 5 we further elaborate
on the differences and improvements with respect to related work.

Organisation. Our previous work of [3, 4], in particular the application of our method-
ology for proofs by composition to the self-composition case, are revised with substan-
tial detail in Section 2, where we review the self-composition technique, the notion of
natural invariant, and the self-composition lemmas that (embedded in the verification
tool) play a central role in the approach. An example (from the NaCl library) is also
given. Section 3 then introduces our formal framework supporting the verification of
side-channel countermeasures: an instrumented semantics is introduced, and the se-
curity policy is formally expressed based on it. Properties of the semantics and of the
notion of security introduced are studied, and we prove that the latter notion can indeed
be verified by self-composition. Section 4 presents the details of our study of security
aspects of the NaCl cryptographic library, based on the results of the previous section.
Finally, we discuss related work in Section 5, and conclude the paper in Section 6.

2. Background

In this section we first review the self-composition technique [7], which permits us-
ing deductive verification to prove non-interference properties. We then review natural
invariants, a technique introduced in [3, 4] to address some of the difficulties of apply-
ing self-composition in practice, namely in the concrete domain of formally verifying
cryptographic code. We complete the section with an illustration of these techniques

5

over a concrete example of C code, preceded by a short introduction to the practical
formal verification infrastructure that we rely on.

2.1. Proofs by Self-Composition
Information flow properties are usually verified using a special extended type sys-

tem [30, 20, 5]. Type-based analyses, which track assignments to low security vari-
ables, can be too restrictive [7]. An alternative, less conservative approach, based on
the language semantics, is to define a program as secure if different terminating execu-
tions, starting from states that differ only in the values of high-security variables, result
in final states that are equivalent regarding the values of low-security variables.

Formally, let VH and VL denote the sets of high-security and low-security variables
of program C, and V ′L = Vars(C) \ VH . Intuitively, VL represents the parts of the state
(typically program outputs) that are explicitly tagged as being observable by an at-
tacker, whereas the remainder of the state is assumed not to be observable; conversely,
VH corresponds to the parts of the state (typically inputs) that are explicitly tagged as
containing sensitive information.

We write (C,σ) ⇓ τ to denote the fact that when executed in state σ , C stops in
state τ (states are functions mapping variables to values; ⇓ is the evaluation relation in
a big-step semantics of the underlying language). We consider termination-insensitive
and termination sensitive definitions of security. The former says nothing about infor-
mation leaked when the initial state causes the program to not terminate. The latter,
stronger notion, requires (for deterministic programs) that low-equivalent initial states
have consistent termination behavior (either all terminate or none terminate). C is said
to be secure if for arbitrary states σ , τ ,

(termination-insensitive) σ
V ′L= τ ∧ (C,σ) ⇓ σ ′ ∧ (C,τ) ⇓ τ ′ =⇒ σ ′

VL= τ ′

(termination-sensitive) σ
V ′L= τ ∧ (C,σ) ⇓ σ ′ =⇒ (C,τ) ⇓ τ ′ ∧ σ ′

VL= τ ′

where σ
X= τ denotes that σ(x)= τ(x) for all x∈X , i.e. σ and τ are X-indistinguishable.

The operational definition of non-interference involves two executions of the pro-
gram. The self-composition technique [7] allows this to be reformulated considering
a single execution of a transformed program. Given a (deterministic) program C, let
Cs be the program that is equal to C except that every variable x is renamed to a fresh
variable xs. Termination-insensitive non-interference can be stated considering a single
execution of the self-composed program C;Cs as follows:

If σ(x) = σ(xs) for all x ∈V ′L and (C;Cs,σ) ⇓ σ ′, then σ ′(x) = σ ′(xs) for all x ∈VL.

In other words, C is information-flow secure if starting from a state in which pairs of
variables x, xs may have different values only if x is high-security, any terminating ex-
ecution of the self-composed program results in a final state in which pairs of variables
x, xs, with x low-security, have necessarily the same value. This allows for a shift to an
axiomatic semantics-based definition, as the following partial correctness Hoare triple:{∧

x∈V ′L
x = xs

}
C;Cs

{∧
x∈VL

x = xs
}

Note that strengthening this to a total correctness specification yields a notion of non-
interference that is stronger than termination sensitive non-interference.

6

2.2. Natural Invariants

An obvious difficulty in carrying out the verification of self-composed programs
comes from the absence of appropriate loop invariants. In what follows we revise the
general approach to this problem introduced in [3, 4]. We present the application of
these techniques to the self-composition case, although the original work addressed a
more general view of proofs by composition that also allowed for proofs of functional
correctness. In short, it consists of the following steps:

1. Extracting a specification of a program from its relational semantics. The critical
point of the verification process is the automatic construction of appropriate loop
invariants that constitute the natural specification of the program. Each invariant
is turned into a predicate, used to annotate the respective loop in the source code.

2. Identifying and interactively proving additional facts involving the named invari-
ant predicates. These are written as lemmas that capture the non-trivial parts of
the proofs required for verification.

3. Augmenting the source file with the previous lemmas, which are justified once-
and-for-all by interactive proofs. The availability of these lemmas will allow
automatic provers to carry out the verification process, validating the potentially
large number verification conditions generated by the self-composition proofs.

When both programs share much of the underlying control structure, as is the case
in self-composition proofs, the user may easily guide the interactive verification pro-
cess by providing as hints the relevant lemmas. The remaining parts can be checked
with a high degree of automation.

Relational Specification. For concreteness, we consider a simple While language with
integer expressions and arrays. Its syntax is given by:

Operators op ::= + | - | * | / | = | != | <
Expressions e ::= n | x | e op e | a[e]

Commands C ::= skip | x:=e | a[e]:=e | if e then C1 else C2 | while (e) C |C1; C2

Instead of a distinct syntactic class for boolean expressions, we adopt the C convention
of interpreting zero/non-zero integer expressions as truth values. Literals are ranged
by n, and integer and array variables are ranged by x and a respectively. Instead of
variable declarations, we consider a fixed State type that keeps track of all the variable
values during execution. Integer variables are interpreted as (unbound) integers, and
arrays as functions from integers to integers (no size/range checking). Array operations
acc : (Z→ Z)×Z→ Z and upd : (Z→ Z)×Z×Z→ (Z→ Z) are axiomatised as usual:

acc(upd(a,k,x),k) = x acc(upd(a,k′,x),k) = acc(a,k) if k 6= k′.

The State type is defined as the cartesian product of the corresponding interpretation
domains (each variable is associated to a particular position). We also consider an
equivalence relation ≡ that captures equality on states. Integer expressions are inter-
preted in a particular state following the standard mathematical meaning by a function
[[e]] : State→ Z. The interpretation of division is totalised (division by 0 returns 0), and

7

boolean operations return 0 or 1 (for false and true). We take the big-step semantics of
a program as its natural specification. For states σ and σ ′ we define:

specskip(σ ,σ ′) = σ ≡ σ
′

specC1;C2
(σ ,σ ′) = ∃σ ′′, specC1

(σ ,σ ′′)∧ specC2
(σ ′′,σ ′)

specx:=e(σ ,σ ′) = σ
′ ≡ σ{x← [[e]](σ)}

speca[e1]:=e2
(σ ,σ ′) = σ

′ ≡ σ{a← upd(a, [[e1]](σ), [[e2]](σ))}
specif e then C1 else C2

(σ ,σ ′) = (([[e]]σ 6= 0)∧ specC1
(σ ,σ ′))∨ (([[e]]σ = 0)∧ specC2

(σ ,σ ′))

specwhile (e) C(σ ,σ ′) = ∃n, loopn
e,specC(σ ,σ ′)(σ ,σ ′)∧ ([[e]](σ ′) = 0)

where the relation loopn
B,R(σ ,σ ′) denotes the loop specification for the body R under

condition B and is inductively defined by

loop0
B,R(σ ,σ ′)⇐= σ ≡ σ

′

loop
S(n)
B,R (σ ,σ ′)⇐= ∃σ ′′, loopn

B,R(σ ,σ ′′)∧ ([[B]](σ ′′) 6= 0)∧R(σ ′′,σ ′)

This relation provides a natural choice for a loop’s invariant; we thus call it the natural
invariant for the loop. The definition makes explicit the iteration rank (iteration count)
in superscript, as this is often convenient in the proofs (when omitted, it should be
considered as existentially quantified). Subscripts will be omitted (both in loop and
spec) when the corresponding programs are clear from the context. By construction,
spec enjoys the following properties.

Lemma 1 ([4]). Let R(σ ,σ ′) be a deterministic relation on states, and B a boolean
condition. Then, loopB,R(σ ,σ ′) is deterministic whenever [[B]](σ ′) 6= 0, i.e.

loop synchronisation: ∀n1 n2 σ1 σ2 σ
′
1 σ
′
2,

σ1 ≡ σ2∧ loopn1
B,R(σ1,σ

′
1)∧ ([[B]](σ ′1) = 0)∧ loopn2

B,R(σ2,σ
′
2)∧ ([[B]](σ ′2) = 0) =⇒ n1 = n2;

loop determinism: ∀n σ1 σ2 σ
′
1 σ
′
2,

σ1 ≡ σ2∧ loopn
B,R(σ ,σ ′1)∧ loopn

B,R(σ ,σ ′2) =⇒ σ
′
1 ≡ σ

′
2.

Our strategy for reasoning about self-composition proof goals is based on identify-
ing a set of general lemmas that can be proven once-and-for-all, and then included in
the annotations provided to the verification platform, allowing other proof obligations
to be automatically discharged.

2.3. Self-composition Lemmas

The determinism property is not sufficient to reason about a non-interference prop-
erty by self-composition: it merely states that the two instances of the program will
produce the same outputs when all of their inputs are equal. What is needed is a
rephrasing of that property using an equality relation on low-security variables. If the
control structure of a cycle does not depend on high-security variables, the determin-
ism property proof can be carried over to non-interference lemmas. More explicitly,
we recast each loop synchronisation lemma as follows

8

∀n1 n2 σ1 σ2 σ
′
1 σ
′
2, π

B(σ1)≡ π
B(σ2)∧ loopn1

B,R(σ1,σ
′
1)

∧ ([[B]](σ ′1) = 0)∧ loopn2
B,R(σ2,σ

′
2)∧ ([[B]](σ ′2) = 0) =⇒ n1 = n2

where πB projects the fragment of the state that influences the control structure (i.e. the
loop conditions) – note that this can be obtained by a simple dependency analysis. A
non-interference result for each loop follows easily from non-interference in its body:

(∀σ1,σ2,σ
′
1,σ
′
2, σ1 ≡L σ2∧R(σ1,σ

′
1)∧R(σ2,σ

′
2)⇒ σ

′
1 ≡L σ

′
2)

⇒ ∀σ1,σ2,σ
′
1,σ
′
2, σ1 ≡L σ2∧ loopn1

B,R(σ1,σ
′
1)∧ ([[B]](σ ′1) = 0)

∧ loopn2
B,R(σ2,σ

′
2)∧ ([[B]](σ ′2) = 0)⇒ σ

′
1 ≡L σ

′
2

Observe that proving non-interference for loop-free programs by self-composition can
be easily verified by automatic provers. The precondition for this lemma can then be
seen as an additional proof-obligation that must be discharged.

2.4. Verification infrastructure

In this work we used Frama-C [8], a tool for the static analysis of C programs,
annotated using the ANSI-C Specification Language (ACSL [8]), that contains a multi-
prover verification condition generator [14]. Frama-C also contains the gwhy graphical
front-end that allows to monitor individual verification conditions. This is particularly
useful when combined with the possibility of using various proof tools, which allows
users to first try discharging conditions with one or more automatic provers, leaving the
harder conditions to be proved with an interactive proof assistant. We used the Boron
release of Frama-C. We also employed a set of proof tools that included the Coq proof
assistant, and the Simplify, Alt-Ergo, and Z3 automatic theorem provers.

A feature of Frama-C that was crucial for the work reported here is the declaration
of Lemmas. Lemmas resemble axioms in that they can be used to prove verification
conditions. The difference is that lemmas originate themselves new goals to be proved.
A key idea in the proofs we developed is that once an appropriate lemma has been
proved interactively (with Coq) and included in the specification, all other verification
conditions can be automatically discharged. The Coq library described in [4] provides
support for proving lemmas such as those introduced in the previous subsection. As a
rule, this library embeds each lemma and respective proof in a functor parameterised
by the basic facts it depends on. All the results needed as inputs for the functors are
non-recursive (they concern the loop body only) and can be expected to be proved
successfully by an automatic prover.

2.5. An example

Consider the code extracted from the the NaCl library presented in Listing 1. Func-
tion select combines the input values of r, s and b to compute the final values of p and
q. By inspecting the code we can conclude that the final value of p does not depend
on the value of q. This property can be thought of as a noninterference property for
confidentiality. So considering, for example, that p has low security (L) and q has high
security (H), we can use self-composition to prove this property.

9

s t a t i c vo id s e l e c t (unsigned i n t p [6 4] , unsigned i n t q [6 4] ,
c o n s t unsigned i n t r [6 4] , c o n s t unsigned i n t s [6 4] , unsigned i n t b) {
unsigned i n t j ; unsigned i n t t ; unsigned i n t bminus1 ;
bminus1 = b − 1 ;
f o r (j = 0 ; j < 6 4 ; ++ j) { t = bminus1 & (r [j] ˆ s [j]) ;

p [j] = s [j] ˆ t ; q [j] = r [j] ˆ t ; }
}

Listing 1: select function extracted from NaCl core library

/∗@ p r e d i c a t e l o o p b o d y{L1 , L2}(i n t e g e r j1 , i n t e g e r j2 , unsigned i n t ∗p ,
@ unsigned i n t ∗q , unsigned i n t ∗r , unsigned i n t ∗s , unsigned i n t bminus) =
@ \ e x i s t s unsigned i n t t ; j 2 == j 1 + 1 &&
@ t == (bminus & (\ at (r [j 1] , L2) ˆ \at (s [j 1] , L2))) &&
@ \at (p [j 1] , L2) == (\ at (s [j 1] , L2) ˆ t) && \at (q [j 1] , L2) == (\ at (r [j 1] , L2) ˆ t) ;
@∗ /

/∗@ i n d u c t i v e l o o p p r e d i c a t e {L1 , L2}(i n t e g e r j1 , i n t e g e r j2 ,
@ unsigned i n t ∗p , unsigned i n t ∗q , unsigned i n t ∗s , unsigned i n t ∗r ,
@ unsigned i n t bminus){
@ case b a s e c a s e{L} :
@ \ f o r a l l unsigned i n t ∗p ,∗ q ,∗ s ,∗ r , bminus ; \ f o r a l l i n t e g e r j ;
@ l o o p p r e d i c a t e {L , L}(j , j , p , q , s , r , bminus) ;
@ case i n d c a s e{L1 , L2 , L3} :
@ \ f o r a l l i n t e g e r j1 , j2 , j 3 ; \ f o r a l l unsigned i n t ∗p ,∗ q ,∗ s ,∗ r , bminus ;
@ l o o p p r e d i c a t e {L1 , L2}(j1 , j2 , p , q , r , s , bminus) ==>
@ l o o p b o d y{L2 , L3}(j2 , j3 , p , q , r , s , bminus) ==>
@ l o o p p r e d i c a t e {L1 , L3}(j1 , j3 , p , q , r , s , bminus) ;
@ }
@∗ /

Listing 2: natural invariant

The first step is to create a program corresponding to the composition of the orig-
inal program with its renamed copy. The pre-condition of the resulting program must
establish that all input parameters except q are equal, as they correspond to non-high-
security inputs; and the post-condition must establish that the final values of the low
security output p are also equal, and hence unaffected by free ranging high security
input values. Because the code includes a for loop statement, we have to define a loop
invariant capturing how the variables change during the loop execution. The natural in-
variant for the loop is defined as an inductive predicate with a base case and an inductive
case. Its specification in ACSL can be found in Listing 2. The predicate only refers to
variables handled by the loop. The base case corresponds to the loop initialization and
the inductive case relies on the definition of a logical predicate which expresses how
the loop variables are related between two successive iterations. The predicate defini-
tions include the notion of state that is introduced by the labels which appear between
curly brackets. Notice that, due to the specific characteristics of Frama-C, the explicit
inclusion of states in the predicates is only necessary when the variables involved in the
loop are pointers or arrays. For integers, for example, the predicate explicitly includes
two references of the same variable in different states. To include the loop invariant
as an annotation of the source code, we just have to instantiate the inductive predicate
described above with the current values of the loop.
/∗@ loop i n v a r i a n t 0<=j <=64 && l o o p p r e d i c a t e {Pre , Here } (0 , j , p , q , r , s , bminus1) ;

10

/∗@ p r e d i c a t e e x t e q{L1 , L2}(unsigned i n t ∗p1 , unsigned i n t ∗p2) =
@ \ f o r a l l i n t e g e r i ; \at (p1 [i] , L1)==\ at (p2 [i] , L2) ;
@∗ /

/∗@ lemma e q l o o p p r e d{L1 , L2 , L3 , L4} :
@ \ f o r a l l i n t e g e r j1 , j2 , j 3 ; \ f o r a l l unsigned i n t ∗p ,∗ q ,∗ r ,∗ s , b ;
@ \ f o r a l l unsigned i n t ∗p1 ,∗ q1 ,∗ r1 ,∗ s1 , b1 ;
@ e x t e q{L1 , L3}(p , p1) ==> e x t e q{L1 , L3}(r , r 1) ==> e x t e q{L1 , L3}(s , s1) ==>
@ l o o p p r e d i c a t e {L1 , L2}(j1 , j2 , p , q , r , s , b) ==>
@ l o o p p r e d i c a t e {L3 , L4}(j1 , j3 , p1 , q1 , r1 , s1 , b1) ==>
@ j2>= 64 ==> j3 >=64 ==> e x t e q{L2 , L4}(p , p1) ;
@∗ /

Listing 3: self-composition lemma

@ loop v a r i a n t 6 4 j ;
@∗ /

f o r (j = 0 ; j < 6 4 ; ++ j)
{ t = bminus1 & (r [j] ˆ s [j]) ; p [j] = s [j] ˆ t ; q [j] = r [j] ˆ t ; }

Finally, the non-trivial part of the proof is isolated in the form of a self-composition
lemma, as described in Section 2.3. This simply expresses that executing the loop
starting from equivalent states in the non-high security values will lead to a state that
is equivalent over the low-security variables. The definition of such a lemma in ACSL
can be found in Listing 3. The predicate ext eq is used for convenience in defining
extensional array equality and the lemma itself expresses the property we want to prove.

Hoping for an automatic proof of the lemma would be too ambitious. However, an
interactive proof in Coq can be easily done using the Coq library described in [4]. The
instantiation of this lemma in the Coq library is accomplished by invoking an appropri-
ate functor. In this particular case, the functor builds the inductive definition of the loop
and derives the corresponding lemma. It is parameterized by two modules describing
the loop state, which corresponds to the partition that affects the loop condition, and
the specification of the loop body. The latter corresponds to the definition of the pred-
icate loop body defined in Listing 2. Firstly we need to prove a simple lemma which
is related to a single execution of the loop body and that is used as input of the functor,
stating that the loop body preserves the desired non-interference property. The proof of
the self-composition lemma then follows directly from the functor instantiation. Fur-
thermore, note that the proof of the simple theorem concerning the loop body could,
itself, be automated. One could generate the corresponding theorem using the ACSL
notation, and use an automatic prover to discharge the associated proof obligation.

The proposed methodology relies on a considerable amount of code annotation.
But this effort, including natural invariant generation and the corresponding lemmas, is
amenable to be automatically generated.

3. Formalisation and Verification of Side Channel Countermeasures

In this section we illustrate how the framework of the previous section can be used
to attest adherence to non-functional security policies. We start by explaining in Sec-
tion 3.1 how the security policies put forward by the developers of the NaCl library can
be understood semantically as a non-interference property, that cannot be expressed

11

using a standard semantics. In Section 3.2 we then instrument the semantics of the lan-
guage (adding memory and control-flow traces) and use it in Section 3.3 to faithfully
capture the policies under scrutiny. Section 3.4 applies a simple program transfor-
mation to reify the instrumented semantics (by internalising trace information in the
programs), which allows expressing security as a standard non-interference property.

3.1. Security Policy as a Semantic Property

Consider a standard big-step operational semantics of the programming language,
and let (C,σ) ⇓ σ ′ denote the fact that the program C executed in state σ terminates in
state σ ′. The NaCl security policy can be expressed as a non-interference-like property
based on this semantics. Let C be a program, H a set of high-security variables and V ′L =
Vars\H. Then informally, C complies with the NaCl side-channel security policies if

For any two states σ1, σ2 such that σ1
V ′L= σ2, if (C,σ1) ⇓ σ ′1 then for some state σ ′2 one

has that (C,σ2) ⇓ σ ′2, with the same memory trace and control flow for both executions.

In other words, the memory positions accessed and the execution paths followed are
equal for both initial states. This clearly ensures that the control flow and array lookups
do not depend on secret information, as prescribed. Naturally, a plain state-based se-
mantics does not allow expressing this property formally (since no trace information is
manipulated), which motivates the introduction of an extended instrumented semantics.

3.2. Instrumented Semantics

We consider two additions to the language used before. Firstly, all commands
except sequential composition are now labelled. This is equivalent to labeling every
atomic statement and every boolean condition. We further assume that all considered
programs are well-labelled, meaning that all the labels in a program are distinct. La-
bels can then be thought of as abstractions of the instruction-pointer to the correspond-
ing code. Secondly, a new syntactic class of list-expressions is considered (together
with the corresponding variables and assignment statements). Such lists are useless for
programming, but they are convenient to capture the NaCl policies under a standard
non-interference formulation, so we include them in the language and treat them con-
sistently with the other constructions. Furthermore, our implementation in Frama-C of
such lists is natural and consistent with this formalisation (see Section 4).

The syntax of the extended language is given as follows.

Operators op ::= + | - | * | / | = | != | <
Expressions e ::= n | x | e op e | a[e]

List expressions le ::= nil | cons(e, le)

Commands C ::= [skip]l | [x:=e]l | [a[e]:=e]l | [xl:= le]l

| [if e then C1 else C2]
l | [while (e) C]l |C1; C2

We will use the notation stmtC(l) to refer to the statement annotated with label l in
program C (recall that labels are assumed to be distinct). Moreover, we remark that
by construction every program should use a non-empty set of labels. We denote the
leftmost label used in a program C by firstLabel(C).

12

(n,σ) ⇓e (n,ε) (x,σ) ⇓e (σ(x),(x,0))
(e,σ) ⇓e (v,γ)

(a[e],σ) ⇓e (acc(σ(a),v),(a,v) · γ)

(e1,σ) ⇓e (v1,γ1) (e2,σ) ⇓e (v2,γ2)
(e1 op e2,σ) ⇓e (v1 [[op]] v2,γ1 · γ2)

(nil,σ) ⇓e (nil,ε)
(e,σ) ⇓e (v,γ1) (le,σ) ⇓e (lv,γ2)

(cons(e, le),σ) ⇓e (cons(v, lv),γ1 · γ2)

([skip]l ,σ) ⇓ (σ , l,ε)

(e1,σ) ⇓e (v1,γ1) (e2,σ) ⇓e (v2,γ2)

([a[e1]:=e2]
l ,σ) ⇓ (σ [a← upd(σ(a),v1,v2)], l,(a,v1) · γ1 · γ2)

(e,σ) ⇓e (v,γ)

([x:=e]l ,σ) ⇓ (σ [x← v], l,(x,0) · γ)

(le,σ) ⇓e (lv,γ)

([xl:= le]l ,σ) ⇓ (σ [xl← lv], l,(xl,0) · γ)

(e,σ) ⇓e (v,γ) (C1,σ) ⇓ (σ1,δ1,γ1)

([if e then C1 else C2]
l ,σ) ⇓ (σ1, l ·δ1,γ · γ1)

if v 6= 0

(e,σ) ⇓e (v,γ) (C2,σ) ⇓ (σ2,δ2,γ2)

([if e then C1 else C2]
l ,σ) ⇓ (σ2, l ·δ2,γ · γ2)

if v = 0

(e,σ) ⇓e (v,γ) (C,σ) ⇓ (σ1,δ1,γ1) ([while (e) C]l ,σ1) ⇓ (σ2,δ2,γ2)

([while (e) C]l ,σ) ⇓ (σ2, l ·δ1 ·δ2,γ · γ1 · γ2)
if v 6= 0

(e,σ) ⇓e (v,γ)

([while (e) C]l ,σ) ⇓ (σ , l,γ)
if v = 0

(C1,σ) ⇓ (σ1,δ1,γ1) (C2,σ1) ⇓ (σ2,δ2,γ2)
(C1;C2,σ) ⇓ (σ2,δ1 ·δ2,γ1 · γ2)

Figure 2: Evaluation semantics

To capture the memory locations accessed during the execution of a program, the
operational semantics is instrumented in order to keep track of the sequence of per-
formed accesses – the memory trace, ranged by γ . Each element of the memory trace
consists of a pair (v,offset) where v is the variable identifier and offset is the index
of the accessed memory location (0 for non-array variables). The control-flow is also
made explicit by computing the sequence of labels executed during the computation
— the control-flow trace, ranged by δ . We will then consider judgements of the form
(C,σ) ⇓ (σ ′,δ ,γ) meaning that program C executed in state σ terminates in state σ ′,
having followed the control-flow path δ and performed memory accesses γ . An aux-
iliary judgment is used for expressions: (e,σ) ⇓e (n,γ) means that expression e eval-
uated in state σ returns the value n, having performed accesses γ . When the traces in
the final configuration are not important they will be omitted as in (C,σ) ⇓ σ ′. Fig-
ure 2 presents the big-step rules for both expressions and programs, where ε denotes
the empty sequence, · denotes concatenation of sequences, and the singleton sequence
is identified with its element (e.g. l ·δ denotes the addition of l in front of δ).

We now state a few useful lemmas (proofs can be found in Appendix A). A first
observation is that the control-flow trace constrains significantly the memory access
trace of any given program. If an execution path is fixed, only indices for array accesses
are allowed to vary. Let us denote by projFst(γ) the function that projects the first
component of a memory trace γ , returning a list of variable identifiers.

13

Lemma 2. Let C be a program, e an expression, and σ1,σ2 states.
1. If (e,σ1) ⇓e (v1,γ1) and (e,σ2) ⇓e (v2,γ2), then projFst(γ1) = projFst(γ2).

2. If (C,σ1) ⇓ (σ ′1,δ ,γ1), (C,σ2) ⇓ (σ ′2,δ ,γ2), then projFst(γ1) = projFst(γ2).

Another way of looking at the previous lemma is to state that the differences be-
tween two memory traces γ1, γ2 obtained through the same execution path concern only
the sequences of indexes accessed in one or more arrays. Denoting by projArra(γ) the
function that returns the list of indexes accessed in an array a, we have:

Lemma 3. Let C be a program such that (C,σ1) ⇓ (σ ′1,δ ,γ1) and (C,σ2) ⇓ (σ ′2,δ ,γ2).
Then, γ1 = γ2 if and only if for all array variables a in C, projArra(γ1) = projArra(γ2).

Control-flow traces are also severely constrained: there are specific points where
different executions may diverge, which correspond exactly to the boolean conditions
tests performed by the program (if and while statements).

Lemma 4. Let C be a program such that (C,σ1)⇓ (σ ′1,δ1,γ1) and (C,σ2)⇓ (σ ′2,δ2,γ2).
Then, δ1 = δ2 if and only if testsC(δ1) = testsC(δ2).

Unction testsC(·) extracts the outcomes of these tests from a given execution trace.

testsC(ε) = ε

testsC(l ·δ) =

testsC(δ) if stmtC(l) is not an if nor a while
1 · testsC(δ) if stmtC(l) = [if e then C1 else C2]

l ,
δ = l′ ·δ ′′ and l′ = firstLabel(C1)

0 · testsC(δ) if stmtC(l) = [if e then C1 else C2]
l ,

δ = l′ ·δ ′′ and l′ = firstLabel(C2)
1 · testsC(δ) if stmtC(l) = [while (e) C]l ,

δ = l′ ·δ ′ and l′ = firstLabel(C)
0 · testsC(δ) if stmtC(l) = [if e then C1 else C2]

l

and either δ = ε , or δ = l′ ·δ ′ and l′ 6= firstLabel(C)

3.3. Formal Security Definition
The NaCl side-channel security policies (Figure 1) can now be expressed as a non-

interference-like property.

Definition 5. Let C be a program, H high-security variables and V ′L = Vars \H. We
say that C is NaCl-secure if

σ1
V ′L= σ2 ∧ (C,σ1) ⇓ (σ ′1,δ1,γ1) =⇒

For some σ ′2, δ2, and γ2, (C,σ2) ⇓ (σ ′2,δ2,γ2) ∧ (δ1 = δ2 ∧ γ1 = γ2).

A weaker termination-insensitive variant is also considered, namely

σ1
V ′L= σ2 ∧ (C,σ1) ⇓ (σ ′1,δ1,γ1) ∧ (C,σ2) ⇓ (σ ′2,δ2,γ2) =⇒ (δ1 = δ2 ∧ γ1 = γ2).

Analogously, an expression e is said to be NaCl-secure if

σ1
V ′L= σ2 ∧ (e,σ1) ⇓e (v1,γ1) =⇒ for some v2 and δ2, (e,σ2) ⇓e (v2,γ2) ∧ γ1 = γ2.

14

The following proposition captures a convenient compositional property of our se-
curity notion.

Proposition 6 (Compositionality). Let C1 and C2 be NaCl-secure programs, and let
e1 and e2 be NaCl-secure expressions. Then,

• e1 op e2, and a[e1] are NaCl-secure expressions;

• C1;C2, [while (e1) C1]
l and [if e then C1 else C2]

l are NaCl-secure programs;

PROOF. By structural induction on expressions and programs.

The above property has implications on both the scalability and modularity of our
techniques. We rely on it to conduct the formal verification exercise in a gradual way,
starting from leaf functions, and tackling each function independently. This allows us
to tame the complexity of each verification step and combine the results to obtain a
global security guarantee. Furthermore, the results one obtains for a verified compo-
nent (such as the NaCl library) are established once-and-for-all, and can be reused as an
intermediate result in subsequent verification exercises, e.g. verifying different client
applications that may come to use the NaCl library.

3.4. Verification of Security

Although Definition 5 nicely captures the NaCl side-channel security policies, it
is not a convenient formalization for our verification purposes: we aim to apply self-
composition, and so we require a specification that expresses security directly over the
program state. To this end, we now introduce a program transformation that inter-
nalises into the program state sufficient information from the instrumented semantics.
The transformed programs explicitly manipulate control-flow and memory access trace
information.

Figure 3 contains the definition of the transformation 〈·〉 for both expressions and
programs. The transformation makes use of fresh list variables control and xla (for
each array variable a). Informally, given an expression e and a command C, 〈e〉 is a
program that stores the indexes of arrays accessed during the evaluation of e (in the
corresponding variables xla), and 〈C〉 is similar to C but also keeps track of all condi-
tional tests performed and of all array access indexes (in variables control and xla).
The following proposition relates in precise terms the final values of these variables of
the transformed program, and the memory and execution traces of the original.

Proposition 7. Let C be a program such that (C,σ) ⇓ (σ ′,δ ′,γ ′). Consider moreover
that σ

0 is the environment that assigns to variable control and xla (for every array
variable a in C) the empty sequence ε . Then, (〈C〉 ,σ]σ

0) ⇓ σ , where:

• σ = σ ′]σ
′, with dom(σ0) = dom(σ ′),

• σ
′(control) = testsC(δ ′),

• σ
′(xla) = projArra(γ ′).

15

〈n〉= 〈nil〉= 〈x〉= 〈xl〉= [skip]l (l a fresh label)

〈a[e]〉= 〈e〉 ; [xla:=cons(e,xla)]l (l a fresh label)

〈e1 op e2〉= 〈e1〉 ;〈e2〉
〈cons(e, le)〉= 〈e〉 ;〈le〉〈

[skip]l
〉

= [skip]l〈
[x:=e]l

〉
= 〈e〉 ; [x:=e]l〈

[xl:= le]l
〉

= 〈le〉 ; [xl:= le]l〈
[a[e1]:=e2]

l
〉

= 〈e1〉 ;〈e2〉 ; [xla:=cons(e1,xl
a)]l

′
; [a[e1]:=e2]

l (l′ a fresh label)〈
[if e then C1 else C2]

l
〉

= 〈e〉 ; [control:=cons((e != 0),control)]l
′
;

[if e then 〈C1〉 else 〈C2〉]l (l′ a fresh label)〈
[while (e) C]l

〉
= 〈e〉 ; [control:=cons((e != 0),control)]l

′
;[

while (e) 〈C〉 ;〈e〉 ; [control:=cons(e,control)]l
′
1
]l

(l′, l′1 fresh labels)

〈C1;C2〉= 〈C1〉 ;〈C2〉

Figure 3: Transformation for internalising trace information

PROOF. By structural induction on the derivation of (C,σ) ⇓ (σ ′,δ ,γ). It is clear
from the definition of the transformation that the inserted code only affects variables
introduced by it, hence the partition of the final state is immediate. Moreover, every
conditional test performed during the execution is explicitly stored in variable control
(notice that, for the case of while loops, the transformation inserts code before the loop
and at the end of the loop body). Finally, every evaluated expression of the original
program is preceded by the execution of the transformation of that same expression.

Theorem 8. Let C be a program, H high-security variables, 〈V 〉 the set of variables
introduced by transforming C to 〈C〉, and 〈V ′L〉 = Vars(C)\H ∪ 〈V 〉. The program C
is (termination-insensitive) secure with respect to Definition 5 if for states σ1, σ2,

σ1
〈V ′L〉= σ2 ∧ (〈C〉 ,σ1) ⇓ σ

′
1 ∧ (〈C〉 ,σ2) ⇓ σ

′
2 =⇒ σ

′
1
〈V 〉
= σ

′
2

PROOF. Follows directly from Proposition 7 and Lemmas 3 and 4.

The formulation given by Theorem 8 can be readily verified by the self-compo-
sition technique, as explained in Section 2. A similar result could be derived for the
termination-sensitive variant of security, but that would not be directly usable with self-
composition. In our approach we separately handle the proof of termination, which
together with the previous result trivially yields the termination-sensitive variant.

16

i n t c r y p t o v e r i f y (c o n s t unsigned char ∗x , c o n s t unsigned char ∗y)
{

i n t d i f f e r e n t b i t s = 0 , i = 0 ;

whi le (i < 16) { d i f f e r e n t b i t s |= x [i] ˆ y [i] ; i ++; }
re turn (1 & ((d i f f e r e n t b i t s − 1) >> 8)) − 1 ;

}

Listing 4: NaCl implementation of crypto verify function

4. Case Study: NaCl Cryptographic Library

The high-level security policies adopted in the implementation of the NaCl crypto-
graphic library, which serve as motivation for this work, were introduced in Section 1
and formalized in the previous section. We now present examples of how the tech-
niques proposed in this paper can be used in practice to formally verify compliance
to these policies, using off-the-shelf verification tools. We selected two additional ex-
amples from the core of the NaCl library, aiming to highlight various aspects of our
contributions. We begin with a simpler one, which we can describe in more detail to
adequately illustrate the practical implementations aspects of our work. We then move
on to discuss a more complex example to further justify our contributions. Overall, we
have successfully applied these techniques to the formal verification of all of the core
functions in the NaCl library (aprox. 560 loc). Nevertheless, and even though we argue
that most of the annotation work required to carry out the exercise can be automated,
we have manually annotated the programs. The discharge of the resulting verification
conditions, with the exception of the loop-related lemmata that we explicitly factor out
in the self-composition proofs, was fully handled by automatic provers.

4.1. A simple example

The selected function1 is called crypto verify and is presented in Listing 4. It may
be surprising to know that the high-level specification for this function is that it com-
pares the contents of two 16-byte arrays x and y, whose contents are high-security and
must not be leaked. The introduced optimizations aim to ensure both control flow and
data memory access independence, as prescribed by the NaCl security policies. As a
side note, we remark that we have also verified that this function is functionally correct
with respect to a (readable) reference implementation, using the methodology proposed
in [4, 3]. We do not include the details in this paper due to space constraints.

As explained at the end of the previous Section, we establish (termination-insensitive)
security by splitting our formal verification exercise in two independent steps. The first
step is to verify safety (and termination) for all valid inputs. The second step is to apply
the program reification and formal verification tasks that permit applying Theorem 8
and establishing that the program is indeed secure according to Definition 5.

1The actual implementation in the NaCl library totally unfolds the while loop, but this would not be as
convenient for ilustrative purposes.

17

Safety and termination verification. This step can be easily achieved in Frama-C by
annotating the code with appropriate pre-conditions, imposing the validity of input
arrays in the proper range, and adding some simple lemmas that allow the tool to rec-
ognize the correct output range of the bit-wise operations used. These lemmas are
required because a sufficiently expressive axiomatic semantics for these operations is
typically not included in off-the-shelf formal verification tools such as Frama-C, since
such operations are rarely used in general-purpose software.

Establishing (termination-insensitive) security. To apply Theorem 8, we establish se-
curity by first constructing a reified version of the program, and then performing a self-
composition proof that it displays the required non-interference properties. The trans-
formed program is created according to the rules described in Figure 3, and outputs a
set of lists containing the relevant traces collected during the program’s execution.

Recall that the list type introduced in the instrumented semantics of Section 3 is
essentially an artifact to enable the application of our proof technique. They are not
dynamic data structures offered by the underlying programming language, but rather
constructions that may exist merely at the logical level. Furthermore, since the values
of the constructed lists cannot influence the semantics of operations over other data
types, they enable a more elegant formalisation and an easier justification of our the-
oretical results. Luckily, we can take advantage of a feature of Frama-C that enables
the direct transposition of this logical data type onto code annotations: the ability to
use ghost code in annotations enables us to include all the extra code introduced by our
transformation as comments to the original program. Furthermore, using ghost code,
we have the guarantee that the semantics of the original program are preserved, and
cannot be affected by the values of said lists as required by our formalisation. This
restriction is imposed as a necessary condition by the deductive verification tool.

In short, the fact that we do not require a concrete implementation of the list type is
a central aspect to the practical side of our work. On one hand, it eliminates a potential
gap between our theoretical and practical approaches. On the other hand, as noted
in [25], if we could not adopt this strategy, the formal verification exercise would be
rendered considerably more complex, and probably, out of reach of our framework.

In Listing 5 we show the result of applying the transformation in Figure 3 to the
program in Listing 4. Note the declaration of C functions that allow the construction of
the lists within ghost code. The semantics of these functions is axiomatised to capture
the necessary list constructors. At the end of execution, the final state of the ghost list
variables is essentially a logical term evidencing a sequence of cons operations. Our
experience shows that this implementation is highly suitable for being passed down to
automatic provers. To complete the verification exercise, we must establish that this
reified program indeed displays the non-interference property specified in Theorem 8.
Here we directly apply, in a black-box way, the approach to performing proofs by self-
composition presented in Section 2 and proposed in [3, 4]. Therefore, to deal with
the loop structures, we annotate the programs with natural invariants and the associ-
ated lemmata. In particular, in order to enable the automatic discharge of all proof
obligations, the following lemma needs to be included:
/∗@ lemma e q l o o p p r e d{L1 , L2 , L3 , L4} :

@ \ f o r a l l i n t i1 , i2 , i3 , d i f f b i t s 1 , d i f f b i t s 2 , unsigned char ∗x ,∗ y ,∗ x1 ,∗ y1 ;

18

/∗@ ax iomat i c l i s t { type l i s t ;
@ l o g i c l i s t n u l l ;
@ l o g i c l i s t cons (i n t e g e r n , l i s t s) ; } ∗ /

/∗@ ghos t i n t mem contro l , mem x , mem y ;
@ ax iomat i c lmem{ l o g i c l i s t l m e m c o n t r o l{L} r e a d s mem cont ro l ;
@ l o g i c l i s t lmem x{L} r e a d s mem x ;
@ l o g i c l i s t lmem y{L} r e a d s mem y ; } ∗ /

/∗@ a s s i g n s mem cont ro l ;
@ ensures l m e m c o n t r o l{Here} == cons (c o n d i t i o n , l m e m c o n t r o l{Pre }) ; ∗ /

void a p p e n d c o n t r o l (i n t c o n d i t i o n) ;
/∗@ a s s i g n s mem x ;

@ ensures lmem x{Here} == cons (x , lmem x{Pre }) ; ∗ /
void append x (i n t x) ;
/∗@ a s s i g n s mem y ;

@ ensures lmem y{Here} == cons (y , lmem y{Pre }) ; ∗ /
void append y (i n t y) ;

void c r y p t o v e r i f y (c o n s t unsigned char ∗x , c o n s t unsigned char ∗y) {
i n t d i f f e r e n t b i t s = 0 , i = 0 ;

/ /@ ghos t a p p e n d c o n t r o l (i <16);
whi le (i < 16) {

d i f f e r e n t b i t s |= x [i] ˆ y [i] ; / /@ ghos t append x (i) ; ghos t append y (i) ;
i ++;
/ /@ ghos t a p p e n d c o n t r o l (i <16);

}
re turn (1 & ((d i f f e r e n t b i t s − 1) >> 8)) − 1 ;

}

Listing 5: Transformed version of crypto verify function

@ \ f o r a l l l i s t l 1 x , l 2 x , l 1 y , l 2 y , l 1 c o n t r o l , l 2 c o n t r o l , l 1 x1 , l 2 x 1 ;
@ \ f o r a l l l i s t l 1 y1 , l 2 y1 , l 1 c o n t r o l 1 , l 2 c o n t r o l 1 ;
@ l 1 x == l 1 x 1 ==> l 1 y == l 1 y 1 ==> l 1 c o n t r o l == l 1 c o n t r o l 1 ==>
@ l o o p p r e d{L1 , L2}(i1 , i2 , x , y , 0 , d i f f b i t s 1 , l 1 x , l 2 x ,
@ l 1 y , l 2 y , l 1 c o n t r o l , l 2 c o n t r o l) ==>
@ l o o p p r e d{L3 , L4}(i1 , i3 , x1 , y1 , 0 , d i f f b i t s 2 , l 1 x1 , l2 x1 ,
@ l1 y1 , l2 y1 , l 1 c o n t r o l 1 , l 2 c o n t r o l 1) ==>
@ i 2 == i 3 ==> l 2 x == l 2 x 1 && l 2 y == l 2 y 1 && l 2 c o n t r o l == l 2 c o n t r o l 1 ; ∗ /

The rest of the Frama-C input can be found in Appendix Appendix B. Note that
the pre-conditions include only the necessary restrictions to complete the proof, and
need not refer to all the non-high parts of the initial state. As stated above, the dis-
charging of the proof obligations generated by this example, bar the lemma presented
above, was handled without assistance by the automatic provers targeted by Frama-C.
Furthermore, although we have manually added these annotations, we emphasise that
all of the annotations required for this verification exercise could have been generated
automatically by a tool implementing the specification described in Section 2.

The only caveat to the automation potential of this approach, which is highlighted
by this example, resides therefore in the justification of self-composition lemmas such
as that presented above. As explained in Section 2, we address this problem by relying
on a Coq library [4] that can produce such a justification for a representative class of
loop patterns that commonly arise in cryptographic software. This is accomplished by
invoking the appropriate functor, which in this case essentially reduces the proof to
establishing that the loop body preserves the required non-interference property. In [4]

19

s t a t i c vo id mulmod (unsigned i n t h [1 7] , c o n s t unsigned i n t r [1 7]) {
unsigned i n t hr [1 7] ; unsigned i n t i ; unsigned i n t j ; unsigned i n t u ;
f o r (i = 0 ; i < 17;++ i) {

u = 0 ;
f o r (j = 0 ; j <= i ;++ j) u += h [j] ∗ r [i − j] ;
f o r (j = i + 1 ; j < 17;++ j) u += 320 ∗ h [j] ∗ r [i + 17 − j] ;
h r [i] = u ;

}
f o r (i = 0 ; i < 17;++ i) h [i] = h r [i] ;
s q u e e z e (h) ;

}

Listing 6: A snippet of the NaCl sources containing nested loops

we discuss the degree of automation than can also be introduced at this level.

4.2. A more challenging verification example
We now discuss how our techniques allow us to deal with a wider class of programs

than previous approaches along similar lines [25, 26]. In particular, we show how
we deal with programs with complex control structures, including nested loops, and
also how we handle the verification of complete programs: self-contained components
involving higher-level functions calling lower-level ones.

Listing 6 contains another snippet from the NaCl library implementation. This
function carries out a specific modular multiplication operation. We have proved its
adherence to the NaCl side-channel countermeasures using exactly the same approach
as for the previous example. Intuitively, the natural invariant for the outer loop refers to
the predicates specifying the natural invariants for the inner loops. All loop invariants
refer to the contents of the trace lists in a simple way, which is made possible by our
formalisation of these lists directly using the ACSL logical types. The end result is that
the proof obligations for this more elaborate example are also discharged automatically
by the Frama-C backend provers. As before, the self-composition lemmas must be
discharged interactively, with the assistance of the Coq library. This stands in contrast
with the work presented in [25], in which nested loops are excluded.

Another important point in verifying the function in Listing 6 is that it is not a leaf
function: it calls auxiliary function squeeze, which in turn is a leaf function. To handle
function calls in NaCl, and because we have not explicitly captured these language con-
structions in our formalisation, we slightly abuse the compositionality theorem for our
theoretical framework presented in Section 3. In particular, we rely on the fact that the
sequential composition of two secure programs is itself secure, and simply verify that
all functions, independently, comply with the NaCl security policies. We argue that this
is acceptable because of the following facts about the NaCl implementation, allow us
to conclude that function calls in NaCl cannot, in themselves, introduce dependencies:

• It relies only on the char and int data types and arrays thereof, and uses no
dynamic memory allocation.

• The relative addresses of all called functions are fixed at compile time.

• Parameter passing in the NaCl library is extremely conservative: all parameters
are passed on a call-by-value basis with the exception of byte arrays.

20

• In NaCl, the base addresses of byte arrays passed by reference are all fully de-
termined at compile time, with constant offsets relative to the start addresses of
the memory regions that the caller itself received.

An alternative approach, which we have also implemented, permits formally ver-
ifying programs relying on a slightly more flexible parameter passing convention. In
particular, we could exclude programs that introduce dependencies when passing the
base address of a memory region to a callee function using an offset that depends on a
sensitive value. This implies enhancing the reification of a caller function to incorpo-
rate in its output traces the start addresses of all memory regions passed by reference to
the callees. However, we leave for future work the formalisation and a full description
of the implementation of our techniques for these more complex use cases.

4.3. Discussion
By performing formal verification at the source code level, our solution is designed

to respond to the concrete needs of cryptographers: we focus on existing security poli-
cies formulated over C source-code that are used in real-world applications. As a
consequence of this, we are not formally addressing the gap between the guarantees
provided by our results, and those that should hold at the machine code level. This is
similar to what happens, not only with the currently used informal approach, but also
with other formal verification methodologies.

This interesting problem can be addressed by relying on a compiler that is guar-
anteed to preserve the desired property, namely that the control-flow is independent of
secret variables and that the indexed memory accesses follow the same pattern as in the
program code. For the concrete case of the security policies and source-code that we
address in this paper, we argue with high confidence that such a transferal from source
to machine level results is indeed justifiable. This is due to a combination of factors:
1) the source-code is carefully written under coding policies that impose a canonical
form for many C constructions, rendering programs with a very “clean” semantics; 2)
we have treated short-circuit boolean operators as conditional expressions and these,
in turn, were treated like conditional statements (i.e. the condition is added to the
control-flow trace); 3) compilation is typically performed by excluding most compiler
optimizations in order to ensure a predictable outcome.

We should also emphasize that, even though we believe our results show that our
approach outperforms previous solutions in the deployment of self-composition proofs,
there are still obvious limitations that should be highlighted. The first class of limita-
tions are those inherent to the deductive verification technology itself. For example,
for programs displaying high cyclomatic complexity 2, and despite the optimizations
introduced by the existing tools, the number of generated proof obligations tends to
increase exponentially. This means that formal verification rapidly becomes impracti-
cal. On the other hand, we should also highlight that NaCl code follows strict coding
policies that make it formal verification-friendly. In particular, it does not use many of
the features of the C language that typically complicate matters, including side-effects,
pointer casts, or dynamic memory allocation.

2Intuitively, programs offering a large number of possible independent execution control-flow paths.

21

5. Related Work

A good survey of language-based information flow security can be found in [24].
Information flow policies were first introduced by Denning et. al [12] and tend to be
formalised as non-interference properties. Information flow type systems have been
used to enforce non-interference in different contexts [30, 21, 20, 27, 28]. The main
challenge in designing these systems is that they are often too conservative in practice
– secure programs may be rejected. Leino and Joshi [17] were the first to propose a
semantic approach to secure information flow, with several desirable features: a precise
characterisation of security; it applies to all programming constructs with well-defined
semantics; it can be used to reason about indirect information leakage through vari-
ations in program behaviour (e.g. termination). An attempt to capture this property
in program logics using the Java Modelling Language (JML) [16] was presented by
Warnier et al. [31], who proposed an algorithm, based on strongest postconditions, that
generates an annotated source file with specification patterns for confidentiality. Dufay
et al. [13] have proposed an extension to JML to enforce non-interference through self-
composition, allowing for a simple definition of non-interference for Java programs.
However, the generated proof obligations are forbiddingly complex.

Terauchi and Aiken [26] identified problems in the self-composition approach, ar-
guing that automatic tools (like software model checkers) are not powerful enough to
verify this property over programs of realistic size. The authors propose a program
transformation technique for an extended version of self-composition. Rather than
replicating the original code, the renamed version is interleaved and partially merged
with it. Naumann [22] extended Terauchi and Aiken’s work to encompass heap objects,
presented a systematic method to validate the transformations of [26], and reported on
the experience of using these techniques with the Spec# and ESC/JAVA2 tools.

Natural invariants [4, 3], as we use them in this paper, provide an explicit rendition
of program semantics. In [18] a similar encoding of program semantics in logical
form can be found, which advocates the use of second-order logic as appropriate to
reason about programs, since it allows to capture the inductive nature of the input-
output relations for iterative programs. To some extent, our use of Coq’s higher-order
logic may be seen as an endorsement of that view. However, we have made an effort to
combine this with facilities provided by automatic first-order provers.

Volpano and Smith [29] explored the use of type systems to protect programs
against covert termination and timing channels. Specifically, their timing agreement
theorem refers to a type-system that essentially captures our (termination-sensitive)
notion of security (Definition 5). The distinction between both security notions re-
lies on the fact that our definition, being defined by semantic means, is slightly more
inclusive (e.g. it will allow a boolean condition such as x⊕ x==0, with x a secret vari-
able and ⊕ the bitwise xor operation, since it will not affect the control flow of the
program). But admittedly, our main motivation for departing from the type-based ap-
proach was methodological, since we want to rely on the same set of deductive tools
used in other verification tasks of the project. The remainder type-systems presented
in [29], as well as consequent proposals (e.g. [2]) relax the constraint of predictable
control-flow, hence failing to meet the requirements addressed in this paper.

The Program Counter security model (PC-model) proposed by D. Molnar et. al [19]

22

captures the behavior of an attacker capable of observing the sequence of program
counter positions during the execution of programs. These sequences are essentially
what we have called control-flow traces, and hence their security definition coincides
with our own restricted to the “no data-dependent branches” (i.e. ignoring the “no
data-dependent array indices” constraint). The primary aim in [19] was not to check
conformance of programs with a security property, but rather transform potentially in-
secure programs into secure ones. In particular, the authors were able to justify several
established countermeasures found in the literature.

Svenningsson and Sands [25] have adopted the PC-model and addressed control-
flow independence using self-composition. They also considered the issue of declassi-
fication, enabling the formal verification that only controlled amounts of leakage can
occur (e.g. the leakage of the hamming weight of a secret during a modular exponenti-
ation). Regarding the security notions, our work differs from this in two main aspects,
motivated by the concrete real-world use case that we sought to formally verify. On
one hand, we consider a more restrictive security notion where we also check for data
memory access pattern independence. On the other hand, we do not consider declas-
sification. Our approach to applying self-composition to a transformed version of the
original program is close to [25]. However, not only do we present a full theoretical
framework to justify our approach, but also and most importantly, our practical imple-
mentation approach allows us to go beyond the results reported in [25]. In particular,
we have not restricted the class of accepted programs to the so-called unnested pro-
grams. That broader applicability scope, made possible by the use of natural invariants,
was crucial to verify some of the functionality of the Nacl library (c.f. Section 4.2).

The security policies we have addressed in this paper can also be seen as integrity-
preserving information-flow restrictions. Indeed, it is well known that one can see high
variables as untrusted inputs, that (one wants to check) do not interfere with the control
flow and addresses accessed by the program. Intuitively, one is showing that attackers
manipulating these inputs cannot influence the behavior of the program. This sort of
security policy is sometimes addressed through so-called taint-analysis. Static taint
analysis techniques tend to be based on type systems [10] or on control-dependency
graphs (CFG) [11]. Our work can be seen as an alternative approach to taint analysis.

6. Conclusion

We have shown how an off-the-shelf deductive verification platform can be used
to validate real-world cryptographic software implementations, using the NaCl cryp-
tographic library as a representative example. Our results focus on security-relevant
properties: compliance to security policies aiming to reduce exposure to timing side-
channel attacks, formalised as non-interference constraints.

Our approach to proving resistance to certain classes of side-channel attacks, namely
timing attacks, extends previous work in several directions. Not only do we extend the
range of attacks that were previously addressed, but we also show how reasonably
automated verification can be made practical using off-the-shelf formal verification
platforms. The general approach we adopt consists of reifying the target program to
make explicit in its output the execution traces that may potentially leak information.

23

We reduce this explicit information to a minimum, proving that our approach is still
sound, and then use non-interference and self-composition to verify security.

We have presented these new results as new application scenarios for the general
methodology introduced in [3, 4], with promising results. In addition to showing that
deductive verification methods are increasingly more amenable to practical use with
reasonable degrees of automation, our work answers some open questions raised by
previous work, which seemed to indicate that proofs by (self-)composition were not
directly applicable in real-world situations, or at least not to sizable formal verification
tasks. Our results are promising in that we have been able to achieve our goal using
only off-the-shelf verification tools. We also believe that our technique has a high
potential for mechanisation, and we aim to pursue this goal in future work.

References

[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple
branch prediction analysis. In ACM symposium on Information, computer and
communications security, ASIACCS ’07, pages 312–320. ACM, 2007.

[2] Johan Agat. Transforming out timing leaks. In In Proc. 27th ACM Symp. on
Principles of Programming Languages (POPL, pages 40–53. ACM Press, 2000.

[3] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira.
Verifying cryptographic software correctness with respect to reference implemen-
tations. In FMICS’09, volume 5825 of LNCS, pages 37–52, 2009.

[4] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira.
Deductive verification of cryptographic software. ISSE, 6(3):203–218, 2010.

[5] Anindya Banerjee and David A. Naumann. Stack-based access control and secure
information flow. J. Funct. Program., 15(2):131–177, 2005.

[6] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In CASSIS’04, pages 49–69. Springer, 2004.

[7] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow
by self-composition. In CSFW, pages 100–114. IEEE, 2004.

[8] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate,
Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specfication Language.
CEA LIST and INRIA, 2008. Preliminary design (version 1.4).

[9] Daniel J. Bernstein. Cryptography in NaCl, 2011. http://nacl.cr.yp.to.

[10] Dumitru Ceara, Laurent Mounier, and Marie-Laure Potet. Taint dependency se-
quences: A characterization of insecure execution paths based on input-sensitive
cause sequences. In ICSTW ’10, pages 371–380. IEEE, 2010.

[11] Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and Vi-
taly Shmatikov. Inputs of coma: Static detection of denial-of-service vulnerabili-
ties. In CSF’09, pages 186–199. IEEE, 2009.

24

http://nacl.cr.yp.to

[12] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, 1977.

[13] Guillaume Dufay, Amy Felty, and Stan Matwin. Privacy-sensitive information
flow with JML. In Automated Deduction - CADE-20, pages 116–130. Springer,
August 2005.

[14] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus plat-
form for deductive program verification. In CAV’07, volume 4590 of LNCS, pages
173–177. Springer, 2007.

[15] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-gcm. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2009.

[16] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
a behavioral interface specification language for Java. ACM SIGSOFT Software
Engineering Notes, 31(3):1–38, 2006.

[17] K. Rustan M. Leino and Rajeev Joshi. A semantic approach to secure information
flow. LNCS, 1422:254–271, 1998.

[18] Daniel Leivant. Logical and mathematical reasoning about imperative programs.
In POPL, pages 132–140, 1985.

[19] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side
channel attacks. In Proceedings of ICISC’05, volume 3935 of LNCS, pages 156–
168. Springer, 2006.

[20] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In
POPL, pages 228–241, 1999.

[21] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust de-
classification and qualified robustness. Journal of Computer Security, 14(2):157–
196, 2006.

[22] David A. Naumann. From coupling relations to mated invariants for checking
information flow. In ESORICS’06, volume 4189 of LNCS, pages 279– 296, 2006.

[23] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: the case of aes. In Topics in Cryptology - CT-RSA 2006, The Cryptogra-
phers’ Track at the RSA Conference 2006, pages 1–20. Springer-Verlag, 2005.

[24] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

[25] Josef Svenningsson and David Sands. Specification and verification of side chan-
nel declassification. In FAST’09, volume 5983 of LNCS, pages 111–125. Springer,
2009.

25

[26] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety prob-
lem. In SAS’2005, volume 3672 of LNCS, pages 352–367. Springer, 2005.

[27] Stephen Tse and Steve Zdancewic. A design for a security-typed language with
certificate-based declassification. In ESOP’05, volume 3444 of LNCS, pages 279–
294. Springer, 2005.

[28] Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decentralized label
model. In IEEE Symposium on Security and Privacy, pages 192–206. IEEE,
2007.

[29] Dennis M. Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. In CSFW, pages 156–169. IEEE Computer Society, 1997.

[30] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program se-
curity. In TAPSOFT’97, volume 1214 of LNCS, pages 607–621. Springer, 1997.

[31] Martijn Warnier and Martijn Oostdijk. Non-interference in JML, 2005. Nijmegen
Institute for Computing and Information Sciences, ICIS-R05034.

26

Appendix A. Proofs

Lemma 2. Let C be a program, e an expression, and σ1,σ2 states.

1. If (e,σ1) ⇓e (v1,γ1) and (e,σ2) ⇓e (v2,γ2), then projFst(γ1) = projFst(γ2).

2. If (C,σ1) ⇓ (σ ′1,δ ,γ1), (C,σ2) ⇓ (σ ′2,δ ,γ2), then projFst(γ1) = projFst(γ2).

PROOF. (1) By structural induction on e. The only case that does not follow directly
by induction hypothesis is the access of an array element. But, since we are projecting
the first components of the memory access traces, the possibly distinct array indexes
accessed are irrelevant. (2) Observe that the assumption of distinct labels in C together
with the premise that both executions share the control-flow trace δ force the shape
of both derivations to be equal (in particular, branching conditions are evaluated to
the same truth value). Then, a simple induction on the structure of C allows us to
conclude the argument (again, the only case that does not follow immediately from
induction hypothesis and (1) is array assignment, and again the first component is state
independent).

Lemma 3. Let C be a program such that (C,σ1) ⇓ (σ ′1,δ ,γ1) and (C,σ2) ⇓ (σ ′2,δ ,γ2).
Then, γ1 = γ2 if and only if for all array variables a in C, projArra(γ1) = projArra(γ2).

PROOF. The left-to-right implication is trivial. For the converse, observe that the com-
mon execution trace in both final configurations implies, by Lemma 2, that projFst(γ1)=
projFst(γ2) (in particular, γ1 and γ2 have the same length). Now, assume that γ1 6= γ2
and let γ ′ be the greatest common prefix of γ1 and γ2. Since γ1 6= γ2, the length of γ ′

is strictly smaller than that of γ1 and γ2. Consider that the first element where both
sequences diverge is now added to this prefix, i.e. γ ′1 = γ ′ · (a,v1) and γ ′2 = γ ′ · (a,v2)
(again, by Lemma 2 we know that the first components are equal). By construction,
v1 6= v2 which implies that projArra(γ1) 6= projArra(γ2).

Lemma 4. Let C be a program such that (C,σ1)⇓ (σ ′1,δ1,γ1) and (C,σ2)⇓ (σ ′2,δ2,γ2).
Then, δ1 = δ2 if and only if testsC(δ1) = testsC(δ2).

PROOF. The left-to-right implication is trivial. For the converse, assume δ1 6= δ2 and
let δ ′ be the greatest common prefix of both traces. We firstly observe that δ ′ is
nonempty (its first element is necessarily firstLabel(C)), and that the last label of δ ′

must be the label of an if or while statement (in any other case, the control flow is
state-independent and thus leads to a common follow-up on both executions). Sum-
marising, we have δ1 = δ ′ · δ ′1, δ2 = δ ′ · δ ′2, δ ′ = δ ′′ · l′, l′ is a label of an if or while
statement and the greatest common prefix of δ ′1 and δ ′2 is ε . Since δ1 6= δ2, it cannot
be the case that both δ ′1 and δ ′2 are empty. Without loss of generality, assume δ ′1 is
nonempty with l′1 as its first element. Since δ ′1 and δ ′2 have ε as its greatest common
prefix, l′1 cannot be the first element of δ ′2, and hence testsC(l′ ·δ ′1) 6= testsC(l′ ·δ ′2). It
follows then that testsC(δ1) 6= testsC(δ2).

27

Appendix B. Annotated self-composed crypto verify transformed function

/∗@ p r e d i c a t e body{L1 , L2}(unsigned char ∗x , unsigned char ∗y ,
@ i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2 ,
@ l i s t l1x , l i s t l2x , l i s t l1y , l i s t l2y ,
@ l i s t l 1 c t r l , l i s t l 2 c t r l , i n t e g e r i1 , i n t e g e r i 2) =
@ i 2 == i 1 +1 && (d i f f b i t s 2 ==(d i f f b i t s 1 | (\ at (x [i 1] , L1) ˆ\ at (y [i 1] , L1)))) &&
@ l 2 c t r l == cons (i2 <16?1:0 , l 1 c t r l) && l 2 x == cons (i1 , l 1 x) && l 2 y == cons (i1 , l 1 y) ; ∗ /

/∗@ i n d u c t i v e l o o p p r e d{L1 , L2}(i n t e g e r i1 , i n t e g e r i2 , unsigned char ∗x ,
@ unsigned char ∗y , i n t e g e r d i f f b i t s 1 ,
@ i n t e g e r d i f f b i t s 2 , l i s t l 1 x , l i s t l 2 x ,
@ l i s t l 1 y , l i s t l 2 y ,
@ l i s t l 1 c o n t r o l , l i s t l 2 c o n t r o l){
@ case b a s e c a s e{L} :
@ \ f o r a l l l i s t lx , ly , l c o n t r o l , i n t e g e r i , d i f f b i t s , unsigned char ∗x ,∗ y ;
@ l o o p p r e d{L , L}(i , i , x , y , d i f f b i t s , d i f f b i t s , lx , lx , ly , ly , l c o n t r o l , l c o n t r o l) ;
@ case i n d c a s e{L1 , L2 , L3} :
@ \ f o r a l l unsigned char ∗x ,∗ y , l i s t l 1 x , l 2 x , l 3 x , l 1 y , l 2 y , l 3 y ;
@ l i s t l 1 c o n t r o l , l 2 c o n t r o l , l 3 c o n t r o l , i n t e g e r i1 , i2 , i 3 ;
@ i n t e g e r d i f f b i t s 1 , d i f f b i t s 2 , d i f f b i t s 3 ;
@ l o o p p r e d{L1 , L2}(i1 , i2 , x , y , d i f f b i t s 1 , d i f f b i t s 2 , l 1 x , l 2 x ,
@ l 1 y , l 2 y , l 1 c o n t r o l , l 2 c o n t r o l) ==>
@ body{L2 , L3}(x , y , d i f f b i t s 2 , d i f f b i t s 3 , l 2 x , l 3 x ,
@ l 2 y , l 3 y , l 2 c o n t r o l , l 3 c o n t r o l , i2 , i 3) ==>
@ l o o p p r e d{L1 , L3}(i1 , i3 , x , y , d i f f b i t s 1 , d i f f b i t s 3 , l 1 x , l 3 x ,
@ l 1 y , l 3 y , l 1 c o n t r o l , l 3 c o n t r o l) ; } ∗ /

/∗@ r e q u i r e s l m e m c o n t r o l == l m e m c o n t r o l 1
@ && lmem x == lmem x1 && lmem y == lmem y1 ;
@ ensures l m e m c o n t r o l == l m e m c o n t r o l 1
@ && lmem x == lmem x1 && lmem y == lmem y1 ; ∗ /

void c r y p t o v e r i f y (c o n s t unsigned char ∗x , c o n s t unsigned char ∗y ,
c o n s t unsigned char ∗x1 , c o n s t unsigned char ∗y1 ,
i n t r e s u l t , i n t r e s u l t 1) {

i n t d i f f e r e n t b i t s = 0 , d i f f e r e n t b i t s 1 = 0 , i = 0 , i 1 = 0 ;

/∗@ ghos t a p p e n d c o n t r o l (i <16);
@ ghos t L1 :
@ loop i n v a r i a n t 0<=i <=16 &&
@ l o o p p r e d{L1 , Here } (0 , i , x , y , 0 , d i f f e r e n t b i t s , lmem x{L1} , lmem x ,
@ lmem y{L1} , lmem y , l m e m c o n t r o l{L1} , l m e m c o n t r o l) ; ∗ /

whi le (i < 16) {
F (i) / /@ ghos t append x (i) ; ghos t append y (i) ;
i ++; / /@ ghos t a p p e n d c o n t r o l (i <16);

}
r e s u l t = (1 & ((d i f f e r e n t b i t s − 1) >> 8)) − 1 ;
/∗@ ghos t a p p e n d c o n t r o l 1 (i1 <16);

@ ghos t L2 :
@ loop i n v a r i a n t 0<=i1 <=16 &&
@ l o o p p r e d{L2 , Here } (0 , i1 , x1 , y1 , 0 , d i f f e r e n t b i t s 1 , lmem x1{L2} , lmem x1 ,
@ lmem y1{L2} , lmem y1 , l m e m c o n t r o l 1{L2} , l m e m c o n t r o l 1) ; ∗ /

whi le (i 1 < 16) {
F1 (i 1) / /@ ghos t append x1 (i 1) ; ghos t append y1 (i 1) ;
i 1 ++; / /@ ghos t a p p e n d c o n t r o l 1 (i1 <16);

}
r e s u l t 1 = (1 & ((d i f f e r e n t b i t s 1 − 1) >> 8)) − 1 ;

}

28

	Introduction
	Background
	Proofs by Self-Composition
	Natural Invariants
	Self-composition Lemmas
	Verification infrastructure
	An example

	Formalisation and Verification of Side Channel Countermeasures
	Security Policy as a Semantic Property
	Instrumented Semantics
	Formal Security Definition
	Verification of Security

	Case Study: NaCl Cryptographic Library
	A simple example
	A more challenging verification example
	Discussion

	Related Work
	Conclusion
	Proofs
	Annotated self-composed crypto_verify_transformed function

