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Abstract
Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as
vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown
because a deeper understanding of the phenomena can lead to improvements in bridge design
methods while enhancing the accuracy of structural health monitoring techniques. The mobility
of wireless sensors can be leveraged to directly monitor the dynamic coupling between the
moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for
installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and
gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring
system is designed to interact with a static, permanent wireless monitoring system installed on
the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge’s wireless
sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic
pitching measurements of the vehicle are combined with bridge accelerations to create a
time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle
vibrations, Kalman filtering is adopted to accurately track the vehicle position using the
measured horizontal acceleration of the vehicle and positioning information derived from
piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system.
Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge
wireless monitoring system is conducted. Experimental results verify the reliability of the
wireless system and the accuracy of the vehicle positioning algorithm.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Vehicle–bridge interaction refers to the dynamic coupling that
occurs between a vehicle and a bridge when the vehicle crosses
at high speeds. A vehicle can be viewed as a large rigid
mass (i.e. vehicle body) that is supported by vertical spring–
damper connections at each of its wheels. When crossing a

bridge, the vehicle vertically vibrates and pitches, leading to
the introduction of dynamic loading on the bridge. In turn, the
vibrations of the bridge influence the dynamics of the vehicle.
A complete understanding of this complex coupling between
the vehicle and bridge is critical for fully understanding the
dynamic behavior of bridges under live load conditions. In
the design of highway bridges, vehicle–bridge interaction is
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accommodated through the use of dynamic impact factors.
Dynamic impact factors allow the bridge designer to account
for the dynamic response of a bridge when using an equivalent
static load design methodology [1]. The current set of
dynamic impact factors were obtained from finite element
method (FEM) simulation of bridge systems in which the
dynamics of the bridge, the behavior of the vehicle and the
bridge road roughness have all been explicitly considered [8].
However, the limitation of FEM modeling renders the
dynamic impact factors potentially inaccurate for some bridge
designs [12]. To more accurately determine suitable dynamic
impact factors, direct experimental observation of vehicle–
bridge interaction is necessary. There are many additional
benefits that can be derived from experimental observation
of vehicle–bridge interaction. For example, recent increases
in the weight of heavy trucks has led to an acceleration of
bridge deterioration [6]. Experimental observation of vehicle–
bridge interaction could lead to more accurate determination
of bridge load capacities. Furthermore, experimental data
would improve our understanding of vehicle-induced structural
degradation.

Over the past two decades, powerful new sensor
technologies have emerged including micro-electromechanical
systems (or MEMS) [19, 20], wireless sensor networks
[17, 21, 11, 32], guided wave sensors [23, 7] and fiber optic
sensors [27, 2], just to name a few. Structural health monitoring
(SHM) of bridge structures has served as the primary motivator
for many of these developments. However, most of the sensors
developed are designed to monitor structural response but not
the loading inducing those responses. This is unfortunate
because system identification and damage detection using
output-only datasets are challenging inverse problems to solve
when high uncertainty surrounds the bridge loading. Hence,
the accuracy of current damage detection methods would be
improved if the structural demand (i.e. the vehicle loading)
was precisely known. Historically, weigh-in-motion systems
(WIMS) have been used to observe the weight of vehicles
crossing a bridge at a specific position. While WIMS can
provide datasets from which bridge loads and their temporal
variations can be modeled, such systems are inadequate for
direct observation of vehicle–bridge interaction due to the fact
that they only measure vehicle loading at a static location
on the bridge. Another issue associated with WIMS is that
their measurements contain significant uncertainty due to the
temperature and time variation of their voltage outputs [31].
Alternatively, researchers have explored the use of video
sensing to observe the motion of vehicles as they cross a bridge.
For example, a piezoelectric-based WIMS can be replaced with
a high-speed camera that can capture vehicles entering and
leaving the view of the camera. Captured video can then be
used to accurately assess the speed of the vehicle, the number
of vehicle axles and the general class of vehicle (e.g. car,
sport utility vehicle, truck, etc) through image processing [3].
While Chen et al [3] position their camera to view the road
at a localized position, Fraser et al [4] alternatively propose
the use of video cameras positioned to capture a view of an
entire bridge. Using feature extraction and pattern recognition,
vehicle types and position trajectories can be derived for all

of the vehicles on the bridge. While a knowledge of average
vehicle weight and trajectory can be used to model vehicle–
bridge interaction in a simulation environment, the actual
interaction is not directly sensed in these video-based sensing
systems.

The bridge and vehicle must both be instrumented to
capture the dynamic coupling that exists during vehicle–
bridge interaction. In particular, instrumentation installed in
the vehicle can provide data corresponding to the vehicle’s
vibratory response to the bridge as well as its position on the
bridge as a function of time. When combined with response
data collected from the bridge, a rich dataset corresponding
to the system input (i.e. vehicle) and output (i.e. bridge) is
created. The field has explored the monitoring of vehicles
as they interact with roads, rail tracks and bridges. For
example, Mizuno et al [18] propose the installation of MEMS
accelerometers, global positioning system (GPS) receivers and
a wired data acquisition system within railcars to capture
their dynamic behavior as they travel over rail tracks. While
the prototype system can measure the dynamic response of
the vehicle, the system does not directly record the dynamic
response of the rail or that of railway bridges. Even though
bridges and vehicles have been independently monitored,
monitoring both the vehicle and bridge within a single
monitoring system architecture has not yet been attempted.
This is due largely to the challenges a moving vehicle poses
to tethered monitoring system architectures. Specifically, the
mobility of the vehicle rules out the possibility of connecting
vehicle sensors to the bridge monitoring system via coaxial
wiring. Rather, two independent data acquisition systems
would be needed, with one dedicated to monitoring the
vehicle and the other monitoring the bridge. After collection,
the vehicle and bridge response datasets would need to be
combined with accurate time synchronization. In contrast, this
study explores the use of wireless telemetry to eliminate the
wires that limit the unification of vehicle-based mobile sensors
within a bridge monitoring system.

In this study, wireless sensors are utilized as a building
block of a comprehensive monitoring system designed for
monitoring vehicle–bridge interaction. The work builds on
recent research that has established the accuracy, reliability
and cost-effectiveness of wireless monitoring systems for
bridges [16, 21, 9, 32]. A wireless sensor network is
proposed for installation in a heavy vehicle (i.e. truck) to
record the dynamic response of the vehicle as it crosses a
bridge instrumented with a permanent wireless monitoring
system. The sensing transducers installed in the vehicle
include accelerometers to measure vertical and horizontal
acceleration and a gyroscope to capture the vehicle pitching
motion. The bridge is instrumented with accelerometers to
measure the vertical vibration of the bridge. Piezoelectric
tactile sensors are also installed on the bridge road surface
to sense the vehicle position. As the instrumented vehicle
approaches the bridge, the permanent wireless monitoring
system on the bridge establishes communication with the
vehicle’s mobile monitoring system to synchronize time and
to initiate data collection. After the truck crosses the bridge,
the wireless sensors on the truck wirelessly transmit their
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(a)
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(c) (d)

Figure 1. Geumdang Bridge (Icheon, Korea): (a) profile plan of the northernmost spans of the bridge; (b) cross-section profile; (c) expansion
joint typical between adjacent spans and (d) close-up view of the third expansion joint.

synchronized response data to the bridge monitoring system
where it is automatically combined with the bridge response
data. The horizontal acceleration of the vehicle and the
position information acquired from the piezoelectric tactile
sensors are combined by the wireless monitoring system using
Kalman filtering to estimate the vehicle trajectory. This paper
begins with a description of the components of the proposed
wireless monitoring system for experimentally observing
vehicle–bridge interaction. Next, a theoretical description
of the Kalman filter used to extract an accurate vehicle
position trajectory is presented. Experimental validation of
the proposed wireless monitoring system on the Geumdang
Bridge (Icheon, Korea) is then presented. Finally, the paper
concludes with a summary of the key project results and offers
insight to the authors’ future work aimed towards using the
data collected by the wireless monitoring system for detailed
analytical modeling of vehicle–bridge interaction.

2. Overview of the wireless vehicle–bridge
monitoring system

2.1. Geumdang Bridge

In 2002, the Korea Expressway Corporation (KEX) completed
construction of a redundant segment of the two-lane
southbound Jungbu Inland Highway near Icheon, Korea [14].
The road segment was designed as an experimental test road
with a dense array of sensors installed along its length (e.g.
more than 1800 sensors along the 7.7 km road) to monitor the
performance of the road pavement systems that are exposed
to heavy truck loads. Along the length of the test road are
three bridges: the Geumdang, Yeondae and Samseung bridges.
Unlike the road, the three bridges are not monitored with a
permanent set of sensors; rather, past work has monitored the
bridges over short periods of time with wired and wireless

monitoring systems [33]. This study selects the Geumdang
Bridge (figure 1), a concrete bridge with a total length of
272 m, to validate the performance of the proposed wireless
monitoring system for vehicle–bridge interaction monitoring.
Selection of the Geumdang Bridge is due to its length (i.e. the
Yeondae and Samseung bridges are shorter) and for its straight
planar alignment which makes tracking the moving vehicle
easier.

The design of the Geumdang Bridge is very unique
because it employs two different span types in its design. The
northern half of the bridge spans 150 m and is constructed
using four pre-cast concrete girders with a 27 cm thick concrete
deck placed in composite action with the girders (figure 1(b)).
The southern half of the bridge spans 122 m and is constructed
as a continuous prestressed concrete box-girder. In 2006, the
southern spans of the Geumdang Bridge were instrumented
with an array of wireless sensors to measure the vertical
acceleration of the bridge under traffic loads [16]. In this study,
the northern span of the bridge will be instrumented with a
wireless monitoring system to record the behavior of the bridge
during loading by a test vehicle simultaneously monitored
using wireless sensors. The northern portion of the bridge
(figure 1(a)) is divided into three independent spans separated
by expansion joints (figures 1(c) and (d)) that accommodate
the thermal expansion of the bridge. The first span is 30 m
long and is supported by the abutment structure and a pier. The
second span is 40 m long and is supported by piers at its ends.
The third span is 80 m long and is again supported by piers
at its span ends; however, a redundant pier is placed midway
along its length to offer additional support.

2.2. Wireless sensors for long-range communication

The building block of the proposed wireless vehicle–bridge
monitoring system is the Narada wireless sensor node
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Figure 2. Narada wireless sensor node with key components
highlighted.

(figure 2). Narada is a low-cost wireless sensor platform
designed at the University of Michigan from commercial
off-the-shelf embedded system components for use in civil
infrastructure systems (e.g. bridges, buildings, dams,
pipelines, etc) [28]. The data acquisition demands of the
application have strongly shaped the design of Narada. For
example, high-resolution digitization is needed to accurately
record the low-level ambient vibrations common in civil
engineering structures. Furthermore, the size of civil structures
necessitates long-range communication between nodes (e.g.
hundreds of meters). Finally, the overall cost of the wireless
monitoring system must be low (e.g. less than $100 per
channel).

The Narada wireless sensor node is designed with a four-
channel, 16-bit analog-to-digital converter (ADC) to which a
variety of sensors can be interfaced. The on-board ADC (Texas
Instruments ADS8341) can sample sensor outputs spanning
from 0 to 5 V on all four channels at rates as high as 100 kHz.
The ADC is commanded by an 8-bit microcontroller (Atmel
ATmega128) that operates at 8 MHz. The microcontroller
contains flash memory (128 kB) where embedded software
is stored for automation of the wireless node operation (e.g.
collect, process and communicate data). To accommodate
the storage of sensor data on-board, an additional 128 kB of
static random access memory (SRAM) is integrated in the

node design. For communication, the node includes the Texas
Instruments CC2420, which is an IEEE802.15.4-compliant
transceiver. The transceiver operates on the 2.4 GHz wireless
band which is readily accessible in most regions of the world.
The data rate of the radio is 250 kbps while its nominal range is
50–100 m. The Narada node is designed with a power amplifier
to boost the transceiver output power by 10 dB, resulting
in significant improvements in its communication range; for
example, ranges in excess of 500 m have been reported [11].
The 500 m range is considered a conservative lower bound on
the maximum communication range of the sensor, with higher
ranges possible under favorable site conditions. The node is
powered by a 6 V battery pack that is kept charged by solar
panels. The total cost of the node is approximately $150.

2.3. Stationary wireless monitoring system on the bridge

The 150 m northern span of the Geumdang Bridge is
instrumented with a dense network of Narada wireless sensor
nodes to which MEMS accelerometers and tactile sensors
(i.e. piezoelectric strips) have been interfaced. As shown
in figure 3, a total of 20 Narada wireless sensor nodes, each
with an uniaxial MEMS accelerometer oriented in the vertical
direction, is installed in the center lane of the bridge deck;
the accelerometers are spaced equidistantly on each span.
The Silicon Designs SD2012 accelerometer is selected for
monitoring the vertical acceleration response of the bridge.
While a large fraction of sensors for structural monitoring
are single-ended, the SD2012 offers a low noise floor when
utilized in differential output mode. The Narada ADC can
accommodate differential sensor outputs by combining two
of its available channels. In differential output mode, the
sensitivity of the SD2012 accelerometer is 2 V g−1 while its
noise floor is 13 μg Hz−1/2. The range of the accelerometer
is ±1 g, which is ample for measuring bridge vibrations.
Accelerometers are mounted on aluminum blocks that are
bonded to the surface of the roadway by epoxy.

Tactile sensors are installed on the bridge deck to identify
points in time when the truck drives over the sensors. The
tactile sensors are designed from poly(vinylidene) fluoride, or
PVDF, which is a piezoelectric polymeric material that exhibits
a voltage change when dynamically strained. PVDF strips will
capture in time when each axle of the truck drives over the strip.
In this application, PVDF is selected because of its ductility
and toughness which will give it great durability when being
repeatedly driven over by heavy trucks. The tactile sensors
are constructed from commercial PVDF sheets acquired from
Measurement Specialties, Inc. The sheets are cut into 8 mm
wide strips roughly 1.5 m long. Copper tape (5 mm wide) is

Figure 3. Stationary wireless monitoring system assembled from Narada wireless sensor nodes. Twenty (20) uniaxial accelerometers installed
in the center of the bridge deck with five (5) PVDF tactile sensors installed at multiple locations along the bridge length.
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(a) (b)

Figure 4. (a) PVDF tactile strip sensor rolled up prior to deployment on the bridge. Copper electrode and charge amplifier circuit clearly
shown. (b) PVDF strip sensor installed on the bridge deck (at sensor location #1) with a Narada wireless sensor shown on top of the orange
traffic cone.

(a)
(b)

Figure 5. Experimental four-axle 20 ton truck with instrumentation. (a) Pitch-plane model of the truck with 6 DOFs identified for one sprung
mass and four unsprung masses. (b) Picture of the truck on the Geumdang Bridge.

bonded to the top and bottom surfaces of the PVDF strip to
serve as electrodes (figure 4(a)). A charge amplifier circuit is
integrated with each PVDF strip to amplify its voltage before
being interfaced to a Narada. In total, five (5) PVDF strips
interfaced to Narada nodes are bonded to the surface of the
road (figure 4(b)); the locations of the PVDF tactile sensors
are presented in figure 3.

2.4. Mobile wireless sensor instrumentation on the truck

To dynamically load the Geumdang Bridge, a four-axle truck
is used (figure 5). Prior to the truck’s arrival at the bridge, the
weight of the truck is measured at a local weigh station. The
total weight of the truck is 20.9 tons with the front, second,
third and back axles each taking 4.3, 8.0, 4.6 and 4.0 tons,
respectively. The truck dynamics can be modeled using a
pitch-plane model with multiple rigid bodies connected by
spring–damper linkages [5]. First, the truck body is comprised
of a single sprung mass supported by the vehicle suspension
system. Second, the wheels, axles, brakes and steering knuckle

are modeled as concentrated masses centered at each axle.
In total, the dynamics of the vehicle are modeled using five
lumped masses and six degrees-of-freedom (DOF): vertical
translation of the truck body, rotation of the truck body and
vertical translation of each axle. Finally, the rigid body motion
of the vehicle is modeled by its horizontal translation.

To monitor the dynamics of the truck body (i.e. the sprung
mass of the pitch-plane model), sensors are concentrated
in the truck body’s center of gravity to monitor vertical
acceleration, horizontal acceleration and gyroscopic motion
associated with truck pitching (figure 6(a)). To monitor the
vertical acceleration of the truck body, the Crossbow CXL02
capacitive accelerometer is selected. The CXL02 has a
dynamic range of ±2 g, a sensitivity of 1 V g−1, and a noise
floor of 0.15 mg. A second CXL02 is utilized to monitor the
horizontal acceleration of the vehicle; this acceleration data
will be used for truck positioning. A MEMS angular rate
gyroscope (Analog Devices ADXRS624) is also installed at
the center of gravity to capture the pitching motion of the
truck. The ADXRS624 has a dynamic range of ±50◦ s−1
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(a) (b)

Figure 6. Installation of sensors on the experimental truck to monitor the 6 DOF associated with the truck pitch-plane model (figure 5(a)):
(a) accelerometers and gyroscope installed at the truck body center of gravity and (b) accelerometer on the axle cover at the fourth (back) axle.

and a sensitivity of 25 mV/◦ s−1. Each axle of the truck is
monitored using an accelerometer bonded to the axle oriented
in the vertical direction. The Analog Devices ADXL105
accelerometer is selected for its high ±10 g measurement range
and low 2 mg noise floor; the sensitivity of the ADXL105 is
250 mV g−1. The accelerometer is attached by epoxy to the
underside of the leaf spring of each front axle. For the two back
axles, the accelerometers are installed on the metallic cover of
the axle (figure 6(b)). To record the sensor outputs, a Narada
wireless sensor is interfaced with each sensing transducer
installed on the truck. To enhance the performance of the
wireless communications, the antennas of each wireless sensor
are mounted to a 1.2 m wood post with the post installed in a
near-vertical orientation (70◦–75◦) on the passenger side of the
truck.

2.5. Operation of the wireless monitoring system during
dynamic load testing

The proposed wireless monitoring system for experimental
observation of vehicle–bridge interaction is architecturally
centralized with a central base station installed on the
bridge. The base station consists of an IEEE802.15.4 receiver
interfaced to a small single-board computer that coordinates
the activity of the wireless monitoring system. The base
station continuously transmits a beacon signal that can be
received by a truck instrumented with Narada wireless sensors.
Similarly, Narada sensors on the truck are designed to be in
a receive-mode waiting to receive the beacon packet from
the bridge base station. As the truck drives closer to the
bridge (i.e. within 500 m of the bridge receiver), it will fall
within communication range of the bridge monitoring system
base station. Upon receipt of the beacon packet, the Narada
wireless sensors on the truck acknowledge their existence by
sending their identification numbers wirelessly back to the
base station. As soon as the truck’s wireless sensor nodes
send their identification numbers, they enter a state ready
to receive a second beacon packet from the bridge receiver
to which their local clocks will be synchronized. Once the
base station acknowledges that an instrumented truck is in the

vicinity, it sends a command packet to the network of wireless
sensor nodes on the bridge and truck commanding them to
all synchronize their clocks to the arrival of the packet and to
collect data for a set period of time at a specific sampling rate.
This approach to time synchronization has been previously
verified to be within 11 μs [11], which is negligible when
compared to the normal sample rates used in bridge monitoring
(i.e. less than 1 kHz). After all of the sensors have collected
their response data, they notify the base station that they are
ready to transmit their response data back to the server. The
server queries them one at a time for their data; the sensors on
the truck are queried first because they may shortly be out of
range. In this study, the base station commands the mobile and
static wireless sensor nodes to collect 90 s of data at a sample
rate of 100 Hz. This time duration provides the monitoring
system ample time to register the mobile wireless sensors,
collect bridge and vehicle response data, and collect the data
at the base station.

During experimental validation on the Geumdang Bridge,
the KEX closes the test road to allow the four-axle truck
unfettered access to the bridge. The base station and receiver
(figure 7(a)) are installed on the shoulder of the southern end
of the bridge. On site, the effective communication range of
the base station is determined to be roughly 800 m. While this
is greater than past studies, the site conditions were favorable
in this study for longer ranges. The 7 mobile Narada wireless
sensors on the truck and the 25 static Narada wireless sensors
on the bridge are set to communicate on the same wireless
channel as the base station. Once the installation of the sensors
on the truck and bridge is complete, the bridge is loaded by
driving the truck across the bridge at three different velocities
(30, 50 and 65 km h−1). The starting position of the truck
is roughly 500 m up the road from the bridge. The truck is
commanded by the researchers on site to accelerate until it
achieves the desired test speed at which time the truck driver
holds the velocity of the truck constant. Once the truck leaves
the bridge, the truck driver brings the truck to a stop roughly
200 m past the southern bridge abutment. The truck is driven
in the leftmost lane to ensure it drives over the PVDF tactile
sensors installed on the road deck.
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(a) (b)

Figure 7. Dynamic load testing by wireless sensor networks. (a) Base station at the start of a test with the truck north of the bridge.
(b) Wireless accelerometer on the bridge deck side-by-side with a tethered piezoelectric accelerometer at sensor location #8 (see figure 3).

3. Theory of trajectory estimation

3.1. Review of trajectory estimation and integration of
acceleration

During the analysis of vehicle–bridge interaction analysis,
accurate positioning of the vehicle provides the location of the
dynamic load imposed on the bridge by the vehicle. Many
trajectory estimation algorithms are available from the geodetic
and navigation fields that integrate inertial measurements
derived from accelerometers and gyroscopes to track bodies
in space [13]. Closely related to inertial navigation is the
work conducted in the civil engineering field in determining
the displacement of structures based on their measured
acceleration responses. For example, Lee et al [15] have
proposed an acceleration-based low-pass filtering algorithm to
derive the displacement of low-frequency-dominant structures
using acceleration measurements. While the method works
well for structural responses dominated by sinusoidal motion,
it is not capable of reconstructing the pseudo-static response
common during vehicle loading. In contrast, Smyth et al
[25] propose a novel data fusion algorithm that combines
acceleration and displacement measurements to overcome
the challenge of low-frequency noise that is amplified when
numerically integrating an acceleration signal.

Similar to Smyth et al [25], this study takes a data
fusion approach to positioning an instrumented vehicle on
a bridge by combining acceleration measurements of the
vehicle with position information obtained from PVDF tactile
sensors installed on the bridge deck. The proposed trajectory
estimation algorithm explicitly considers measurement bias to
account for sensor bias (e.g. non-zero offsets) and the tilting
of the sensor during installation, among other biasing factors.
Each sensor used has a unique bias that must be accounted for
to achieve high precision inertial sensing [22, 34]. Kalman
filtering and interval smoothing is then used to yield a highly
accurate estimate of the vehicle location on the bridge.

3.2. Tracking model formulation

A mathematical model for vehicle tracking begins with
consideration of a vehicle in which an accelerometer is

installed at the center of gravity to measure horizontal
acceleration. The one-dimensional trajectory of the
horizontally moving vehicle is

¨̄x(t) = ẍ(t) − δẍ(t) with initial conditions x̄(0)

and ˙̄x(0) (1)

where ¨̄x(t) is the true horizontal acceleration of the vehicle
and ẍ(t) is the measured horizontal acceleration. Hence,
δẍ(t) corresponds to the acceleration measurement error. The
measurement error, δẍ(t), consists of a deterministic unknown
bias, b(t), and stochastic process noise, w(t), as follows:

δẍ(t) = b(t) + w(t). (2)

By numerically integrating equation (1) in the discrete-
time domain, the true horizontal velocity, ˙̄x(t), and position,
x̄(t), of the vehicle can be calculated:

˙̄x(k + 1) = ˙̄x(k) + (ẍ(k) − δẍ(k))�t (3)

x̄(k + 1) = x̄(k) + ˙̄x(k)�t + 0.5(ẍ(k) − δẍ(k))�t2 (4)

where �t is the time step. The problem of estimating the
position and velocity of the vehicle is confined to estimating
the deterministic acceleration measurement error of δẍ(t) (i.e.
the bias, b(k)) and to treat the stochastic measurement error
of δẍ(t) as Gaussian noise, w(k). A model-based data
fusion approach that combines the horizontal acceleration of
the vehicle with position, x , and velocity measurements, ẋ ,
obtained from PVDF tactile sensors is adopted. A state-space
model that captures the evolution of the measurement error is
proposed. Towards this end, a state vector, z, is introduced as

z(t) = [δẋ(t)δx(t)b(t)]T (5)

where δẋ and δx are the velocity and position measurement
errors, respectively. Based on equations (2) and (5), a
continuous-time state-space equation can be written to model
the measurement error in the system:

ż(t) =
[ 0 0 1

1 0 0
0 0 0

]
z(t) +

[ 1
0
0

]
w(t) = Az(t) + w(t). (6)
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Equation (6) is converted to a discrete-time state-space
representation:

z(k + 1) = Adz(k) + w(k) (7)

where Ad is the state transition matrix and determined as

Ad = eA�t =
[ 1 0 �t

�t 1 0.5�t2

0 0 1

]
. (8)

In order to consider the uncertainty of acceleration
measurement, process noise, w(k), in equation (7) is
considered as

w(k) =
[ N(0, Q(k))

0
0

]
. (9)

When additional measurements are available from the
PVDF tactile sensors (i.e. vehicle position and velocity), the
measurement error in the vehicle position and velocity can be
captured in the observation of the state:

y(k) =
[

1 0 0
0 1 0

]
z(k) + v(k) = Cdz(k) + v(k) (10)

where process noise, v(k), is also included in the observation
model to capture the uncertainty in the measured vehicle
position and velocity as measured by the PVDF tactile sensors.
Here, v(k) is considered as

v(k) =
[

N(0, R1(k))

N(0, R2(k))

]
. (11)

3.3. Data fusion by Kalman filtering

Due to the assumption of stochastic Gaussian noise, Kalman
filtering is ideally suited to extract an accurate estimate of the
hidden states (i.e. velocity and position measurement errors
and bias) of the system, z(k) [26]. The Kalman filter algorithm
consists of two main stages: state/covariance prediction and
correction.

3.3.1. Prediction stage. By equation (7), the a priori
state, z(k + 1|k), and covariance, P(k + 1|k), are expressed,
respectively, as

z(k + 1|k) = Adz(k|k) (12)

P(k + 1|k) = AdP(k|k)AT
d + Q (13)

where Q is a covariance matrix related to the uncertainty of
the horizontal acceleration sensing in equation (9). Combining
the numerically integrated vehicle velocity and location (i.e.
equations (3) and (4)) and the estimated a priori states
(equation (12)) of the measurement error, the velocity and
location of the vehicle are calculated, respectively, as

˙̂x(k + 1) = ˙̄x(k + 1) − δẋ(k + 1|k) (14)

x̂(k + 1) = x̄(k + 1) − δx(k + 1|k) (15)

3.3.2. Correction stage. Assume at the time step k + 1,
the second axle of the vehicle hits a PVDF tactile sensor.
Based on the location of the PVDF sensor, the location of the
vehicle, x(k + 1), is determined. Similarly, the velocity of
the vehicle, ẋ(k + 1), is determined by the timing between the
axle crossings as measured by the PVDF sensor. Then, the
measurement errors are calculated and treated as the observed
states:[

δẋ(k + 1)

δx(k + 1)

]
=

[ ˙̄x(k + 1) − ẋ(k + 1)

x̄(k + 1) − x(k + 1)

]
= y(k + 1). (16)

The a posteriori state and covariance matrices can be
calculated, respectively, as

z(k + 1|k + 1) = z(k + 1|k) + K(k + 1)(y(k + 1)

− Cdz(k + 1|k)) (17)

P(k + 1|k + 1) = (I − K(k + 1)Cd)P(k + 1|k) (18)

where the updated Kalman gain matrix, K(k + 1):

K(k + 1) = P(k + 1|k)CT
d (CdP(k + 1|k)CT

d + R)−1. (19)

In equation (19), R is a diagonal covariance matrix related
to the uncertainty of the PVDF sensing in equation (11). Using
the estimated a posteriori states of the measurement errors, the
velocity and location of the vehicle are calculated, respectively,
as ˙̂x(k + 1) = ˙̄x(k + 1) − δẋ(k + 1|k + 1) (20)

x̂(k + 1) = x̄(k + 1) − δx(k + 1|k + 1). (21)

3.4. Fixed-interval smoothing

To enhance the accuracy of the unique Kalman filter
formulated, fixed-interval smoothing is adopted. Since the
precise timing of when the vehicle enters and exits the bridge
is known based on PVDF tactile sensors installed at the
bridge end-points, fixed-interval smoothing [24] over the time
period when the vehicle is on the bridge is prudent. The
aforementioned Kalman filter is implemented off-line forwards
in time (from the time when the vehicle enters the bridge)
and backwards in time (from the time when the vehicle exits
the bridge), resulting in two estimates for the system state:
ẑf(k) and ẑb(k), respectively. The smoothing process derives
a smoothed state, ẑs(k), as

ẑs(k) = Kf(k)ẑf(k) + Kb(k)ẑb(k) (22)

where Kf(k) and Kb(k) are coefficient matrices that weigh
the relative contribution of the forward and backward state
estimates. To guarantee unbiased state estimates, it requires
that the sum of the coefficient matrices yield the identity matrix
(i.e. Kf(k) + Kb(k) = I). As a result, equation (22) can be
further simplified as

ẑs(k) = Kf(k)ẑf(k) + (I − Kf(k))ẑb(k). (23)

The covariance matrix of the smoothed state, Ps(k), can be
calculated as

Ps(k) = cov(ẑs(k)ẑT
s (k)) = Kf(k)Pf(k)KT

f (k)

+ (I − Kf(k))Pb(k)(I − Kf(k))T (24)
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Figure 8. Comparison of the bridge vertical acceleration at sensor location #8 (figure 3) as measured by the Narada wireless (top) and
tethered accelerometers (bottom) when loaded by a 20.9 ton truck driving at 65 km h−1.

where Pf(k) and Pb(k) are the covariance matrices of the
forward and backward Kalman filtering processes. Minimizing
Ps(k) with respect to Kf(k) in equation (24) leads to a condition
for an optimal forward coefficient matrix, Kf(k):

Kf(k) = Pb(k)(Pf(k) + Pb(k))−1. (25)

Finally, by substituting the optimal forward coefficient
matrix into equations (23) and (24), the smoothed state and
its covariance matrix can be determined, respectively, as

ẑs(k) = Pb(k)(Pf(k) + Pb(k))−1ẑf(k)

+ Pf(k)(Pf(k) + Pb(k))−1ẑb(k) (26)

Ps(k) = (P−1
f (k) + P−1

b (k))−1. (27)

4. Experimental validation

4.1. Accuracy of the wireless monitoring system

The Narada wireless sensor has been extensively deployed
on a large number of structures including bridges [11], wind
turbines [29] and naval ships [30]. Similar to these past
studies, the measurement accuracy of the Narada wireless
sensors installed on the Geumdang Bridge are verified
using a traditional tethered data acquisition system. A
National Instruments 16-bit data acquisition system (Model
60362E) is used with a PCB Piezotronics 393B12 integrated
circuit piezoelectric (ICP) accelerometer interfaced. The
accelerometer measurement range is ±0.5 g and its noise floor
is 1.3 μg (Hz)−1/2. The accelerometer is well suited for
bridge monitoring because of its high sensitivity (10 V g−1).
To provide a constant excitation to the ICP accelerometer and
to amplify the accelerometer output by a factor of 10, the
PCB Piezotronics 480B21 signal conditioner is adopted. The
tethered 393B12 ICP accelerometer is installed adjacent to
the wireless accelerometer at sensor location #8 (as denoted
in figure 3). A picture of the side-by-side accelerometer
installation is depicted in figure 7(b). Figure 8 presents
the measured vertical acceleration of the bridge at sensor #8
as measured by the Narada wireless and tethered systems.

The response measured corresponds to the test vehicle (i.e.
the 20.9 ton truck) driving over the bridge at 65 km h−1.
In general, both time-history responses are in excellent
agreement. As expected, the Narada wireless sensor has a
slightly elevated level of noise in the measured acceleration
data due to the lower sensitivity and higher noise floor of
the SD2012 accelerometer as compared to the PCB 393B12
accelerometer.

4.2. Vehicle trajectory estimation

The test vehicle is parked 600 m north of the Geumdang Bridge
at the start of testing. After the wireless monitoring system
initiates data collection using the mobile wireless sensors on
the truck and the static wireless sensors on the bridge, the
truck is commanded to accelerate to achieve a desired speed
(e.g. 30 km h−1) before entering the bridge. After crossing
the bridge, the truck decelerates until it comes to a stop
approximately 200 m past the south end of the bridge. At
the end of the test, the wireless monitoring system collects the
horizontal acceleration of the vehicle as shown in figure 9(a).
Based on the measured horizontal acceleration time history, the
acceleration of the truck is zero at the start due to it being at
rest. The truck accelerates with positive horizontal acceleration
at 2.1 s until it achieves 30 km h−1 before entering the bridge
at 26.9 s. During the time the truck is on the bridge (26.9–
44.9 s), the truck has a constant velocity and hence experiences
zero horizontal acceleration. However, after exiting the bridge
at 44.9 s, the truck rapidly decelerates until it comes to a full
stop at approximately 55 s. In addition, the five PVDF tactile
sensors on the bridge capture the time at which each axle of
the truck rides over the sensor. Figure 9(b) superimposes the
PVDF output voltage at all five PVDF tactile sensor locations.
Each of the four truck axles are evident (e.g. four major voltage
spikes) in the response measured at each PVDF tactile sensor.
To determine the truck velocity, the spacing between the truck
axles and the time of their crossing each PVDF tactile sensor
is used.

The measured horizontal acceleration of the truck and
the truck position and velocity (as measured at each of the
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Figure 9. Trajectory sensing of the four-axle truck crossing the Geumdang Bridge at 30 km h−1. Horizontal acceleration time-history of the
truck (top) and its position information measured by the five PVDF tactile sensors (bottom) with all four truck axles evident from the PVDF
tactile sensor response.

(a)
(b)

Figure 10. Results from the forward Kalman filter: (a) estimated truck trajectory along the 150 m bridge and (b) estimated velocity (top) and
estimated accelerometer bias (bottom).

five PVDF tactile sensors) serve as inputs to the trajectory
estimation algorithm previously derived (section 3). Based
on the time the truck enters and exits the bridge (26.9 s
and 44.9 s, respectively), the Kalman filter is applied to the
data in both a forward and backward manner. The output
of the forward and backward Kalman filters are presented in
figures 10 and 11, respectively. In each figure, the estimated
truck position, velocity and acceleration bias are plotted over
the 18 s the truck is on the bridge. In each figure, 0 s denotes
the time when the first truck axle enters the bridge while
18 s denotes when the last axle exits the bridge. For both
the forward and backward Kalman filters, the position of the
truck at the end of the analysis is 150 m away from the start,
which corresponds to the length of the bridge (150 m). In
comparison, the position based on pure forward integration
of the horizontal acceleration results in a final position of
132.9 m at the end of the test; this inaccurate position estimate
corresponds to an error of 11.4%. Similarly, backward Kalman
filtering places the truck at −1.3 m which is an error of 0.9%.

In contrast, backward numerical integration estimates the truck
at −8.0 m, which corresponds to a 5.3% error. Similar results
are observed for the predicted truck velocity. One drawback
of the forward and backward Kalman filtering approach is the
stepwise discontinuity in the position and velocity trajectories
at locations where the PVDF position and velocity data
is utilized. However, fixed-interval smoothing successfully
averages the forward and backward Kalman filtered position
and velocity data as shown in figure 12.

4.3. Time-synchronized vehicle–bridge response

During dynamic testing of the Geumdang Bridge, the wireless
monitoring system proves reliable in its data collection
functionality. When the truck is kept within 700 m of the
wireless monitoring system base station, a data delivery rate of
100% is achieved. Outside of 700 m, communication between
the system base station and the truck-based wireless sensor
nodes experiences some intermittent data losses. A total of
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(a) (b)

Figure 11. Results from the backward Kalman filter: (a) estimated truck trajectory along the 150 m bridge and (b) estimated velocity (top)
and estimated accelerometer bias (bottom).

Figure 12. Final estimated truck position (top) and velocity (bottom) based on fixed-interval smoothing.

18 tests are conducted on the bridge with the truck driven
at different velocities over the bridge (ranging from 30 to
65 km h−1). For example, the vertical acceleration response
of the truck when driving at 30 km h−1 is shown in figure 13.
Based on the estimated truck trajectory, the point in time when
each of the truck axles drives over the bridge expansion joints is
superimposed on the truck response plots. The truck body and
individual axles all experience significant vertical accelerations
when driving over the expansion joints. However, the vertical
acceleration response of the truck body and axles is damped
out quickly by the truck suspension system. Asides from the
large vertical accelerations experienced when driving over the
expansion joints, smaller vertical accelerations are observed
at each of the axles when the truck is driving over the spans.
These accelerations are suspected to result from the interaction
of the vehicle with the road surface (e.g. due to road roughness)
and with the bridge itself.

For the same test (i.e. truck crossing at 30 km h−1), the
corresponding response of the bridge is presented in figure 14.
The vertical acceleration response of the Geumdang Bridge is
strongly influenced by the location of the truck relative to the
individual spans of the bridge. In figure 14(a), the acceleration
measured by sensors #1–5 (see figure 3), which are installed

along the centerline of the first independent span, clearly show
the global response of the span when the truck is on that
particular span. This low-frequency response corresponds
to the global dynamic response of the girders. It is likely
some small-amplitude, high-frequency localized response of
the bridge deck (acting as a dynamic diaphragm) is also present
in the acceleration response. In figure 14(b), the truck has
crossed into the second independent span resulting in strong
vertical accelerations in sensors #6–10. When the truck is
on the second span, only minor small-amplitude vibrations
are observed on the first and third spans. The third span of
the Geumdang Bridge is a more complicated span with a pier
situated at the span mid-point; this results a more complex
bridge response. In figure 14(c), the truck is on the third
span but to the north side of the center pier. This results
in high-amplitude accelerations with higher-frequency content
for sensors #11–15. However, figure 14(d) reveals sensors
#16–20 (which are on the south side of the center pier) also
experience high-amplitude accelerations but characterized by
lower-frequency content. The opposite situation occurs when
the truck moves to the south side of the central pier. This
complex dynamic behavior is due to the dynamic coupling of
the vehicle and bridge.
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Figure 13. Measured truck vertical acceleration response when driven at 30 km h−1 over the Geumdang Bridge. Vertical lines denote the time
when each axle crosses a bridge expansion joint. The thicker of the four vertical lines denotes the time of crossing of that specific
instrumented axle.

(a) (b)

(c) (d)

Figure 14. Measured vertical acceleration response of the Geumdang Bridge during the 30 km h−1 truck run: (a) sensors #1–5 on span 1
(30 m long); (b) sensors #6–10 on span 2 (40 m long); (c) sensors #11–15 on the first part of span 3 (40 m long); (d) sensors #16–20 on the
second part of span 3 (40 m long). Vertical lines denote time when each axle crosses a bridge expansion joint.

5. Conclusions

In this study, vehicle–bridge interaction is successfully
observed using a comprehensive wireless monitoring system
capable of unifying data acquisition from mobile wireless

sensors on a truck with permanent wireless sensors installed
on a bridge. The wireless vehicle–bridge monitoring system
is scalable, low cost and proven to be reliable during dynamic
testing. In this study, the Geumdang Bridge in Icheon, Korea
is selected for dynamic testing using a 20.9 ton truck. Installed
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along the 150 m northern span of the bridge is a wireless
sensor network with 20 wireless vertical accelerometers and 5
wireless PVDF tactile sensors to measure the bridge response
and the location of the truck. Similarly, the truck is
instrumented with five wireless vertical accelerometers, one
wireless horizontal accelerometer and one wireless gyroscope.
The 32 wireless sensor nodes are time-synchronized by the
wireless monitoring system base station installed on the bridge.
The system proved reliable with 100% data delivery when
the truck was within 700 m of the base station. Using a
Kalman filter combined with fixed-interval smoothing, the
trajectory of the truck is accurately identified using the
horizontal truck acceleration and the PVDF tactile sensor
outputs. Furthermore, the time-history data collected from
the vehicle and bridge revealed the dynamic coupling that
exists between the vehicle and the bridge. By exploring
the time-synchronized vibration data of the position-identified
vehicle and the bridge, the dominant sources of vehicle–bridge
interaction are found experimentally. The main source of
vehicle–bridge interaction is the road roughness (e.g. the
irregularity of the deck surface) and the sudden change in the
pavement topology (e.g. the existence of an expansion joint).
Two dominant bridge vibration responses are induced by the
moving, vertically vibrating vehicle: low-frequency global
structure dynamic responses and high-frequency member-level
localized responses (e.g. diaphragm vibrations).

The experimental findings of this study will ultimately
help researchers in the smart structure field by offering a
scalable means of monitoring both structural demand (i.e.
truck loads) and capacity (i.e. bridge responses) in bridge
structures. Future work is aimed towards generalizing
the wireless monitoring system architecture to facilitate
more ad hoc connectivity between the mobile wireless
sensors and the bridge wireless sensors. Also, efforts are
underway to formulate a detailed analytical model using truck–
bridge response data that accurately captures vehicle–bridge
interaction phenomena. Specifically, a two-stage system
identification approach is currently under exploration by the
authors [10]. This approach will first utilize the free-vibration
response of the bridge to create an output-only model of the
bridge system followed by stochastic subspace identification
using truck–bridge response data to extract the truck load
(i.e. position and magnitude). With an accurate estimation of
the bridge load, a structural health monitoring system would
be empowered with a quantifiable load history that can be
correlated to the long-term deterioration of the bridge. For
example, the monitoring system could monitor truck loads over
the complete life of the bridge to derive the cumulative load
effect. Based on the measured bridge response history coupled
with the measured cumulative load effect, the overall reliability
of the bridge system could be easily estimated using a safety
index, β , as offered by first-order reliability methods (FORM).
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