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Abstract

Copy-number variations (CNVs) are widespread in the human genome, but comprehensive assignments of integer locus
copy-numbers (i.e., copy-number genotypes) that, for example, enable discrimination of homozygous from heterozygous
CNVs, have remained challenging. Here we present CopySeq, a novel computational approach with an underlying statistical
framework that analyzes the depth-of-coverage of high-throughput DNA sequencing reads, and can incorporate paired-end
and breakpoint junction analysis based CNV-analysis approaches, to infer locus copy-number genotypes. We benchmarked
CopySeq by genotyping 500 chromosome 1 CNV regions in 150 personal genomes sequenced at low-coverage. The
assessed copy-number genotypes were highly concordant with our performed qPCR experiments (Pearson correlation
coefficient 0.94), and with the published results of two microarray platforms (95–99% concordance). We further
demonstrated the utility of CopySeq for analyzing gene regions enriched for segmental duplications by comprehensively
inferring copy-number genotypes in the CNV-enriched .800 olfactory receptor (OR) human gene and pseudogene loci.
CopySeq revealed that OR loci display an extensive range of locus copy-numbers across individuals, with zero to two copies
in some OR loci, and two to nine copies in others. Among genetic variants affecting OR loci we identified deleterious
variants including CNVs and SNPs affecting ,15% and ,20% of the human OR gene repertoire, respectively, implying that
genetic variants with a possible impact on smell perception are widespread. Finally, we found that for several OR loci the
reference genome appears to represent a minor-frequency variant, implying a necessary revision of the OR repertoire for
future functional studies. CopySeq can ascertain genomic structural variation in specific gene families as well as at a
genome-wide scale, where it may enable the quantitative evaluation of CNVs in genome-wide association studies involving
high-throughput sequencing.
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Introduction

Structural variants in the human genome, such as CNVs or

balanced inversions, represent a major form of variation with

widespread functional consequences [1]. Numerous surveys

mapping CNVs at varying levels of resolution [2,3,4,5,6] have

created a comprehensive CNV inventory, with the latest survey

reporting 1,098 CNVs on average between two individuals

spanning nearly 0.8% of the genome [6]. Collectively, the list of

reported CNVs presently involves 8,410 loci (Database of

Genomic Variants [3], DGV) when applying the frequently used

operational definition for CNVs, i.e., gains and losses of segments

1 kb or larger in size [7].

Recent studies have associated CNVs with various phenotypes,

including benign and disease-related phenotypes such as cancer,

HIV-1/AIDS susceptibility, autoimmunity, and complex disorders

([1] and references therein). Yet, while different conceptual

approaches for CNV-discovery have been developed

[8,9,10,11,12,13] most CNV analysis approaches presently do

not distinguish CNVs based on the copy-number of the underlying

DNA segment, i.e., its copy-number genotype, a distinction that is

crucial for leveraging CNV assignments for studies focusing on

genome evolution and genotype-phenotype associations [14]. For

example, copy-number genotypes enable distinguishing bi-allelic

loci (i.e., loci at which in addition to the reference allele either a

single duplication or a single deletion allele is observed) from multi-

allelic loci (i.e., loci with more than one variant, such as deletion

and duplication, or multiple duplications). Furthermore, in bi-

allelic loci copy-number genotypes allow discriminating heterozygous

from homozygous CNVs. Such information is crucial in association

studies, where the failure to assign locus copy-numbers or to

discriminate heterozygotes from homozygotes limits the statistical
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power. Recently, improvements in microarray technology have led

to advances in CNV analysis by facilitating the ascertainment of

copy-number genotypes in genomic regions amenable to hybrid-

ization by high-resolution comparative genome hybridization

(array-CGH) or state-of-the-art SNP/CNV hybrid array platforms

[6,14]. While microarrays have advantages in enabling CNV

ascertainment at high-throughput and low-cost, their resolution

can be limited in CNV-rich regions involving segmental

duplications [15] (SDs). This might be because of probe cross-

hybridization issues, which may reduce the number of effective

oligonucleotide probes that can be designed for these regions [16].

Indeed, commercial microarray-based approaches for copy-

number genotyping are restricted to genomic loci for which

probes are available at sufficient densities [6,14], while custom

array designs may compensate for probe densities with the

remaining limitation of relying on regions for which effective

probes can be designed.

Recent breakthroughs in ‘Next Generation Sequencing’ (NGS)

technologies have stimulated the development of computational

approaches that enable the discovery of CNVs with excellent

quantitative and spatial resolution [8,9,10,11,13]. In this regard,

several studies have demonstrated that the sequencing depth-of-

coverage of NGS reads can be employed for CNV-discovery

[8,9,17,18,19]. For example, Xie et al. [18] and Chiang et al. [8]

described CNV-discovery approaches conceptually related to

array-CGH analysis, whereby the read-depth in genomic intervals

is compared between pairs of samples to detect CNVs as relational

changes in studies involving case/reference setups (e.g., cancer

tissue vs. healthy tissue). Furthermore, Alkan et al. recently reported

an elegant read-count based approach for mapping locus copy-

number differences in large ($20 kb) SDs using high-coverage (6

to 20-fold coverage) NGS data, by equating averaged and rounded

read-counts in individual samples with integer locus copy-numbers

[19]. However, with recent advances enabling sequencing

hundreds of genomes in studies focused on population genetics

or genotype-phenotype correlations, a statistical framework for

copy-number genotyping will soon become a prerequisite to

enable the probabilistic ascertainment of CNV sets in NGS-based

association studies. To be useful for genome-wide association

studies, a NGS-based copy-number genotyping approach needs to

provide absolute locus copy-number estimates in a sample-specific

manner and needs to be able to determine confidence values for

each copy-number genotype (to maximize statistical power).

Furthermore, it should enable accurate ascertainment of a wide

range of CNVs, including rare and common ones, and including

those at the 1–20 kb size-range, a highly abundant CNV size-class

[4]. Lastly, the ability to utilize low-coverage (i.e., #46 coverage)

NGS datasets, i.e., datasets such as the ones generated by the ‘1000

Genomes Project’ (1000GP; see http://1000genomes.org), will be

a crucial asset for such a copy-number genotyping approach, given

that sample number and sequencing coverage will be at a constant

tradeoff in future association studies.

Here, we present CopySeq, a statistical framework for copy-

number genotype inference from low-coverage genomes, which is

available at http://embl.de/,korbel/copyseq/. As a benchmark

we used CopySeq to genotype a set of CNVs previously analyzed

with microarrays and obtained excellent genotyping concordances

for CNVs across a wide size-range. In addition, as a proof-of-

principle we used the approach to infer copy-number genotypes in

the largest human gene family, with many genes and pseudogenes

embedded within SDs: i.e., we analyzed the .800 olfactory

receptor (OR) genes and pseudogenes in the human genome. OR

genes form one of the most genetically variable and rapidly

evolving protein-coding gene families and display a strong

enrichment for CNVs [4,20,21,22] compared to most other gene

families. Thus, the OR gene family represents an appealing model

for assessing copy-number genotype ascertainment using low-

coverage sequencing and for studying the effect of CNVs on

protein coding loci. Owing to the comparative nature of earlier

studies, CNVs in ORs were thus far mostly reported as gains and

losses relative to an arbitrarily chosen reference sample, and for

most ORs no absolute locus copy-number assignments have been

reported so far. Thus, the full nature and extent of copy-number

variation in ORs remained unknown. Notably, it is presently

unclear to what degree single deletions or duplications (i.e., bi-

allelic) or multiple recurrent CNV-formation events (i.e., multi-

allelic) affect particular OR loci, an information that is crucial for

functional analyses as multiple alleles can reduce signals in

association studies. Our analysis of ORs using CopySeq revealed a

widespread diversity in integer locus copy-numbers in human OR

loci in the 150 individuals assessed. We report a segregation of

copy-number variable OR loci into bi-allelic, multi-allelic, and

non-variable CNVs, with notable population differences in some

OR loci. In addition, our analysis enabled us to address and

further dissect genomic biases that may influence the extent of

CNVs affecting ORs, including functional (genes vs. pseudogenes),

DNA sequence context (non-repetitive vs. repetitive DNA), and

evolutionary (‘young’ vs. ‘ancient’ ORs) biases.

Results

A statistical framework for copy-number genotyping in
NGS data

CopySeq enables the inference of copy-number genotypes in

genomic loci suspected to differ in copy-number (see Materials and

Methods for details, and Figure 1). The first step undertaken by

CopySeq, termed locus selection, involves the definition of putative

CNV loci. Loci may be selected based on biological consider-

ations, e.g., to enable copy-number genotyping comprehensively in

previously published CNV sets, or in a more focused manner in

Author Summary

Human individual genome sequencing has recently
become affordable, enabling highly detailed genetic
sequence comparisons. While the identification and
genotyping of single-nucleotide polymorphisms has al-
ready been successfully established for different sequenc-
ing platforms, the detection, quantification and genotyp-
ing of large-scale copy-number variants (CNVs), i.e., losses
or gains of long genomic segments, has remained
challenging. We present a computational approach that
enables detecting CNVs in sequencing data and accurately
identifies the actual copy-number at which DNA segments
of interest occur in an individual genome. This approach
enabled us to obtain novel insights into the largest human
gene family – the olfactory receptors (ORs) – involved in
smell perception. While previous studies reported an
abundance of CNVs in ORs, our approach enabled us to
globally identify absolute differences in OR gene counts
that exist between humans. While several OR genes have
very high gene counts, other ORs are found only once or
are missing entirely in some individuals. The latter have a
particularly high probability of influencing individual
differences in the perception of smell, a question that
future experimental efforts can now address. Furthermore,
we observed differences in OR gene counts between
populations, pointing at ORs that might contribute to
population-specific differences in smell.

Copy-Number Genotyping of Olfactory Receptor Genes
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candidate loci of an association study. Following locus selection,

the mappability assessment step assesses the mappability of all k-mer

subsequences of the selected loci to identify sequence stretches that

are unambiguously (uniquely) mappable with short reads, i.e., such

with no exact duplicate sequence in the reference genome. This

step assures exclusion of (1) unspecific reads and (2) reads

originating from paralogous sequences. Then, in the read-mapping

step DNA reads are aligned onto the reference genome, and only

unique matches retained, using a fast read-mapper such as the

MAQ or BWA algorithm [23,24]. Lastly, the copy-number genotyping

step measures the locus-specific read-depth in the mappable

sequence fraction and infers copy-number genotypes for each

sample by relating the resulting read-depth value to the expected

locus read-depth after correction for GC-content biases [25] using

a smoothing spline-based approach. In particular, CopySeq uses a

Gaussian classifier that regards discrete locus copy-numbers as

probability distributions and infers copy-number genotypes with

confidence scores (see Materials and Methods). The copy-number

genotype thereby indicates the diploid copy-number of a locus of

interest in a given genome. In the case of bi-allelic CNVs, this

enables distinguishing homozygous from heterozygous CNVs (e.g.,

heterozygous deletion = ‘1’ copy; homozygous deletion = ‘0’ cop-

ies; homozygous reference allele, or ‘no deletion’ = ‘2’ copies).

Optionally, CopySeq incorporates redefined boundaries (or

breakpoints) of CNVs, available for confined CNV subsets [26],

prior to the copy-number genotyping step by applying different

conceptual approaches: i.e., ‘paired-end mapping’ (PEM), which

identifies CNVs from paired reads that map abnormally onto the

reference genome [4]; or ‘breakpoint-junction sequence analysis’

(BJA), which detects CNVs by aligning sequence reads onto CNV

breakpoint-junctions [26]. The rationale for applying such

boundary-redefinition approaches is that accurate (i.e., redefined)

CNV-boundaries facilitate the proper interpretation of read-depth

data, thus enabling more accurate copy-number genotype

inference (see below).

Data source
To assess the performance of CopySeq on low-coverage genome

sequences we acquired NGS data from 150 individuals with

different ancestries, i.e., genomes that were recently sequenced at

low coverage in the 1000GP pilot phase 1 (Table S1 and Materials

and Methods): 52 unrelated African individuals with ancestry from

Nigeria (Yoruba from Ibadan; YRI); 53 Asians, including 29

unrelated Chinese individuals from Beijing (CHB) and 24

unrelated Japanese from Tokyo (JPT; we analyzed all 53 Asian

individuals together as the ‘‘CHB+JPT’’ group [27]); and 45

individuals of European ancestry from Utah (CEU), USA,

including 42 unrelated individuals and 3 members of a parent-

offspring trio. The analyzed genomes were sequenced at 3–46fold

coverage on average; most reads had a read-length of 36 nt.

Assessing the genotyping concordance of 500 CNVs on
chromosome 1

To evaluate CopySeq, we first assembled known CNVs from

human chromosome 1, for which copy-number genotypes were

previously inferred with Affymetrix SNP 6.0 microarrays [14] (a

SNP/CNV hybrid microarray platform). Namely, we compared

CopySeq with copy-number genotypes from McCarroll et al., who

analyzed 270 individuals out of which 118 overlapped with our

study, to initially evaluate CopySeq (see Materials and Methods).

Out of 100 CNVs [14] with a median size of 6.8 kb

(mean = 11.2 kb), only one CNV displayed less than 500

mappable 36-mers and thus was excluded (Materials and

Methods). We found that most CNV loci were covered by an

appreciable number of sequencing reads, with a mean of 685 reads

(median = 418). CopySeq was used to generate 14,850 (99 loci

times 150 samples) copy-number genotypes in this CNV set, with

inferred locus copy-numbers ranging from ‘0’ copies up to ‘5’

copies (Table S5 and Figures S8, S9). The copy-number genotypes

displayed an excellent genotyping concordance of 98.9% with the

Affymetrix-array based results (Tables S3, S6, S7; Figures 2ABC,

S18A). Note that by assuming that array-based genotypes are

correct, genotyping concordances achieved with CopySeq can be

considered as lower bound estimates for genotyping accuracies

(note that discordances in specific genotypes could obviously be

either due to errors in the array-based genotypes or due to errors

in CopySeq’s genotypes). In general, deletion genotypes inferred

by CopySeq yielded higher concordances than duplication

genotypes. We quantified this by calculating the positive predictive

value (PPV) for deletions (99.6%) and duplications (89.1%) (see

Table S8), suggesting that while both deletions and duplications

are identified at high accuracy, duplications are more difficult to

ascertain than deletions by CopySeq, microarray-based genotyp-

ing, or both methods.

Figure 1. Schematic illustration of CopySeq. A. ‘Locus selection’,
i.e., definition and selection of loci of interest for copy-number
genotyping. B. ‘Mappability assessment’, i.e., construction of k-mer
mappability locus maps. Sequence sub-stretches not uniquely mappa-
ble by k-mers are identified in each locus (represented by red blocks)
and masked (i.e., excluded from further analysis). C. ‘Read-mapping’, by
default carried out with MAQ [24] (other read-mappers, such as BWA
[23] can optionally be applied). D. ‘Copy-number genotyping’: The locus-
specific read-depth is determined, and the locus-specific ‘read-depth
ratio’ computed and corrected both for the locus-specific k-mer
mappability as well as for G+C-content bias (see Materials and
Methods). A Gaussian classifier infers locus copy numbers by comparing
locus-specific read-depth ratios with read-depth ratio distributions
which are expected for different copy-number genotypes (distributions
for the copy-number genotypes 0, 1, 2, 3, 4, and 5 are indicated with
different colors). E. Copy-number genotypes are reported.
doi:10.1371/journal.pcbi.1000988.g001

Copy-Number Genotyping of Olfactory Receptor Genes
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We also estimated genotyping concordances for various

different CNV size cutoffs (Figure 2A), and, as expected, observed

an increase in concordance between CopySeq and Affymetrix-

arrays with CNV size. However, high concordances were obtained

also for relatively small CNVs (e.g., 97.5% for CNVs 1–2 kb in

size), suggesting the applicability of CopySeq across a wide CNV

size-range in 3–46 coverage sequence data.

Furthermore, we combined CopySeq with PEM and BJA

(Materials and Methods), and found that CNV-boundary

redefinition with PEM or BJA leads to improved genotyping

concordances. Specifically, when applying PEM we measured a

genotyping concordance with Affymetrix-arrays of 99.6%, and

when applying BJA we measured a concordance of 99.7% (Tables

S2, S9, S10) – although the numbers of CNVs ascertained was

comparably low for BJA and PEM, as for many loci the CNV-

boundaries were unknown. A further advantage of CNV-

boundary redefinition is that it can help untangle complex CNV

loci, as we exemplified below.

We also compared CopySeq’s copy-number genotypes to

genotypes recently inferred with a high-resolution Agilent

oligonucleotide array-CGH platform [6] through analyzing 401

CNV regions on chromosome 1 with a median size of 3.1 kb.

Conrad et al. [6] analyzed 450 individuals out of which 149

overlapped with our study. Our analysis resulted in an excellent,

albeit slightly weaker genotyping concordance of 89.1% – with

small CNVs displaying higher concordances than large CNVs and

Figure 2. Copy-number genotyping results in a chromosome 1 CNV set. A. Copy-number genotyping concordance between CopySeq- and
microarray-based [14] copy-number genotypes inferred for 99 CNVs on chromosome 1 in 118 individuals, using different CNV size cutoffs. Plotted
circles represent the total number of high-confidence genotypes, with the largest circle corresponding to .10,000 copy-number genotypes and the
smallest to 348 copy-number genotypes. As expected, the genotyping concordance increases with higher CNV size cutoffs. B–C. Copy-number
genotyping results for chromosome 1 example CNVs across 150 individuals, i.e., a bi-allelic deletion (chr1:150,822,330–150,853,218; see B) as well as a
bi-allelic duplication (chr1:164,451,105–164,460,994; see C). Copy-number genotypes inferred by CopySeq are indicated with different colors: ‘0’, red;
‘1’, orange; ‘2’, grey; ‘3’, blue; ‘4’, purple. Individuals have been arranged according to population: squares, CEU; triangles, CHB+JPT; circles, YRI. The
scaled read-depth ratio (indicated on the y-axis) has been calculated by multiplying the read-depth ratio by two.
doi:10.1371/journal.pcbi.1000988.g002

Copy-Number Genotyping of Olfactory Receptor Genes
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some CNVs displaying 0% concordance (Tables S15; Figure

S18B). When looking for the source of the discordance we found

that many of the disagreeing copy-number genotypes occurred in

large (.10 kb) CNVs embedded in SDs (see Text S1). Altogether,

four of these large CNVs were ascertained both by the Agilent and

the Affymetrix platform. We found that whereas in all four regions

the Agilent CGH arrays tended to agree with CopySeq in a

relative sense (mean Pearson correlation coefficient 0.78), Agilent

array-CGH was for all four CNVs discordant with both the

Affymetrix SNP arrays and CopySeq in terms of the absolute

copy-number reported (note that absolute copy-numbers agreed

between CopySeq and Affymetrix arrays in these regions; see

Table S17). To improve the comparability between the platforms,

we thus reasonably excluded CNVs intersecting with SDs when

analyzing the Agilent array-CGH based results. This led to an

overall improved copy-number genotyping concordance of 94.8%

between CopySeq and Agilent array-CGH (Table S16).

Furthermore, we compared CopySeq to Alkan et al.’s approach

[19], which interprets averaged read-depths as locus copy-

numbers (i.e., depth-of-coverage analysis without probabilistic

genotyping model). We used CopySeq to analyze published short

sequence reads from a single African male individual [28] which

previously had been analyzed with regard to copy-number

variation [19], and obtained a better concordance with Affymetrix

SNP array-based copy-numbers for CopySeq (97.2%) than for

depth-of-coverage analysis without genotyping model (80.2%). As

suggested in [19] these concordance estimations excluded SD

regions, as Alkan et al.’s approach infers copy-numbers in SDs as a

genome-wide sum across all paralogous loci, rather than separately

for each paralog (see Text S1 and Table S18).

Next, we randomly picked eighteen common CNVs and

subjected them to quantitative PCR (qPCR) validation in three

individuals each. The CNV sizes ranged from 707 bp to 127 kb

(median size 3.7 kb) and most copy-number genotypes (65%) in

these eighteen regions differed from the homozygous reference

copy-number of ‘2’. In total, 49 out of 54 (91%) copy-number

genotypes were supported by the qPCR experiments, results that

were in good agreement with the genotyping concordances

determined based on the microarray platforms (see Text S1 and

Table S19). We further compared CopySeq’s results to a set of loci

that had previously been analyzed by fluorescent in situ

hybridization (FISH) [19], with the FISH results validating

CopySeq’s copy-number genotypes in four out of five assessed

loci (see Text S1 and Table S21).

Furthermore, we tested the effect of sequencing coverage on

CopySeq’s performance by generating sub-coverage datasets (0.5,

1, 2, 3, 4, 5, 10, 20, and 306) of the high-coverage (,406)

NA18507 genome [28] and assessed to what extent the genotype

concordance with two complementary microarray platforms

changed with coverage (see Text S1). Although, unsurprisingly,

genotyping accuracies improved with increasing coverage, low-

coverage (3–46) genomes displayed only a minor decrease in

accuracy compared to a 30–406 genome (0.8–1.6%; see Figure

S16), suggesting low-coverage sequencing offers an excellent

tradeoff between cost, throughput, and sensitivity in variant

detection. We also assessed the effects sequencing errors may have

on CopySeq’s genotypes in low-coverage data, and found their

influence to be minor (see Text S1).

Measuring copy-number genotypes in olfactory receptor
(OR) loci across 150 individuals

Our initial assessment of CopySeq suggested an excellent

accuracy in genomic regions ascertained with microarrays. Given

that in principle any genomic region mappable by unique

sequence reads can be analyzed with CopySeq, we next

specifically assessed CopySeq’s performance in a set of relatively

hard-to-ascertain regions. Namely, as a proof-of-concept, we

assessed genomic loci associated with the largest human gene

family – i.e., the 388 OR gene and 463 OR pseudogene loci, most

of which are not ascertained by state-of-the-art commercial

genotyping array platforms [14]. In particular, we reasoned that

CopySeq may enable the first comprehensive assessment of the

extent of variation in terms of integer locus-copy numbers in the

OR gene family.

We analyzed the OR loci as ,3 kb regions encompassing the

single-exon open reading frames (ORFs) and downstream as well

as upstream sequence stretches (Materials and Methods). We

assessed the mappability of reads onto OR loci and excluded only

,5% (22 genes and 21 pseudogenes) from our analysis, as they

displayed less than 500 mappable 36-mers per locus (Figure S1).

Following read mapping we found that OR loci were covered on

average by 209 (median = 190; see e.g., Figure 3BCD) uniquely

aligning reads per individual.

Constructing a personalized locus copy-number map of
ORs in 150 individuals

We analyzed 808 mappable OR loci in 150 humans using

CopySeq to construct a comprehensive and accurate OR locus

copy-number map. Eleven of these loci are on chromosome X and

thus naturally differ in copy-number between females and males.

We thus focused in our analyses, described below, on CNVs

in the 797 remaining autosomal regions, and made use of

the eleven X-chromosomal regions for optimally setting the

parameters of the method (i.e., the Q-value; see Materials and

Methods). Altogether, CopySeq inferred 4,573 loci with a copy-

number different from the homozygous reference allele, which

fell into 313 copy-number variable OR loci (Table S4). These

involved 2,137 deletions (autosomal locus copies of ‘0’ to ‘1’) and

2,436 duplications (‘3’ and up to ‘9’ locus copies; Figure 3E). We

excluded six out of the 313 autosomal copy-number variable OR

regions, on the basis of previous reports that these loci, or their

closest paralogs in the genome, likely represent extremely rare

CNVs in the reference genome, or alternatively mis-assemblies

[22] (these six loci displayed no, or very few, reference alleles).

The remaining 307 loci were classified into 265 bi-allelic CNVs

(i.e., 135 bi-allelic deletions and 130 bi-allelic duplications) and

42 multi-allelic CNVs based on their inferred locus copy-

numbers in 150 individuals (Materials and Methods). The

fraction of variable OR genes and pseudogenes is 33% (130/

387) and 38% (137/464), respectively. On average, we detected

25 copy-number variable OR loci per individual, i.e., 8 OR

genes (2.3%) and 17 OR pseudogenes (3.9%) (Figure S17). These

correspond to, on average, 43 quantitative inter-individual copy-

differences (Figure 4 and Table S11).

Validating our OR gene copy-number map
We next assessed the accuracy of CopySeq in OR loci using

three distinct approaches. First, we examined a parent-offspring

trio with European ancestry sequenced at low-coverage for the

segregation of 772 OR loci that appeared bi-allelic, or displayed

no CNV, across the examined European individuals (Materials

and Methods). We found that all 16 copy-number genotypes

inferred in the daughter, which included 7 heterozygous and 9

homozygous deletions, were consistent with Mendelian segrega-

tion (Figures 5, S10) suggesting high genotyping accuracy.

Second, we compared CopySeq with microarrays, i.e., copy-

number genotypes inferred with Affymetrix SNP 6.0 arrays [14]

and Agilent CGH arrays [6] (Figures 6A, S11). The Affymetrix

Copy-Number Genotyping of Olfactory Receptor Genes
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arrays ascertain ,5% (46) of the autosomal 3 kb OR loci, allowing

us to compare ,5,400 copy-number genotypes in OR loci across

the 118 overlapping samples. Indeed, copy-number genotypes

reported in McCarroll et al. [14], ranging from 0 to 6, show a

strong correlation with our genotype calls (Pearson correla-

tion = 0.91; P,2.2e-16). We estimated a CNV false discovery rate

of 1.7% (26/1561) and a sensitivity of 75% (1535/2061) for

CopySeq (Materials and Methods), under the conservative

assumption that the microarray-based calls [14] contain no false

positives as well as no false negatives. Furthermore, under the

same conservative assumption we estimated positive predictive

values (or PPV) of 97% (683/704) for deletions and 99% (852/

857) for duplications in the OR loci. We also compared our OR

copy-number genotypes with genotypes inferred with Agilent

CGH arrays [6] which ascertained ,6% (51) of the OR loci,

enabling us to compare .7,000 genotypes in the 149 overlapping

samples. This comparison also revealed highly significant, albeit

slightly weaker correlations (Pearson correlation 0.73; P,2.2e-16;

Figure S11) – similar to the results we obtained for chromosome 1

CNVs.

Third, we used qPCR to obtain independent validation results

for our copy-number genotypes in 10 individuals across five loci,

Figure 3. Copy-number genotype inference in olfactory receptor (OR) loci across 150 individuals. A. Distribution of locus-specific read-
depth measurements in 808 OR loci. Altogether 121,200 data points are depicted (808 loci times 150 samples). Points relate the GC-adjusted read-
depth to the expected read-depth, which is estimated based on the k-mer mappability of a locus and the genomic sequencing coverage of a sample.
CopySeq copy-number genotypes are indicated by colors (bottom to top): ‘0’, red; ‘1’, orange; ‘2’, grey; ‘3’, blue; ‘4’, purple; ‘5’, green; ‘6’, brown; ‘7’,
yellow; ‘8’, light blue; ‘9’, black). B–D. Dissecting a complex CNV region with CopySeq. The displayed region (chr11:4,921,968–4,930,581) harbors a
multi-allelic CNV involving both a deletion and a duplication. The deletion results in an OR51A2—OR51A4 fusion-gene [4]. Read-depths are shown on
the left and the inferred locus-structure on the right. CopySeq was carried out in conjunction with breakpoint-junction analysis [26], generating the
following copy-number genotypes. NA19138: ‘2’ for OR51A4, ‘2’ for OR51A2, ‘0’ for the fusion-gene (B); NA12716: ‘0’, ‘0’, ‘2’ (C); NA19172: ‘2’, ‘4’, ‘0’
(D). Orange and blue boxes indicate open-reading frames (ORFs), and orange/blue lines denote the respective loci (with 39 and 59- regions). Both
ORFs are on the reverse strand of the reference genome. The gene fusion occurred near the ORFs’ 59-end within a sequence stretch where both share
extensive homology (thus, no reads map to this stretch uniquely). E. Copy-number genotype map of OR loci in 150 individuals. Each bar represents
the frequency of a copy-number genotype (y-axis) at a particular OR locus (x-axis). Colors indicate copy-number genotype frequencies (color scheme
is on the right).
doi:10.1371/journal.pcbi.1000988.g003
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by assessing 50 copy-number genotypes through experimental

validation (Materials and Methods). Three of the five loci were

randomly picked and two specifically selected since they displayed

particular wide ranges in copy-number genotype (i.e., up to ‘9’

copies). The loci further included regions that can reasonably be

regarded as particularly hard to ascertain: i.e., .90% of the

nucleotides overlapped with SDs in four loci; four loci displayed

multi-allelic CNVs; and ,50% (24/50) of the assessed copy-

number genotypes corresponded to duplications. Nonetheless,

measured correlations with CopySeq’s copy-number genotypes

were excellent for the qPCR measurements (Pearson correla-

tion = 0.96, P,2.2e-16; Table S13). Among these, we found that

correlations were of high magnitude for CopySeq’s genotypes

including the extreme copy-number of ‘9’ (Figure 6B), which

suggests that CopySeq enables generating copy-number genotypes

accurately over a wide range of locus copy-numbers. Furthermore,

we picked the four loci displaying the strongest discrepancies

between CopySeq and microarray studies [6,14] (i.e., genotype

concordance ,30%) for further qPCR validation in eight

individuals each; three of these four loci intersected with recently

duplicated SDs. The qPCR results were consistent with CopySeq

in three out of the four assessed loci (Figure S14, Table S14, and

Figure 4. Distribution of inter-individual copy-number differences in autosomal OR loci. A. Commonly variable loci account for the
majority of inter-individual OR copy number differences. OR loci were ranked by the frequency at which they displayed a copy-number genotype
other than ‘2’ (indicating a CNV), followed by iterative exclusion of the rarest CNVs (i.e., first the loci that most rarely vary in copy-number were
excluded, then the more common ones). Pair-wise copy-number differences between all samples were calculated, and average copy-number
differences across all pair-wise comparisons determined. The y-axis indicates the inter-individual copy-number difference as a percentage of the
maximum average copy-number difference, and the x-axis indicates the percentage of all copy-number variable (polymorphic) OR loci for each OR
frequency rank step. For example, ,15% of the OR loci account for ,80% of the inter-individual OR copy-number differences between any two
samples. B. Distribution of inter-individual OR copy number differences computed separately for each pair of samples. Pair-wise copy-number
differences were computed as quantitative differences between copy-number genotype values summed up over all OR loci between pairs of samples
(x-axis). (In this regard, for example, the difference for a given locus is 2, if in one sample a copy-number genotype of ‘0’ and in the other a copy-
number genotype of ‘2’ is inferred.). Blue solid line: OR genes; red solid line: OR pseudogenes; red dotted line: OR pseudogenes, excluding the CNV-
enriched OR7E family.
doi:10.1371/journal.pcbi.1000988.g004
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Text S1), suggesting that NGS-based genotypes are at least

similarly accurate, and may possibly be more accurate, than array-

based genotypes in such regions.

Comprehensive analysis of the OR copy-number map
Having established the accuracy of CopySeq in OR loci we next

performed a global analysis of our OR copy-number map. First,

we related deletions and duplications to previously published

CNVs, i.e., to CNVs reported in the DGV (version from

December 2009) and in a recent microarray-based analysis of

OR loci [21] currently not included in DGV. We found that 199

of the identified 307 copy-number variable autosomal OR loci

overlap with already published CNVs. 50 out of 52 commonly

variable OR loci (i.e., such with reference allele frequency ,95%;

Table S3; see Text S1) had previously been reported. The

remaining 108 OR loci were previously not reported to vary in

copy-number; this included 99/108 (92%) rare CNVs (allele

frequency ,1.0%). Obviously, future surveys examining larger

numbers of individuals are likely to report further rare CNVs

affecting ORs.

Figure 5. Heritability of CNVs in a parent-offspring trio of European ancestry. A. Chromosomal origin of the largest human OR genomic
cluster and pedigree of the European family. B–D. CNV inheritance, indicated in terms of scaled read-depth ratios and inferred copy-number
genotypes among 96 bi-allelic OR loci located in the largest human OR cluster (11@55.6; see nomenclature in http://genome.weizmann.ac.il/horde/;
chr11:54,842,512–56,344,668). The x-axis represents genomic coordinates, and individual OR positions are marked by ticks. The copy-number
genotypes identified in NA12891 (B), NA12892 (C), and NA12878 (D), were inferred based on low-coverage genomic data (Table S1) and are
consistent with Mendelian segregation. Bi-allelic CNVs were classified according to copy-number genotypes identified in the European (CEU)
individuals. Copy-number genotypes are color-coded: ‘1’, orange; ‘2’, grey; ‘3’, blue.
doi:10.1371/journal.pcbi.1000988.g005
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Our genotype frequency analysis further revealed several

instances in which the majority of individuals displayed a non-

reference allele. Given the importance of establishing a common

and comprehensive OR repertoire for functional studies we

analyzed these cases in detail, first by calculating CNV allele

frequencies in all bi-allelic loci. This analysis suggested that in

eight OR loci (including, for instance, OR2BH1P) the reference

allele represented a minor allele (i.e., reference allele frequency

,50%); two of these loci involved genes (see below). Furthermore,

we estimated reference allele frequencies in multi-allelic loci by

assuming the presence of the homozygous reference allele if a locus

copy-number of ‘2’ was inferred (see Text S1). This analysis

revealed that in one multi-allelic OR pseudogene locus (OR11J2P)

the reference sequence appears to represent a minor frequency

allele (Table S3). Moreover, we estimated confidence intervals

(95%) for reference allele frequencies and identified five additional

loci (e.g., OR4A45P) that are situated in transition between minor

and major alleles, i.e., with an alternative allele frequency close to

50% (see Text S1).

We next analyzed in further detail OR loci that displayed

unusual (i.e., non-reference) copy-number genotypes in the vast

majority of samples. In particular, our results indicated that

OR4C3 and OR4C5 genes as well as the OR4C4P pseudogene

(all located in one genomic interval on chromosome 11) are

duplicated in most (.95%) individuals (Table S3). We mined an

alternative assembly of the human genome and found a close

duplication (95% identity) of this genomic interval at another,

distinct location on chromosome 11, suggesting that the reference

genome version at the original interval may either be based on a

rare deletion in the region (see Text S1), or may potentially

represent a mis-assembly of the reference (as recently discussed in

Young et al., 2008). Whichever the case might be, absence of the

common allele sequence from the reference genome and the high

sequence identity between the duplicated segments, resulted in

mapping of all reads originating from both loci onto one locus.

Notably, we also identified a segment on chromosome 12 which

contained three OR pseudogenes (OR7E140P, OR7E148P,

OR7E149P) that were homozygously deleted in all European

and Asian individuals, but were present in the Yoruba individuals

with ,36% allele frequency. The absence of orthologs of these

pseudogenes in chimpanzee and orangutan suggests that they

likely represent a recent human-specific insertion.

In addition, we assessed whether common, rather than rare

CNVs are responsible for the majority of measured inter-

individual OR copy-number differences. We thus ranked copy-

number variable OR loci by the frequency at which they displayed

an alternative (CNV) allele and recomputed the inter-individual

OR copy-number differences. We found that a small number of

relatively common variants affecting OR loci were responsible for

most of the ascertained variation: i.e., the ,15% most commonly

variable loci captured approximately ,80% of the inter-individual

copy-number differences, and the ,50% most common loci

captured ,95% of the differences (Figure 4A). Thus, common

CNVs lead to most inter-individual differences in OR copy-

number and thus may have a relatively strong impact on variation

in smell perception in humans; these common variants thus

represent attractive candidate regions for future association

studies.

We mostly analyzed CNVs in an OR locus-by-locus basis. It is

evident from Figure 3E, however, that CNVs present at high

frequency (i.e., OR loci that frequently display CNGs other than

‘0’) tend to cluster, suggesting that they may form CNV hotspots

or correspond to large CNVs spanning multiple loci [21,22]. We

thus assessed consecutive CNV calls in annotated genomic OR

clusters, assuming that adjacent OR loci that are both involved in

a duplication or are both involved in a deletion, respectively, may

potentially be explained by a single large CNV. This analysis

revealed that ,36% of CNV events involve single-OR-locus

CNVs, whereas the remaining (potentially large) CNVs may span

at least two adjacent OR loci (Table S4).

Deletions are particularly likely to have an impact on smell

perception, as they may abrogate OR function. In our set, we

Figure 6. Concordance of copy-number genotypes inferred in
OR loci with microarray-based calls and qPCR experiments. A.
Comparison of .5,000 copy-number genotypes inferred in OR loci,
using CopySeq, with microarray-based [14] copy-number genotypes.
The comparison is based on 46 OR loci, assessed in 118 individuals.
Circle size indicates the number of comparisons falling into a certain bin
(the largest circle, representing .3,000 copy-number genotypes,
corresponds to concordant copy-number genotype calls of the
homozygous reference allele, i.e., copy-number = ‘2’). Blue lines denote
the function y = x and have been included to facilitate evaluation of the
data. B. Validation of 50 copy-number genotypes in 5 OR loci610
samples by qPCR. Experimentally determined qPCR values are
expressed in terms of adjusted Ct values, which were estimated as
described in the Materials and Methods section.
doi:10.1371/journal.pcbi.1000988.g006
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found that 14.5% (56/387) of the OR genes harbored at least one

deletion allele, and in 5.9% (23/387) of the OR loci, deletions

were observed with an allele frequency .1.0%. Homozygous

deletions are of particular interest due to their potential

phenotypic effects. We found that these are widespread with

25% of the analyzed individuals displaying at least one

homozygous OR gene deletion and some individuals displaying

up to four such ‘holes’ in their functional OR content. To obtain

an inclusive list of alleles responsible for holes in the human OR

repertoire we also mined the 150 individuals for SNPs associated

with OR gene inactivation (i.e., those causing segregating

pseudogenes [29]) and identified 24 previously known and 49

novel SNPs resulting in altered OR gene start and stop codons

(Materials and Methods and Table S12). The list of inactivating

genetic variants, including locus deletions and segregating

pseudogenes, covers ,15% and ,20% of the OR gene repertoire,

respectively. These genetic variants represent excellent candidates

for future association studies on olfaction.

Studying genomic biases with regard to CNVs in OR loci
We next used CopySeq to obtain insights into how region-

specific genomic biases may have shaped the genomic distribution

of CNVs affecting ORs. First, we compared the relative CNV

abundance between OR pseudogenes and OR genes. In this

regard, both random drift [20] and selective constraints [21] have

been implicated in influencing the distribution of CNVs in OR

genes and pseudogenes. Our analysis of copy-number genotypes

indicated that pseudogenes generally show more variance in locus

copy-number than genes (Figure 4B). Selective constraints can be

assessed by examining deletions, i.e., the removal of functional

genes, as deletions are more often deleterious than duplications

and thus are more biased away from functionally relevant genomic

regions ([1] and references therein). We found that on average less

genes (3.8 per individual, i.e., 1.0% of the OR gene set) than

pseudogenes (9.5 per individual, i.e., 2.0%) were deleted per

individual, a trend that was significant (2-fold relative depletion;

P = 0.009 based on a permutation test; see Text S1). Furthermore,

0.4 genes (0.1% of the OR gene set) and 3.9 pseudogenes (0.8% of

the set) were homozygously deleted in each individual (8-fold

relative depletion; P = 0.004, permutation test). Both trends

persisted, but lost significance when excluding the 7E subfamily,

a rapidly evolving OR subfamily with 85 members [30] (see Text

S1). Thus, while selective constraints acting on OR genes may in

part explain the distribution of CNVs in OR genes and

pseudogenes, these constraints are not extensive for the OR

family, and formational biases presumably contributed to the

observed genomic distribution of CNVs affecting ORs (for

example, we note that the proportion of multi-allelic loci among

CNV loci is similar between OR gene and OR pseudogene loci,

i.e., in each case about 5%).

In contrast to previous surveys, CopySeq enabled us to

comprehensively assess whether multi-allelic CNVs and bi-allelic

CNVs affect OR loci in different sequence contexts. In particular,

we assessed to what extent bi-allelic and multi-allelic CNVs occur

in SDs. The enrichment of copy-variable ORs in SDs (90/307)

was significantly higher compared to non-variable ORs (86/464)

(,1.6-fold; P,1e-4, permutation test). Our results revealed that

particularly multi-allelic OR loci were strongly enriched in SDs

(3.5-fold over non-variable OR loci; P = 0, chi-square = 44.9, chi-

square test; Figure S12). Furthermore, we observed a 4.3-fold

enrichment for loci displaying high copy-number genotypes (‘5’

and more copies; Figure S15) and a 2.7-fold enrichment for loci

displaying both deletions and duplications (Figure S12). This

association is possibly due to the predisposition of regions rich in

SDs to show recurrent CNV formation by non-allelic homologous

recombination [15].

In addition, CopySeq enabled us to dissect the contribution of

evolutionarily young and more ancient ORs to copy-number

variation in OR loci. It was reported that young ORs (some of

which correspond to SDs) are particularly prone to be affected by

CNVs, with young loci defined both based on the presence of

paralogs sharing high sequence identity and based on the lack of

one-to-one orthologs in the chimpanzee [21]. Our analysis

revealed that young ORs affected by CNVs mainly lie in multi-

allelic loci. As shown in Figure 7 multi-allelic loci displayed a

significant enrichment for ORs with high sequence identity

paralogs compared to both bi-allelic loci and non-variable loci

(i.e., the average sequence identity to the closest paralog was 84.5%

in the multi-allelic loci and #73% in both the non-variable or bi-

allelic loci, respectively; the differences are significant with

P,0.0001; t-test). Furthermore, multi-allelic ORs displayed a

.2-fold enrichment for ORs lacking a one-to-one ortholog in

chimp compared to each other group (the differences were

significant with P,0.0001; Chi-square test). Possible explanations

for the differences include selective constraints and formational

biases, both of which likely vary among different genomic regions.

Population-specific aspects of OR copy-number variation
We next assessed whether CNVs affecting OR loci display

differences among individuals from diverse ancestries. Even when

excluding rare CNVs that were identified only once amongst all

individuals we observed 19 CNVs only in the analyzed Africans,

18 only in the Asians, and 10 only in the Europeans (Figure 8A).

Figure 7. Analysis of ‘young’ and ‘ancient’ ORs. The figure
displays the distribution of sequence identities with the most similar
(‘nearest’) paralog for non-variable, bi-allelic, and multi-allelic OR loci.
Each point represents the sequence identity of an OR to its nearest
paralog (y-axis), and the type of locus (non-variable, NV; bi-allelic, BI;
multi-allelic, MU). Green points: OR locus lacks a one-to-one ortholog in
the chimpanzee genome; blue points: OR locus has a one-to-one
ortholog in the chimpanzee genome (as assessed by comparing human
and chimpanzee ORFs at the DNA level using BLAST, and classifying as
one-to-one orthologs sequences displaying mutually highest sequence
identity). Blue and green rhomboids represent the corresponding
distribution average; red rhomboids represent averages for NV, BI, and
MU. Rhomboid error bars represent 95% confidence intervals of the
average.
doi:10.1371/journal.pcbi.1000988.g007
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Furthermore, we carried out principal component analysis (PCA)

of the copy-number genotypes generated across all 265 bi-allelic

autosomal CNV loci. The PCA yielded a visible separation of the

African group from the combined group of Europeans and Asians

by the first two principal components (Figure S13A), and a

separation of all three ethnic groups when analyzing the second

and third component (Figure S13B). Note that the better

distinction of Africans from European and Asian groups is in

line with the well documented bottleneck effect, as evident from

multiple large scale SNP studies [27]. When examining the failure

of the first component to separate the three ethnic groups we

identified a common bi-allelic deletion spanning three OR genes

(OR4C11, OR4P4, OR4S2) and two OR pseudogenes, which

drove the separation into three visible clusters by the first

component (Figure S13). The three clusters represent the average

OR locus copy-number genotype, with the left cluster represent-

ing the homozygous reference allele, the central cluster the

heterozygous deletion, and the right cluster the homozygous

deletion, respectively. The PCA and further analysis showed that

all African individuals analyzed in our survey have at least one

copy of the allele, whereas 7–10% of Europeans and Asians have

all three functional OR genes homozygously deleted. In this

regard, for example, a deletion, which encompassed the OR52E8

gene, was observed with appreciable allele-frequency (18%) in the

Africans, whereas the allele was not observed in the other

populations. Overall our PCA analysis of bi-allelic loci reflects

findings from previously published SNP results [27], even though

we used only 265 bi-allelic loci in our PCA analysis as opposed to

hundreds of thousands of SNPs. Lastly, CopySeq enabled us to

examine population differences in the distribution of bi-allelic and

multi-allelic OR loci: indeed, in at least 11 OR loci CNVs were

observed as multi-allelic in one population and bi-allelic in another

(see Text S1).

Dissecting a multi-allelic OR CNV region
We reasoned that the spatial resolution of NGS data may enable

us to further dissect complex multi-allelic OR loci, i.e., loci in

which different CNV alleles coincide in the same genomic

segment. Dissecting multi-allelic loci represents a crucial step to

inform future association studies that examine the functional

impact of each CNV allele separately. As a proof-of-principle we

applied CNV-boundary redefinition to analyze a genomic interval

containing the adjacent genes OR51A4 and OR51A2, which in

some individuals form a fusion gene [4] (Figure 3BCD). In

particular, since the sequenced breakpoints [4] of the deletion

leading to the gene fusion fall into the respective OR coding

regions, we inferred copy-number genotypes with CNV-boundary

redefinition based on breakpoint-junction analysis (Figure 3BCD).

Our analysis with CopySeq revealed that while the deletion is a

variant with ,32% allele frequency, an additional duplication

comprising only the OR51A2 gene is also frequently present, i.e.,

was genotyped in 6 individuals (Table S4). Thus, applying

CopySeq with CNV-boundary redefinition can help facilitate the

dissection of multi-allelic CNV loci.

Discussion

We have developed a computational approach, CopySeq, that

discovers copy-number variable loci and subsequently assesses

their locus copy-number in NGS data, using a rationale based on

formal hypothesis testing. As such, CopySeq may facilitate

analyzing CNVs in NGS-based genome–wide association studies.

Our analyses revealed an excellent concordance of CopySeq with

microarray platforms, qPCR experiments, and FISH experiments,

suggesting high genotyping accuracy. We note that one possible

source for discrepancies between array-CGH and CopySeq in

CNVs intersecting with SDs might be the heuristic transformation

of microarray intensity data in SDs into genotypes by population-

wise clustering [6]. CopySeq does not apply population-wise

clustering nor do its calls depend on comparing read-depths with

reference samples for normalization. This makes CopySeq

particularly suitable for genotyping CNVs in single individuals

or for genotyping rare alleles (i.e., cases where too few data exist for

population-wise clustering).

While arrays are presently widely applied for CNV analysis

[6,14,31] we foresee that in the near future with the completion of

the 1000GP and other large-scale NGS projects there will be more

genomes sequenced than such for which comprehensive array-

based genotyping data will be available. Consequently, we

anticipate that in the future, NGS-based genotyping of CNVs is

likely to be widely applied. NGS data are generated in a genome-

wide fashion and sequencing data can be re-interpreted without

requiring experimental re-design to enable accurate copy-number

genotyping, once new high-confidence CNV sets are becoming

available (e.g., following the assembly of new sequence insertions

[32]). We expect that in the future, CopySeq will be applied along

with CNV discovery approaches such as paired-end mapping [4]

to combine the advantages of copy-number genotype ascertain-

ment with accurate CNV discovery and CNV-boundary redefi-

nition.

Furthermore, we demonstrated that CopySeq accurately infers

copy-number genotypes in SD regions (regions known to be hard

to ascertain for genetic variants), i.e., in the OR gene family that is

rich in highly identical paralogs. Our analysis of 150 individuals

afforded the first comprehensive ascertainment of locus copy-

numbers in the OR gene family. We found that more than a third

of the human reference OR repertoire varies in copy-number

across individuals and described many novel CNVs. Our first

Figure 8. Analysis of the population distribution of bi-allelic
OR loci reveals shared and population-specific CNVs. Venn
diagram of 265 bi-allelic OR loci, which were distributed according to
their recorded presence in the three populations analyzed (CEU,
CHB+JPT, and YRI). Numbers in parentheses indicate OR loci in which a
single copy-number genotype other than ‘2’ (indicating a CNV) was
observed across 150 individuals; these loci may display rare, rather than
population-specific CNVs.
doi:10.1371/journal.pcbi.1000988.g008
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comprehensive report of copy-number genotypes in these regions

provides a valuable resource for the community, since genotypes

are an important prerequisite in associating CNVs with odor

perception. While previous reports demonstrated an enrichment of

variable ORs in SDs [22], our analysis revealed that multi-allelic

and bi-allelic OR loci are differentially affected by SDs. In some

cases, we furthermore observed distinct OR gene counts in

different populations. We note that while many more individuals

need to be genotyped before population-specificity of these

variants can be confirmed, allele frequency differences are likely

to contribute to population differences in smell-perception [33].

Also, while other studies hypothesized that OR genes and

pseudogenes evolved in a neutral fashion by genomic drift

[20,22], our data suggest weak evolutionary pressures acting on

OR genes (Figures 4B, S17).

We further observed an abundance of OR genes that are

dysfunctional in a subset of the individuals analyzed. In this

regard, OR deletion alleles and SNPs leading to gene pseudogen-

ization are widespread, i.e., about 15% and 20% of the functional

OR repertoire harbor such variants, respectively. These inactivat-

ing variants represent attractive candidates for future association

studies focusing on odorant perception [29,34].

While CopySeq enables probabilistic copy-number genotyping

in NGS data, it still has its limitations. One limitation of CopySeq

is that it is confined to sequences already present in the reference

genome – a limitation that will likely diminish soon, when more

alternative human genome assemblies will become available.

Furthermore, only unambiguously mappable sequences are

considered by CopySeq. In this regard, ,1% of the human

genome is in very recently segmentally duplicated regions with

.99.5% identity [35] – a fraction in which most short DNA reads

will be non-unique. These regions are presently excluded by

CopySeq. However, we reasonable expect that this limitation will

diminish soon, as longer and more easily mappable reads (150 bp,

or longer) are presently becoming the standard in NGS. In fact, in

the upcoming main phase of the 1000GP human genomes will be

sequenced mostly with paired-ends, with each end 100–150 bp in

size or longer, which will facilitate the application of CopySeq in

recently duplicated regions. Also, longer reads will enable the fine-

mapping of CNV breakpoints and consequently will enable CNV-

boundary redefinition (e.g., by BJA) for a larger fraction of CNVs

than is presently possible.

Very recently duplicated regions (.99.5% identity) can already

be analyzed with Alkan et al.’s approach, which considers non-

unique genomic mapping positions. Nevertheless, in non-SD

regions we found that CopySeq displayed higher concordances

than Alkan et al.’s approach with Affymetrix array-based locus

copy-numbers (97.2% vs. 80.2%). Possible reasons for the

improved concordance of CopySeq may be an increased accuracy

of a statistical copy-number genotyping framework compared to

depth-of-coverage analysis without a probabilistic genotyping

model. In addition, CopySeq’s genomic k-mer filtering scheme

may have contributed to its improved concordance by removing

read-depth specific noise originating from distant paralogs.

Finally, our inference and validation of genetic variants may

guide the way to similar analyses for other difficult-to-ascertain

CNV regions, such as the medically relevant [1] CCL3L1, b-

defensin, and FCGR loci (see, for example, our analysis in the Text

S1 with regard to the FCGRB locus on chromosome 1).

Furthermore, CopySeq can be easily adapted to genome-wide

scale analyses. As thousands of human genomes are becoming

sequenced in the context of biomedical research studies (e.g.,

cancer genomes or constitutional abnormalities), there is a strong

need for accurate copy-number genotyping approaches operating

on NGS data.

Materials and Methods

Acquisition and mapping of short-read data
Illumina sequencing data were obtained from the 1000

Genomes Project (1000GP; ftp://ftp.1000genomes.ebi.ac.uk/;

July 2009 release). Those reads have been aligned against the

reference genome (hg18; Build 36.1) with the MAQ [24] aligner

(default parameters). The DNA reads were mostly sequenced as

paired-end fragments with a read length of 36 nt. For each sample

we recorded the total coverage of uniquely mapped reads (‘ends’),

and kept unambiguous read-alignments onto the following regions:

sets of previously defined CNVs on chromosome 1; a set of

genomic regions comprising ,1% of the reference genome that

were analyzed to correct for the G+C content in a sample-specific

manner (see below); a set of 5 Mb genomic intervals for variance

model parameter estimation (see below); and all human OR loci

(see below). The identification of unambiguous (unique) read

alignments benefitted from the MAQ feature to infer unambig-

uous alignments even if only one end of a paired read aligns

uniquely to the genome, by combining information from the

mapped end and the paired-end insert size distribution [24].

Instances of duplicated fragments (i.e., PCR artifacts of the NGS

library) were removed during the read mapping process (using the

rmdup function of the MAQ toolkit).

Definition of chromosome 1 CNV test set
To assess the performance of CopySeq we obtained 100 CNV

loci ,50 kb from chromosome 1 for which copy-number genotype

measurements based on microarrays were available [14]. Out of

these one CNV locus was excluded due to low mappability with

36-mers (i.e., less than 500 mappable 36-mer subsequences within

the CNV locus). CNV sizes in the resulting set of 99 CNVs range

from 1–49 kb with a median CNV size of 6.9 kb (mean = 11 kb).

Definition of genomic regions for G+C-content
normalization

The G+C correction step of CopySeq required the analysis of

regions that ideally should be invariable with regard to locus copy-

number. Therefore, we sampled 30 Mb in 10 kb bins (i.e., ,1% of

the human reference genome) and excluded regions annotated as

copy-number variable in the Database of Genomic Variants (DGV).

Definition of genomic regions for variance model
parameter estimation

We randomly sampled one hundred 50 kb loci from all

autosomes that are invariable in copy-number as assessed by

CNV entries in the DGV database (v9, March 2010). We further

controlled that the number of sampled loci within an isochore

family is proportional to the genome-wide amount of DNA in

isochore families. To model the dependency of locus size and read-

depth ratio variance within a locus class (e.g., 1 kb or 5 kb), we

generated in total 15 datasets by subdividing each 50 kb locus into

non-overlapping segments of various length (i.e., 1, 1.25, 1.5, 1.75,

2, 2.25, 2.5, 3, 5, 7.5, 10, 20, 30, and 40 kb).

Definition of human olfactory receptor loci
We obtained the genomic coordinates of 851 annotated human

olfactory receptor (OR) genes and pseudogenes from the HORDE

database (Build 42; http://genome.weizmann.ac.il/horde/).

CopySeq requires at least 500 bp of sequence to which reads
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can be mapped uniquely. ,19% of the OR open reading frame

(ORF) sequence display less than 500 bp of mappable sequence,

explaining the necessity to extend OR loci by flanking sequences.

OR loci included the ,1 kb intron-less coding region as well as

non-coding segments up- and downstream, i.e., 100 bp of 59-

sequence and 2 kb of 39-sequence. We regarded such ‘extension’

of the loci of interest to 3 kb as reasonable, since previously

described [4,21] CNVs affecting ORs were several kb in size.

Indeed, mining CNVs by long insert size paired-end mapping [4]

in an individual studied by the 1000GP (NA12878) confirmed that

only very few CNVs (i.e., three CNVs in NA12878 including the

known OR51A2—OR51A4 fusion in Figure 3) harbor breakpoints

in the OR territories. In the few cases where CNV breakpoints do

fall into these territories, we recommend application of CopySeq

with CNV-boundary redefinition. Throughout the manuscript the

phrase ‘‘intact olfactory receptor ORFs’’ is used synonymously with

‘‘OR genes’’, ‘‘genes’’, or ‘‘OR gene repertoire’’, whereas

‘‘disrupted olfactory receptor ORFs’’ are used synonymously with

‘‘OR pseudogenes’’ or ‘‘pseudogenes’’.

Construction of human genome mappability maps
We used Rozowsky et al.’s approach to generate mappability

maps of the human reference genome using k-mer lengths of 36,

51, and 76nt, respectively [36]. The mappability maps contain

information about the frequency of each genomic k-mer sub-

sequence, i.e., how many times the k-mer occurs exactly on the

Watson and Crick strand in the reference genome. The 36, 51,

and 76 k-mers account for the three different Illumina read length

sizes that were used in the 1000GP. CopySeq infers copy-number

genotypes by assessing reads aligned against the mappable part of

the genome, defined as k-mers subsequences that result in a

genome-wide k-mer frequency of one (i.e., k-mer sequences that

remapped against the reference exactly once).

Estimation of locus read-depth ratios
Before inferring copy-number genotypes, CopySeq measures

the locus read-depth ratio for each predefined locus in question. The

observed locus read-depth is defined as the sum of reads from a sample

that unambiguously map within the boundaries of the predefined

locus. The locus read-depth ratio h is defined as the ratio between the

observed locus read depth D and the expected locus read-depth E, an

estimate generated by evaluating the locus-specific G+C-content

(see below), the mappability map, and the genome-wide

sequencing coverage. In particular, for a predefined locus i, in

individual j, and using the mappability map k (i.e., k-mer size k) the

expected locus read-depth Eijk for invariant locus i is estimated

with Eijk~
uikNj

G
, where uik is the number of k-mers within locus i

that are unique in the genome, Nj is the number of uniquely

aligned sequence reads against the reference genome in individual

j, and G is the size of the genome (2,858,018,193 nucleotides in

hg18, excluding the mitochondrial DNA).

In order to infer copy-number genotypes (copy-number

genotypes) for locus i the read-depth ratio hijk was calculated

with hijk~
Dijk

Eijk

, where Dijk is the observed locus read-depth (i.e.,

number of reads mapped onto unique k-mer positions in the locus)

and Eijk is the expected locus read-depth. Thus, for example, a

‘normal’ copy-number genotype (e.g., copy-number genotype = ‘2’

in autosomal DNA, which may be considered as the ‘baseline’ for

locus copy-number measurements) will result in a read-depth ratio

hijk~1, a copy-number genotype of ‘1’ (heterozygous deletion) will

result in hijk~0:5, and a copy-number genotype of ‘3’ (heterozy-

gous duplication) in hijk~1:5 (see Figure S19).

Locus G+C-content normalization
Earlier reports observed a correlation between Illumina

sequence read coverage and G+C-content [9]. To correct for this

confounding factor for read-depth analysis, CopySeq makes use of

a set of 3,000 normalization loci (see above) to construct a G+C-

normalization curve separately for each individual. This normal-

ization curve is used for each locus to adjust its locus read-depth

ratio according to the G+C content. Outlier loci (representing for

example de novo CNVs) were identified by conservative criteria (i.e.,

1st-Quartile(read-depth ratio)-3*IQR(read-depth ratio) and 3rd-

Quartile(read-depth ratio)+3*IQR(read-depth ratio)). For each

normalization locus the G+C content of its mappable nucleotides

was calculated and the sample-specific relationship between locus

G+C content and locus read-depth ratio h assessed. A sample-

specific cubic smoothing spline function (using the R function

smooth.spline) was fitted into the distribution of zero-centered data in

order to model the underlying trend in the data by controlling for

the smoothing parameter l via the generalized cross-validation

criteria. The spline fit was later on used as a normalization

function to predict the read-depth ratio accounting for the locus

G+C-content. The resulting fit explained about 67% of the

Poisson variance over-dispersion (Figure S5) (i.e., the n-fold

variance as compared to the theoretical variance expected from

random sequencing) and accounts for the observed reduced locus

read-depth ratio at both sides of the G+C-distribution [25] (see

Figure S2). Using the obtained fit we calculated the expected RDR

Dijk that is solely explained by the locus G+C content with the R

function predict.smooth.spline and corrected the raw read-depth ratio

with ĥhijk~hijk{Dijk; as above, ĥhijk~1 refers to normal locus copy-

number, duplications result in ĥhijk greater than 1 and deletions in

ĥhijk smaller than 1. Of note, after G+C-content normalization we

observed a strong relation between sequencing coverage and read-

depth variance (i.e., decrease of variance with increase in coverage)

that was not evident before normalization (see Figure S4). Based

on the normalized read-depth ratio variance of the normalization

loci and a cutoff value (0.01) we excluded 20 out of 170 initially

assessed individuals from our analysis that were sequenced at low-

coverage (,16) (Figure S6).

Copy-number genotyping: CNV identification
CopySeq initiates the copy-number genotyping step with a CNV

identification module, in which two distinct hypotheses are tested at

each locus: the null hypothesis H0: ĥhijk~1 (i.e., ‘normal’ locus

copy-number) and the alternative hypothesis H1: ĥhijk=1 (i.e.,

presence of a CNV). As values of ĥhijk follow approximately a

normal distribution in locus-copy number invariant normalization

loci (Figure S3), we reasonably applied the z-statistic for assessing

whether a given locus read-depth ratio deviates from the null

hypothesis H0 (i.e., whether the read-depth ratio is unexpectedly

high, or low, indicating a CNV). The alternative hypothesis H1 is

that ĥhijk is drawn from a different distribution (duplication or

deletion). Thus, the z-statistic for locus i in individual j was

obtained with zijk~
ĥhijk{m2

ŝsijk2

, where m2 is the expected read-depth

ratio given a normal (‘2’) locus-copy number, i.e., m2~1, and

ŝsijk2
is the read-depth ratio standard deviation defined as

ŝsijk2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aV2

P, ijk2
zV2

B, j

q
, with aV2

P, ijk2
as the locus-length depen-

dent read-depth ratio variance scaled by factor alpha (explained

below) assuming an invariant locus and an additive read-depth

ratio variance component V2
B, j representing additional experi-

mental background noise (see below). Each z-score zijk was

transformed into a two-sided p-value pijk using the cumulative

distribution function of the standard normal distribution
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pijk~2w({Dzijk D). P-values were corrected for multiple testing,

yielding Q-values, using Benjamini & Hochberg FDR correction.

A global Q-value threshold was empirically determined in the

following way. We estimated the CNV recall rate by calling deletion

genotypes (i.e., copy-number genotype = ‘1’) for 11 OR loci on

chromosome X in 57 male samples, assuming that they display no

CNVs (Figure S7). Using this setup, a Q-value threshold of 5%

resulted in an inferred CNV recall rate of 96.5% for ,3 kb loci,

i.e., in 605 out of 627 cases CopySeq predicted a deletion, as

expected in the male samples. We furthermore estimated the CNV

false discovery using the female samples, by conservatively assuming

that all OR loci on chromosome X display a normal locus copy-

number of ‘2’. Using this setup, in none of 1,023 cases CopySeq

predicted ‘CNVs’, suggesting a very low CNV false-discovery rate.

Copy-number genotyping: Locus copy-number inference
To generate genotype calls, CopySeq models copy-number

genotypes as probability distributions accounting for locus-length,

copy-number genotype, and sample-dependent noise. Specifically,

copy-number genotype probability distributions are modeled as

Gaussian distributions that incorporate both a Poisson variance

term that depends on the read-depth of a locus, as well as an

additional global (background) variance term that does not depend

on locus length and copy-number genotype. The mean of each

Gaussian is set according to expected values of the locus read-depth

ratio, where the expected value for the locus read-depth ratio is

mm~m=2, with m being a specific copy-number genotype among c

possible copy-number genotypes C0…Cc. For example, for m = 2 (no

CNV) m2 = 1; for m = 1 (heterozygous deletion) m1 = 0.5; and for

m = 3 (heterozygous duplication) m3 = 1.5. These theoretical means

are in excellent agreement with experimental data (see Figure S19).

The probability density function for copy-number genotype m is

calculated as:

p(ĥhijkDCm,I)~p(ĥhijkDmm,ŝs2
ijkm

,I)

~N(mm,ŝs2
ijkm

)

~N(mm,aV2
P, ijkm

zV2
B, j)

where N(:) is the Normal probability density function, ŝs2
ijkm

is our

read-depth ratio variance estimate, aV2
P, ijkm

is the scaled locus-

length- and copy-number genotype-dependent variance term, and

V2
B, j is an additive global background noise variance term (explained

below). We calculated the locus-length- and copy-number geno-

type-dependent read-depth ratio variance V2
P, ijkm

for copy-number

genotype m as V2
P, ijkm

~
Vijkm

E2
ijk2

~
mEijk1

(2Eijk1
)2

~
m

4Eijk1

, where Vijkm is

the theoretical Poisson read-depth variance that increases linearly

with copy-number genotype m, Eijk2
is the expected locus read-

depth given an invariant locus copy-number of ‘2’, and

Eijk1
~Eijk2

=2 is the read-depth for a locus copy number ‘1’. The

expression
Vijkm

E2
ijk2

is also known as the squared coefficient of variation and

can be viewed as the scaled variance of the Poisson distribution. The

a priori knowledge about the model and parameters is summarized in

the background information I. The most plausible copy-number

genotype is inferred using classical Bayes’ theorem:

p(CmDĥhijk,I)!p(ĥhijk DCm,I)p(Cm):

The prior density p(Cm) is modeled as a uniform density function

with p(Cm) = 1/c, where c is the total number of possible copy-

number genotype values. We reasonably chose to use a uniform

prior as a neutral prior for classification on a genome-wide scale.

Although we could foresee alternative approaches for estimating

non-uniform priors, such as expectation maximization (EM), this

would require extensive training data to reflect the underlying copy-

number distribution for genomic locus of interest, including regions

with high and low allele frequencies. Using Bayes’ theorem, each

locus was labeled with a copy-number genotype m that maximizes

the posterior probability using the maximum a posteriori (MAP)

estimate.

Copy-number genotyping confidence score estimation
CopySeq calculates a confidence score (similar to a logarithm of

odds, or LOD, score) for each locus, expressing the uncertainty of

assigning the correct copy-number genotype, with

LODijk~Dlog10

p
(1)
ijk

1{p
(1)
ijk

 !
{log10

p
(2)
ijk

1{p
(2)
ijk

 !
D,

where p
(1)
ijk and p

(2)
ijk are estimated probabilities for the most

plausible and the second most plausible copy-number genotype,

respectively. A LOD score of 2, e.g., means that the probability for

the most plausible copy-number genotype is 100 (i.e., 102) times

higher than for the next plausible copy-number genotype.

Estimation of the non-locus dependent read-depth ratio
variance V 2

B, j and scaling factor alpha a
We observe that the theoretical minimal variance predicted by a

Poisson sampling model is insufficient to explain the observed

locus read-depth variance in loci of various length (see Figure

S3D). We thus consider a variance model that approximates the

observed locus length-dependent and length-independent variance

in order to account for the over-dispersion. We assume that the

read-depth ratios behave independently and are drawn as random

samples from a normal distribution for loci with the same size.

Normal quantile-quantile (Q-Q) plots of loci with different sizes

(e.g., 1 kb, 5 kb, and 10 kb) support the assumption of normality

for read-depth ratios (see Figure S3ABC). We observe that the

total read-depth ratio variance for loci of a specific length class

follows a linear combination of a global (non-locus dependent)

background variance term V2
B, j and a scaled length-dependent

Poisson variance term V2
P, ijkm

, i.e., ŝs2
ijkm

!aV2
P, ijkm

zV2
B, j (see

Figure S3E). The model parameters alpha and background

variance were estimated via linear regression with the variance

model dataset as described above. The average background

variance among the 150 samples is approximately similar across

samples (,0.002) and the scaling factor alpha ranges between ,1–

4.

CNV-boundary redefinition by paired-end mapping and
breakpoint-junction analysis

CopySeq has the ability to use paired-end mapping [4] (PEM)

and the recently published breakpoint-junction data [26] (BJA),

i.e., to redefine the boundaries (i.e., breakpoints) of CNVs for copy-

number genotyping on a subset of CNV loci (i.e., such for which

PEM or BJA information are available). Thereby, CopySeq

defines CNV-boundaries as previously described in publications

on PEM and BJA. We assessed the utility of integrating PEM and

BJA into CopySeq to enable CNV boundary-redefinition.

Specifically, we focused on the chromosome 1 CNV set (see

above). In particular, in the case of PEM we fine-mapped the
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breakpoints of CNVs using high-confidence (long-read and high-

coverage) paired-end reads from the sample NA18505, which was

sequenced at .8.56 physical coverage with 3 kb insert size

paired-end reads generated with the 454 sequencing technology;

the long reads generated by 454 sequencing allow for high-

confidence placement of paired-ends [4]. Furthermore, the paired-

end library insert size was ,3 kb, a reasonable insert size for

analyzing OR loci, which may recombine by non-allelic

homologous recombination involving ,900 bp ORFs [4,21]. To

initiate the CNV-boundary redefinition for CNV-loci of interest,

we required a reciprocal overlap of .51% between microarray-

based CNV coordinates of the chromosome 1 test set and the

CNV-breakpoints as inferred by PEM. BJA was carried out using

a library of ,1,800 SVs with sequenced breakpoints [26], and

applying the same overlap criteria (.51%) as for the PEM data.

When applying PEM or BJA we reasonably assumed, based on

previously published observations [4,26], that in bi-allelic CNV

loci breakpoints are identical across analyzed individuals; thus,

CopySeq was able to use redefined CNV-boundaries in all

individuals when assessing bi-allelic CNVs (note that BJA and

PEM cannot be applied in the case of multi-allelic CNV loci, as

CNV boundaries may differ in recurrent CNV formation events).

Estimation of genotyping concordance with
microarray-based studies

To assess the concordance of CopySeq-based copy-number

genotypes with array-based copy-number genotypes we obtained

data from two previous array-based surveys [6,14]. The sample

overlap between our study and the array-based studies is high with

118 (McCarroll et al.) and 149 (Conrad et al.), respectively.

Genotyping concordance is defined as the number of copy-number

genotypes that display exactly identical values (e.g., copy-number

genotype = ‘4’) between two studies, divided by the total number of

copy-number genotypes that have been inferred. Each locus was

tested in all individuals where data was available. In a small

number of cases (see Tables S4 and S5, and data submitted with

the array-based studies [6,14]) no copy-number genotypes were

inferred at a given confidence score threshold (‘NA’); these specific

tests were obviously not considered when estimating genotyping

concordance. When estimating genotyping concordance for OR

loci, corresponding array-based CNVs [6,14] were considered if

they fully spanned the respective OR locus (i.e., we required the

OR locus to be fully contained in the respective CNV region

previously assessed with arrays). We used standard terminology for

statistical measures such as sensitivity, specificity, and precision

rate (or positive predictive value, PPV; see e.g., Table S6).

Copy-number genotype validation by qPCR
Real-time quantitative PCR (qPCR) was carried out as

described in [21]. Each experiment was carried out with 40 cycles

and ended with a melting curve step to verify product specificity.

Reactions with more than one peak in the melting curves were

removed from further analysis. To address experimental variability

due to primer differences and fluctuation in DNA concentration,

we used a copy number-invariable gene (DSCR1) for normaliza-

tion [21] and repeated each reaction at four DNA concentrations

of 1, 2, 4, and 8 ng, in duplicates; the four concentrations allowed

us to estimate the primer efficiency. Importantly, qPCR does not

provide a measure of an absolute amount of material, but rather a

comparison between samples. Thus, when analyzing a qPCR

experiment we used copy-number genotypes inferred by CopySeq

as an anchor point for calculations. Correlations were obtained

from measuring copy-number differences across individuals at a

given locus. Subsequent analyses were carried out as follows: (1) we

calculated a matrix of pairwise Ct differences between all sample

pairs for each OR and for DSCR1, at every DNA concentration

separately. (2) To account for fluctuations in Ct arising from

experimental procedures (e.g., fluctuation in DNA concentrations

or pipetting), we subtracted the DSCR1 based difference matrix

from the OR difference matrix. We refer to the resulting matrix as

the corrected difference matrix. (3) We combined data from all four

concentrations by averaging the true pairwise Ct difference for

each sample pair at every locus. (4) For each sample and locus, we

used the predicted values from the other 9 samples as anchor, and

thus computed 9 estimates for each genotype. For the transfor-

mation we used the experimentally estimated primer efficiency

values. We then averaged the 9 values for each sample at each

locus before calculating correlations. Primer sequences are listed in

Tables S14, S20.

Selection of OR loci for segregation analysis in an
European parent-offspring trio

We followed the segregation pattern of OR copy-numbers in

the parent offspring trio of European ancestry (NA12878,

NA12891, and NA12892), by classifying 797 autosomal OR loci

into 772 mono- and bi-allelic CNVs according to copy-number

genotypes in CEU samples only. These 772 regions were analyzed

to assess the segregation of copy-number genotype assignments.

Analysis of segmental duplications
Coordinates for segmental duplications (SDs) were obtained

from the UCSC genome browser (‘Segmental Dups’ track; hg18).

Autosomal OR loci were classified as overlapping a SD if $51% of

the ,3 kb locus sequence overlapped.

Permutation test for gene and pseudogene enrichment
analysis

A permutation test was used to assess the significance of

enrichment of certain copy-number genotypes among genes and

pseudogenes. 1,000 permutations of possible values of a test

statistic under random rearrangements of the gene and pseudo-

gene labels were calculated to construct an exact (null) distribution.

The test statistic was defined as the difference of the average

number of predefined copy-number genotypes per group with two

groups A and B, i.e., T~�xxA{�xxB, whereby group A is the

collection of genes and group B is the collection of pseudogenes.

The difference between the group means without permutation was

calculated and referred to the observed value of the test statistic t.

The permutation test was designed to determine whether the

observed difference between the group means is large enough to

reject the null hypothesis that the two groups have an identical

probability distribution. To assess significance, a two-sided p-value

of the test was calculated as the proportion of sampled

permutations where the absolute difference of T was greater than

or equal to the absolute value of t. The null hypothesis was rejected

at a significance level C = 0.05.

Principal component analysis with bi-allelic OR copy-
number genotypes

We applied principal component analysis (PCA) on 150

individuals and on copy-number genotype data of 265 bi-allelic

OR loci as implemented in the R function prcomp (www.r-project.

org).

SNP data mining
We extracted SNP data from the April 2009 SNP release of the

1000GP; a release encompassing SNP calls from 59 CHB+JPT, 56
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YRI, and 56 CEU individuals, respectively. We identified all SNPs

intersecting with OR coding regions and assessed their predicted

effect on coding sequence using Perl scripts. Frequency and quality

information relating to SNP data are available at the 1000GP

website (http://www.1000genomes.org).

CopySeq software and algorithm speed
CopySeq is implemented in Java and utilizes the SAM-SDK

(http://picard.sourceforge.net/) for fast sequence alignment access.

It can be obtained from http://embl.de/,korbel/copyseq/.

CopySeq computes a typical genome-wide CNV dataset (with up

to 30,000 CNV loci) in ,1h.

Supporting Information

Text S1 Supplementary Information for ‘‘Systematic Inference

of Copy-Number Genotypes from Personal Genome Sequencing

Data Reveals Extensive Olfactory Receptor Gene Content

Diversity’’.

Found at: doi:10.1371/journal.pcbi.1000988.s001 (0.23 MB

DOC)

Figure S1 Mappability of DNA sequences in OR loci. OR loci,

regions with a median length of 3kb (including upstream and

downstream regions), are sorted based on the number of uniquely

mappable k-mers (i.e., one exact occurrence in the reference

genome, build 36.1) per OR locus, with k = 36nt. Values on the y-

axis, referring to the number of unique k-mers per locus, are

expressed as starts (i.e., start sites) of 36-mer reads mapped onto

the locus. Values on the x-axis are expressed in terms of the

fraction of OR loci (in percent). For example, ,95% of the total

set of 851 OR loci in the reference genome have at least ,500

mappable 36-mers (indicated by dashed line), and were thus

considered in our study.

Found at: doi:10.1371/journal.pcbi.1000988.s002 (0.20 MB TIF)

Figure S2 Sample-specific G+C-content bias normalization.

Dots indicate the G+C content (or ‘GC content’, calculated as

G+C/(A+C+T+G)) and raw read-depth ratios (i.e., #expected/

#observed reads) measured in a set of normalization loci (i.e.,

copy-number invariable loci; see Materials and Methods). G+C

bias was corrected by analyzing 3,000 10kb loci (i.e., ,1% of the

human genome) in each sample. Although read-depth ratios are

expected to be evenly distributed in the genome, the panels A and

B show a sample-specific bias in the read-depth of these

normalization loci that appears associated with the G+C content;

examples displayed correspond to NA10851 (A) and NA19238 (B).

For each sample, G+C characteristics were fitted using a

smoothing spline-based model that accounts for the non-uniform

G+C behavior (red line). The G+C model fit served as a

normalization curve for all loci assessed in a given sample.

Found at: doi:10.1371/journal.pcbi.1000988.s003 (0.25 MB TIF)

Figure S3 Normality assumption for G+C content-adjusted

read-depth ratios and read-depth ratio variance model fit. A–C.

The figures display histograms (top) and normal Q-Q plots

(bottom) of G+C content-adjusted read-depth ratios of three locus

size classes (1 kb, 5 kb, and 10 kb; left to right) in NA10851. The

red line, overlaid onto the histograms, displays a normal

distribution fit to the histograms. The red line in the Q-Q plots

implies that the adjusted read-depth ratio data are approximately

normally distributed. D. The figure displays the dependency

between the expected Poisson sampling read-depth ratio variance

(x-axis) and the observed G+C-adjusted read-depth ratio variance

(y-axis) for loci of different size classes (i.e., 1 kb, 1.25 kb, 1.5 kb,

1.75 kb, 2 kb, 2.25 kb, 2.5 kb, 3 kb, 5 kb, 7.5 kb, 10 kb, 20 kb,

30 kb, 40 kb, and 50 kb), measured with constant copy-number

(‘2’) in NA10851. The red line represents a linear regression fit to

the variance data (see Materials and Methods). E. This figure

shows the G+C content-adjusted read-depth ratio variance (y-axis)

for different classes of locus length (x-axes; same locus sizes as in

(D)) in NA10851. The red line is the fit of the CopySeq variance

model to the data (see Materials and Methods). The dashed

horizontal line is the estimated copy-number and locus-length

independent background variance term.

Found at: doi:10.1371/journal.pcbi.1000988.s004 (0.31 MB TIF)

Figure S4 Variance of G+C normalization locus read-depth

ratios. The figure relates the variance in read-depth ratio

measurements to the genomic sequencing coverage before (A)

and after normalization for G+C content (B). Altogether, 170

samples (i.e., including such excluded from further analysis; see

Figure S6) were binned according to sequencing coverage. Box

plots represent inter-quartile intervals for each bin (25%, 50%,

and 75%), and the thick lines the respective median. Altogether,

20 samples were excluded due to increased variance, most of

which displayed a very low sequencing coverage (i.e., ,1-fold

haploid coverage).

Found at: doi:10.1371/journal.pcbi.1000988.s005 (0.25 MB TIF)

Figure S5 Poisson variance over-dispersion before and after

G+C-content normalization. Boxplot of Poisson variance over-

dispersion as assessed by control regions in 170 samples before

(‘Pre’) and after (‘Post’) G+C content bias correction. Over-

dispersion is defined as the n-fold variance as compared to the

theoretical variance expected from random sequencing (i.e.,

assuming a Poisson sampling process). The average variance

over-dispersion drops from 10.5-fold to 3.5-fold after G+C-content

normalization.

Found at: doi:10.1371/journal.pcbi.1000988.s006 (0.15 MB TIF)

Figure S6 Sample exclusion based on read-depth ratio variance.

Samples are sorted on the x-axis by the G+C adjusted variance in

the read depth ratio, recorded in the normalization loci (see

Materials and Methods and Figure S4). The red line indicates the

variance cutoff that was used to exclude samples (0.01); 150

samples were further analyzed in this study.

Found at: doi:10.1371/journal.pcbi.1000988.s007 (0.19 MB TIF)

Figure S7 False discovery rate (FDR) threshold in the initial

CNV identification step. The figure displays the recall rate for 11

OR loci on the X-chromosome, which were assessed in 57 male

samples as a function of different Q-value (FDR) cutoffs in

CopySeq’s CNV identification step (see Materials and Methods).

The recall rate was calculated, assuming that OR loci on

chromosome X show no copy-number variation, i.e., all 627

copy-number genotypes in males are expected to display a copy-

number genotype of ‘1’ (whereas copy-number genotypes of ‘2’ are

expected in female samples); this assumption makes the X-

chromosomal OR loci a reasonable test set for identifying a

suitable Q-value threshold. For example, when applying a Q-value

threshold of 5%, 96% of all OR loci in male samples were

correctly identified in the CNV identification step and assigned a

copy-number genotype of ‘1’. Furthermore, CopySeq identified a

copy-number genotype of ‘2’ in all loci in 93 female samples.

Found at: doi:10.1371/journal.pcbi.1000988.s008 (0.34 MB TIF)

Figure S8 Read-depth distribution in benchmark chromosome

1 CNV set and 150 individuals. Distribution of locus-specific read-

depth measurements in the 99 chromosome 1 test loci and 150

individuals. As in Figure 3, the displayed points relate the G+C-

adjusted read-depth to the expected read-depth (i.e., copy-number

genotype = ‘2’), which is estimated based on the k-mer mappability

Copy-Number Genotyping of Olfactory Receptor Genes
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of a locus and the genomic sequencing coverage of a sample.

CopySeq copy-number genotypes are indicated by colors (bottom

to top): ‘0’, red; ‘1’, orange; ‘2’, grey; ‘3’, blue; ‘4’, purple; ‘5’,

green).

Found at: doi:10.1371/journal.pcbi.1000988.s009 (0.31 MB TIF)

Figure S9 Copy-number genotypes in 150 individuals recorded

in the chromosome 1 test set. Copy-number genotyping results for

chromosome 1 example CNVs across 150 individuals (see Figure 2

for other examples). Copy-number genotypes inferred by CopySeq

are displayed using the same color code as in Figure 2. Samples

are sorted by ancestry (square, CEU; triangle, CHB+JPT; circle,

YRI). A. chr1:10,293,128–10,300,570; bi-allelic deletion specific

for samples with ancestry from Nigeria (YRI). B. chr1:61,886,594–

61,890,775; bi-allelic deletion only observed in the CEU and

CHB+JPT. C. chr1:235,190,798–235,198,134; bi-allelic duplica-

tion observed only in samples of Nigerian ancestry. D.

chr1:755,964–799,636; multi-allelic CNV locus, only observed in

CHB+JPT samples.

Found at: doi:10.1371/journal.pcbi.1000988.s010 (0.25 MB TIF)

Figure S10 Heritability of locus copy-numbers in all 808

analyzed OR loci. Scaled read-depth and inferred copy-number

genotypes of all 808 OR loci analyzed in a CEU parent-offspring

trio (from top to bottom: daughter, NA12878; father, NA12891;

mother, NA12892). OR loci are sorted according to chromosome

and chromosomal coordinate (from left to right). Inferred copy-

number genotypes are displayed with the same color code as in

Figures 2, 3, 4. Several OR loci of interest are highlighted. Figure 4

displays, in part, the same data, but owing to space limitations

focuses on the largest OR cluster, i.e., a cluster of OR genes and

pseudogenes on chromosome 11.

Found at: doi:10.1371/journal.pcbi.1000988.s011 (0.46 MB TIF)

Figure S11 Concordance of CopySeq copy-number genotypes

and copy-number genotypes from the microarray-based study by

Conrad et al. Comparison of .7,000 CopySeq-based locus copy-

number assignments in OR loci with microarray-based copy-

number genotypes from Conrad and co-workers [1]. The

comparison is based on 51 OR loci, assessed in 149 individuals.

Circle size indicates the number of comparisons falling into a

certain bin (the largest circle, representing .5,000 copy-number

assignments, corresponds to concordant copy-number genotype

calls of ‘2’). The orange line denote the function y = x and has

been included to facilitate evaluation of the data. The Pearson

correlation between the Conrad et al. calls (made with an Agilent

oligonucleotide array-CGH platform) and the CopySeq calls was

0.73, slightly weaker than the correlation we measured between

CopySeq and Affymetrix SNP 6.0 arrays. This may be due to a

higher accuracy of the Affymetrix arrays [2], e.g., owing to the

sophisticated probe selection procedure employed; alternatively

this may be due to an enrichment of particularly hard to ascertain

OR loci (which may display relatively low correlations) in the

Conrad et al. study.

Found at: doi:10.1371/journal.pcbi.1000988.s012 (0.19 MB TIF)

Figure S12 Enrichment of segmental duplications in bi-allelic

deletion and multi-allelic OR loci. Fraction of OR loci intersecting

annotated SDs (i.e., assessed by a . = 51% overlap of the OR

locus with SDs, based on the UCSC genome browser track

‘Segmental Dups’. OR loci were divided into five different classes:

NV, non-variable (n = 501); DUP, bi-allelic duplications (n = 130);

DEL, bi-allelic deletions (n = 135); DELDUP, multi-allelic OR loci

displaying both deletion and duplications (n = 21); MULTDUP,

multi-allelic loci that presumably underlie multiple duplications

(i.e., loci with at least one copy-number genotype of ‘5’ or higher;

n = 21). Red line indicate the average fraction of analyzed

autosomal OR loci intersecting with SDs (i.e., 22%).

Found at: doi:10.1371/journal.pcbi.1000988.s013 (0.20 MB TIF)

Figure S13 Principal component analysis (PCA) on 265 bi-allelic

OR loci and 150 individuals. Population-specific copy-number

variation of OR loci displayed by principle component analysis

(PCA). PCA analysis was carried out on 265 bi-allelic OR loci in 150

individuals explaining 39% of the total variance (PC1 = 18.9%;

PC2 = 12.6%; PC3 = 7.5%). Individuals are colored by ethnic

group (YRI, red; CEU, orange; CHB+JPT, blue). A. The first

component separates the African (YRI) population from the non-

African populations (CEU, CHB, JPT). The three large clusters

(PC1: ,0, ,1, ,3) correspond to the copy-number genotypes ‘2’,

‘1’, and ‘0’ (from left to right) of a large, common deletion on

chromosome 11 (encompassing OR4C11, OR4P4, OR4S2,

OR4V1P, and OR4P1P). B. The second and third principal

components facilitate a limited separation between the three

populations (highlighted by ellipses), which may be explained by

population-specific allele frequencies of a small number of CNVs.

Found at: doi:10.1371/journal.pcbi.1000988.s014 (0.24 MB TIF)

Figure S14 qPCR experiments in OR loci with discordant copy-

number genotypes. Four OR loci displaying the least concordance

between CopySeq and microarray-based copy-number genotypes

(x-axis) were tested by qPCR (y-axis) (Table S14). Each qPCR

experiment used triplicates and was repeated at least twice when

two primer pairs were used for each locus and three times for loci

analysed with one specific primer pair (Detailed Ct, avg delta-Ct

and stdev delta-Ct values for all experiments are summarized in

Table S14). One representative experiment is shown where

experimental qPCR values are compared to copy-number genotype

predictions from CopySeq (red), Conrad et al. (blue) or McCarroll et

al. (green). The following eight samples were assessed to enable

evaluating discrepant calls: NA11881, NA11920, NA11994,

NA11995, NA12003, NA12045, NA12155, and NA12716. A.

OR4A45P: chr11:48,557,464–48,560,479. Missing data points:

CopySeq, none; Conrad et al., none. The absence of a signal (Ct

of 40) in qPCR results confirms the copy-number genotype of 0

inferred by CopySeq rather than the copy-number genotype of ‘2’

inferred by Conrad et al. Also, both primer pairs for this locus show

the same results and confirm the conclusion made. B. OR11K1P:

chr15:19,818,218–19,821,246. Missing data points: CopySeq,

none; Conrad et al., NA12003; McCarroll et al., NA11920,

NA12045, NA12716. The relative difference of up to 1.55 delta-

Ct between DNAs (stdev of delta-Ct between DNAs over all three

experiments#0.09 Ct) and the clustering into several subgroups

suggests a multi-allelic CNV, as predicted by CopySeq and

McCarroll et al., rather than the absence of a CNV, as predicted

by Conrad et al. C. OR5H5P: chr3:99,398,645–99,401,669.

Missing data points: CopySeq, none; McCarroll et al., NA11920,

NA12045. The almost identical Ct values (maximum difference of

0.23 delta-Ct) in the normal Ct range between all DNAs suggests

absence of a CNV, as called by CopySeq, rather than the existence

of a homozygous or heterozygous deletion, as inferred by McCarroll

et al. (the latter would have resulted in a clear difference in qPCR

values, as observed in (A)). D. OR4N4: chr15:19,883,737–

19,886,784. Missing data points: CopySeq, none; McCarroll et

al., NA11920, NA12045, NA12716. Clear Ct differences between

samples support the multi-allelic copy-number genotype calls from

both CopySeq and McCarroll et al. for this locus. However, missing

data points for McCarroll et al. does not enable us to draw a final

conclusion as to which copy-number genotype calls are in better

agreement with the qPCR results.

Found at: doi:10.1371/journal.pcbi.1000988.s015 (0.45 MB TIF)

Copy-Number Genotyping of Olfactory Receptor Genes

PLoS Computational Biology | www.ploscompbiol.org 17 November 2010 | Volume 6 | Issue 11 | e1000988



Figure S15 Enrichment of segmental duplications in high copy-

number genotype calls. Fraction of 118,650 (791 autosomal loci

times 150 samples) OR copy-number genotype calls intersecting

annotated SDs (i.e., assessed by requiring a . = 51% overlap of

the OR locus with SDs, based on the UCSC genome browser

track ‘Segmental Dups’)

Found at: doi:10.1371/journal.pcbi.1000988.s016 (0.24 MB TIF)

Figure S16 Effect of sequencing coverage on genotyping error

rate. Ten different coverages were generated by down-sampling

DNA reads from the published NA18507 genome [7]. The

following sequencing coverages were used: 0.56, 16, 26, 36, 46,

56, 106, 206, 306, and 406. CopySeq was applied on these read

sets using default parameters (with requested LOD score .0). We

compared CopySeq calls to two genome-wide genotype sets for

NA18507, i.e., the sets published by McCarroll et al. [2] (A) and

Conrad et al. [1] (B). CNV loci intersecting SDs were excluded to

circumvent differences in the interpretation of locus-specific copy

numbers between platforms in these regions. Genotyping error

rates were calculated as #false genotypes/(#true genoty-

pes+#false genotypes).

Found at: doi:10.1371/journal.pcbi.1000988.s017 (0.18 MB TIF)

Figure S17 Distribution of variable OR loci within 150

individuals. The figure shows the percentage distribution of variable

OR loci per individual relative to the reference genome. Blue solid

line: OR genes; red solid line: OR pseudogenes; red dotted line: OR

pseudogenes, excluding the CNV-enriched OR7E subfamily.

Found at: doi:10.1371/journal.pcbi.1000988.s018 (0.22 MB TIF)

Figure S18 Locus-specific genotyping concordance for 500

benchmark CNVs on chromosome 1. The plots show the locus-

specific genotyping concordance for 99 CNV loci on chromosome

1 taken from McCarroll et al. (A) and 401 CNV loci on

chromosome 1 taken from Conrad et al. (B). Values are sorted by

increasing concordance. While the vast majority of loci showed

high concordance, a small subset of loci displayed low concor-

dance (in the Conrad et al. comparison the latter were slightly

enriched for small or SD-enriched CNV loci), implying genotyping

errors by CopySeq or the respective microarray-based platforms.

Found at: doi:10.1371/journal.pcbi.1000988.s019 (0.25 MB TIF)

Figure S19 Approximately linear dependency between locus

copy-number and read-depth ratio. This figure shows the

distribution of adjusted read-depth ratios for 99 CNV loci on

chromosome 1 among 118 individuals for which we had prior

information in terms of copy-number genotype assignments [2],

i.e., individual densities were generated by using the previously

published genotype information and grouping our read-depth data

according to the genotype assignments in [2]. Copy-number

densities are indicated by colors (left to right): ‘0’, red; ‘1’, orange;

‘2’, grey; ‘3’, blue; ‘4’, purple. Thus, for example, all loci classified

in [2] having CNG = ‘0’ appear in the density plot in the red

density class. The number of data points per density class is:

‘0’ = 322, ‘1’ = 888, ‘2’ = 10,184, ‘3’ = 100, ‘4’ = 21. The plot

shows that the expected read-depth ratio mean of a copy-number

genotype class scales approximately linearly with copy-number.

The mean read-depth ratio values for the copy-number genotype

classes (i.e., ‘0’ = 0.11, ‘1’ = 0.54, ‘2’ = 0.99, ‘3’ = 1.44, ‘4’ = 1.96)

show good correspondence with the theoretical expected values

(‘0’ = 0, ‘1’ = 0.5, ‘2’ = 1, ‘3’ = 1.5, and ‘4’ = 2). Of note, this

analysis is obviously heavily depending on the genotype assign-

ments made in [2].

Found at: doi:10.1371/journal.pcbi.1000988.s020 (0.25 MB TIF)

Table S1 Individuals analyzed in this study and numbers of

filtered sequencing reads considered. All analyzed individuals were

recently sequenced in the ‘‘pilot 1 project’’ of the 1000GP at

relatively low sequencing coverage. Samples for which high-

quality sequencing data were available included one parent-

offspring trio of European ancestry, which consisted of father

(NA12891), mother (NA12892), and daughter (NA12878). 20

samples were excluded based on the total variance of G+C-

adjusted read-depth ratios that we measured in the normalization

loci (see Figure S4B). Most excluded samples were sequenced with

very low sequence-depth (i.e., ,1-fold haploid coverage; see

Figure S4B). We applied a variance cutoff of 0.01 for excluding

samples.

Found at: doi:10.1371/journal.pcbi.1000988.s021 (0.04 MB XLS)

Table S2 Genotype concordance with SNP array-based calls on

the chromosome 1 test set.

Found at: doi:10.1371/journal.pcbi.1000988.s022 (0.03 MB

DOC)

Table S3 List of OR loci considered in the analysis. The table

lists all 808 OR loci (Build 36.1; hg18) and indicates for each OR

locus whether the DGV and a recent survey not listed in DGV

[10] have reported CNVs in these loci. Also, genotype frequencies

are indicated for all copy-number genotypes from ‘‘0’’ to ‘‘9’’.

Furthermore, for bi-allelic loci, allele-frequency calculations are

presented for the CNV allele and the reference. For bi-allelic and

multi-allelic loci the reference allele frequency together with a 95%

confidence interval was calculated. We removed manually

OR6R2P from the output, following the identification of an exact

copy of that pseudogene in the unassembled fraction of the

reference genome (hg18).

Found at: doi:10.1371/journal.pcbi.1000988.s023 (0.20 MB XLS)

Table S4 Table of copy-number genotype calls in 150 samples

and 808 OR loci.

Found at: doi:10.1371/journal.pcbi.1000988.s024 (0.81 MB XLS)

Table S5 Table of copy-number genotype calls in 150 samples

and 99 chromosome 1 benchmark CNV loci.

Found at: doi:10.1371/journal.pcbi.1000988.s025 (0.11 MB XLS)

Table S6 Outcomes copy-number genotyping on chromosome

1 benchmark set.

Found at: doi:10.1371/journal.pcbi.1000988.s026 (0.04 MB

DOC)

Table S7 High-confidence copy-number genotyping on bench-

mark set.

Found at: doi:10.1371/journal.pcbi.1000988.s027 (0.04 MB

DOC)

Table S8 Outcomes CNV identification with CopySeq on

chromosome 1 benchmark set.

Found at: doi:10.1371/journal.pcbi.1000988.s028 (0.04 MB

DOC)

Table S9 Outcomes copy-number genotyping integrated with

paired-end mapping on chromosome 1 benchmark set.

Found at: doi:10.1371/journal.pcbi.1000988.s029 (0.04 MB

DOC)

Table S10 Outcomes copy-number genotyping integrated with

breakpoint junction library analysis on chromosome 1 benchmark

set.

Found at: doi:10.1371/journal.pcbi.1000988.s030 (0.04 MB

DOC)

Table S11 Summary of detected CNVs affecting OR loci.

Found at: doi:10.1371/journal.pcbi.1000988.s031 (0.03 MB

DOC)
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Table S12 Identified SNPs that lead to OR gene inactivation

and pseudogenization. The table lists 73 SNPs that were identified

in the 1000GP data, which were predicted to be deleterious to the

respective OR gene (i.e., they either result in a premature stop

codon or mutate the first methionine).

Found at: doi:10.1371/journal.pcbi.1000988.s032 (0.03 MB XLS)

Table S13 Inferred copy-number genotypes based on qPCR for

5 OR loci.

Found at: doi:10.1371/journal.pcbi.1000988.s033 (0.03 MB XLS)

Table S14 Summary of additional qPCR experiments in 4 OR

loci with discordant copy-number genotypes.

Found at: doi:10.1371/journal.pcbi.1000988.s034 (0.03 MB XLS)

Table S15 Copy-number genotyping concordance between

CopySeq and custom Agilent CGH arrays (Conrad et al.)

Found at: doi:10.1371/journal.pcbi.1000988.s035 (0.04 MB

DOC)

Table S16 Copy-number genotyping concordance between

CopySeq and custom Agilent CGH arrays (Conrad et al.) in

regions that do not intersect with SDs.

Found at: doi:10.1371/journal.pcbi.1000988.s036 (0.04 MB

DOC)

Table S17 Copy-number genotyping concordance between

CopySeq and two array platforms in large CNVs intersecting

with SDs.

Found at: doi:10.1371/journal.pcbi.1000988.s037 (0.04 MB

DOC)

Table S18 Comparison of CopySeq copy-number genotyping

with the read-counting approach by Alkan and coworkers.

Found at: doi:10.1371/journal.pcbi.1000988.s038 (0.05 MB

DOC)

Table S19 qPCR validation of copy-number genotypes in 18

CNV loci on chromosome 1.

Found at: doi:10.1371/journal.pcbi.1000988.s039 (0.16 MB

DOC)

Table S20 qPCR primer sequences.

Found at: doi:10.1371/journal.pcbi.1000988.s040 (0.06 MB

DOC)

Table S21 Concordance of CopySeq and fluorescent in situ

hybridization (FISH) results.

Found at: doi:10.1371/journal.pcbi.1000988.s041 (0.05 MB

DOC)
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