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However, the direct comparison between message
exchange in shared memory programming model and MPI
Abstract message passing is needed in order to clarify this confu-
sion. A few such attempts were made during the past

This paper presents the comparison of the COMOPSdecade [11, 12]. Now shared memory technique has been

: signicantly improved. A new study is expected for the
benchmark performance in MPI and shared memory OMhew-generation shared memory multiprocessor systems. A
three different shared memory platforms: the DEC 9 y P Y .

AlphaServer 8400/300, the SGI Power Challenge, and the(ilomparlsonhexperlment was conduc;ted in this fstudyh to
HP-Convex Exemplar SPP1600. The paper also quali'[a-I ustrate the gommumcaﬂpn performance  for the
' COMOPS operations on major shared memory platforms.

tively analy;es the obtained performance Qata based on Ahis paper presents the experimental results and presents
understanding of the corresponding architecture and the

: : . Some qualitative analyses to interpret the results.
MPI implementations. Some conclusions are made for the q y P
inter-processor communication performance on these three

This paper has four sections. In the first section, the
shared memory platforms.

architectures of three shared memory platforms are briefly
described. The implementation details of the experiment
are described in the second section. The second section
also discusses the shared memory simulation of those com-
munication patterns defined in the COMOPS benchmark

. . set. The third section presents the data and analyses. It
Parallel computing on shared memory multi-processors

. ._graphically exhibits the collected communication perfor-
has become an effective method to solve large scale scien: o )
o . . X mance data and qualitatively interprets the performance
tific and engineering computational problems. Both MPI

and shared memory are available for data communicatio behavior based on an understanding of underlying architec-

ntures. In the final section, some conclusions and recom-
between processors on shared memory platforms. Nor-

o o mendations are made regarding the interprocessor
mally, performing inter-processor data communication by L
: . . . communication performance on the three shared memory
copying data into and out of an intermediate shared buffer
platforms.
seems natural on a shared memory platform. However,
some vendors have recently claimed that their customizedz Archi
: . . Architectures
MPI implementations performed better than the corre-
sponding shared memory protocol on their shared memory
platforms even though the MPI protocol was originally
designed for distributed memory multi-processor systems.
This situation makes it hard for users to choose the bes
tool for inter-processor communication on those shared
memory platforms on which both MPI and shared memory

1. Introduction

This paper studies two major types of shared memory
connections for multi-processor systems. One is the bus-
onnected shared memory system as illustrated in Figure 1.
he DEC AlphaServer 8400/300 and the SGI Power Chal-
lenge have this type of architecture. In this type of system
every processor has equal access to the entire memory sys-

carried out on benchmarking or even modeling the mes-pem through the same bus. Another type of shared mem-

: L ory multi-processor connection architecture is the crossbar
sage passing performance on similar platforms [8, 9]. " °. . S i .
switch. This crossbar connection is a typical connection
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mechanism within one hypernode of many distributed structure, the memory access is non-uniform. This struc-
shared memory (DSM) systems such as HP-Convex Exemture is called a NUMA (Non-Uniform Memory Access)
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Figure 2. Convex Exemplar hypernode structure

plar and NEC SX-4. The Exemplar SPP architecture isarchitecture. Also, the inter-processor communication in
shown in Figure 2. The Convex machine we have access tbus-connected shared memory systems is homogeneous
(courtesy of Convex) is a one-hypernode 8-processorand every processor is equi-distant to any other processor
machine. The inter-hypernode connection is irrelevant toin the same system. On the other hand, in a NUMA system
this experiment and this paper focuses on the intra-hypernsuch as Convex SPP, a processor always has some neigh-
ode structure only. bors electrically closer than the others in the system. As
illustrated in Figure 2, even though the memory access is
The memory access pattern and the physical distancstill uniform within one hypernode of the SPP1600, each
between two processors are different in bus-connected angrocessor is electrically closer to the one shared with the
distributed shared memory systems. In a bus-connectedame agent because it does not need to go through the
shared memory structure, the memory access for each prarossbar switch for the inter-processor communication.
cessor is uniform. But in a distributed shared memory
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In this experiment, none of the three shared memory The direct objective of this experiment is to clarify the
machines has a physical implementation for CPU-privatedifference in the performance of inter-processor communi-
or thread-private memory. In a bus-connected multi- cation between the shared memory protocol and the mes-
processor system, such as the SGI Power Challenge anshge passing protocol on a shared memory platform. To
the DEC AlphaServer 8400/300 (nickname Turbolaser), achieve this goal, the common inter-processor communica-
the memory system is purely homogeneous. Thereforefion operations specified in the LANL COMOPS bench-
there is no physical distinction between a logically-private mark set are used to perform the comparison. The point-
memory space and a logically-shared memory space. Foto-point communication operation actually used in this
the NUMA system SPP1600, although it is a DSM system,experiment is ping-pong. The tested collective operations
its CPU-private or thread-private memory is not physically include broadcast, reduction, gather, and scatter.
implemented [1]. Instead, the operating system partitions
hypernode-private memory (memory modules within one  The COMOPS benchmark set is designed to measure
hypernode) used as CPU-private memory for each of thehe performance of inter-processor point-to-point and col-
processors in the hypernode. The reason for this is thakective communication in MPI. It measures the communi-
implementation of a physical CPU-private memory would cation bandwidth and message transfer time for different
not result in substantially lower CPU-to-memory latency, message sizes. The set includes ping-pong, broadcast,
and the latency from a processor to hypernode-privatereduction, and gather/scatter operations. The MPI perfor-

memory would be increased [1]. mance measurement can be directly performed on the three
platforms with the corresponding best available MPI
3. The Experimental Method implementation. Both SGI and HP-Convex have their own
Ping-pong:
call timer
do ntimes

if (my_thread .eq. 0) then
shared_temp=private_send !! Thread 0 sends out message

endif
barrier Il synchronization
if (my_thread .eq. 1) then
private_val=shared_tmp I Thread 1 receives the message
shared_tmp2=private_recv !l Thread 1 sends out the message
endif
barrier Il synchronization
if (my_thread .eq. 0) then
private_val=shared_tmp2 IThread O receives back the message
endif
enddo
call timer
Broadcast:
call timer
do ntimes

if (my_thread .eq. 0) then
shared_temp=privated_send !! Thread 0 sends out message

endif
barrier Il synchronization
if (my_thread .ne. 0) then !l Other threads receives the
private_recv=shared_tmp !l message simultaneously
endif
barrier 1l synchronization
enddo
call timer
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customized MPI implementations on their shared memorynearly 10 times faster than shared memory for medium and

platforms. Although the current version of MPI implemen- big message sizes. As for gather operations, MPI band-

tation on our DEC AlphaServer 8400/300 Turbolaser is awidth is nearly five times higher than shared memory band-

public-domain MPICH version, according to the informa- width for medium message size. For a message size of

tion from DEC, this MPICH implementation performs no 800KB, this MPI performance still holds at the level of

worse than the DEC customized version MPI within one twice as fast as the shared memory.

shared memory multi-processor box. The main effort of

this experiment is to write a shared memory version of the The DEC AlphaServer 8400/300 has comparable MPI

COMOPS benchmark set. The shared memory multi-and shared memory performance for the ping-pong opera-

thread version of pingpong and broadcast communicatiortion. But for all the tested collective operations (broadcast,

operations is illustrated in pseudo-code. The intermediateeduction, gather, and scatter), its shared memory band-

copy is presented here purely for multi-threading program-width is considerably higher than the MPI bandwidth.

ming model, in which all thread-local data are not shared.

In fact, the new SGI MPI 3.0 implementation on the DSM  On the Convex Exemplar SPP1600, the Convex-cus-

Origin2000 is using this two-copy scheme [10]. tomized MPI performs eight times faster than its shared

memory does for the ping-pong operation. The Convex

As shown in the pseudocode list, only one pair of pro- MPI is also the best one in terms of pingpong performance.

cessors participate in the operation of ping-pong, regard+or the other four collective operations, the performance of

less of the total number of processors involved. TheMPI is just slightly better than that of shared memory

collective communication operations involves all the pro- method.

cessors in the run. The shared memory version accom-

plishes the same operations performed in the original MPl  Figure 6 demonstrates the ping-pong round trip transfer

version of the COMOPS benchmark. time for small message sizes (8 Bytes to 80 Bytes). This
) performance typically reflects the communication latency.
4. Performance Data and Analysis It is clear that the shared memory method on the DEC

AlphaServer8400 has the lowest ping-pong latency. In
The original MPI COMOPS benchmark set and the Figures 9 through 15, the performance behaviors for ping-
equivalent multi-thread shared memory version have beerpong, broadcast, and reduction are respectively shown on
run on three platforms outlined in Table 1 [1, 2, 7]. On each platform for a fixed message size (800KB) with dif-
both SGI and Convex machines, vendor’s customized verferent number of processors. It should be noted that the
sion of MPI are used in this experiment. On the DEC bandwidth calculation of ping-pong in COMOPS is what
Alpha machine, a public-domain MPI implementation some people called “ping-pong rate = message_size /
(MPICH) is used. round_trip_time”. So, it's only half of the “one-way” ping-
pong bandwidth as other benchmark reported.
The collected performance data are illustrated in Fig-
ures 3 through 15. Figures 3 through 5, Figure 7, and Fig- Figure 7 and Figure 8 reflect a big difference between
ure 8 exhibit the cross-platform bandwidth comparison andthe gather and the scatter bandwidth in the SGI MPI.
the comparison between the shared memory communicaAccording to Eric Salo [6], a SGI MPI expert, for scatter
tion protocol as well as the message passing communicaeperations, the root processor essentially sends a pointer
tion protocol. These performance data are all obtainedand a length of the targeted data block to each of the slave
using four processors with different message sizes. It iprocessors, which then copy the data in parallel. This turns
clear that the performance of the SGI MPI is generally out to be the situation in which every slave processor
superior to the other ones (except for pingpong perfor-directly reads the corresponding block of data from the
mance). The SGI MPI is also better than its correspondingspace owned by the root processor. Since in scatter opera-
shared memory performance on all 5 communication oper+ions, every slave processor reads a different block of data,
ations (ping-pong, broadcast, reduction, gather, and scatvirtually no memory conflicts exist, and all processors can
ter). read the data at full bandwidth. But for gather operations,
the situation is reversed. The root processor has to move
More specifically, on the SGI Power Challenge, MPI is the data from different locations all by itself. So, the gather
about three times faster than shared memory for the perforbandwidth is limited by this implementation at the level of
mance ping-pong. The broadcast performance on this SGhbout 70MB/sec.
shared memory machine is about the same for MPI and
shared memory. Scatter operations in the SGI MPI are
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Now, based on an understanding of architectures and theessors. It looks like the MPI processes are “light” on the
underlying MPI implementations, the qualitative perfor- SGI Power Challenge because the OS interruption does not
mance analysis of ping-pong, broadcast, and reductiorsteal the effective bandwidth even if all processors are in
operations on each platform is presented here. Figure $he run. The SGI implementation of MPI is based on the
shows the ping-pong time on the DEC AlphaServer for aglobal memory copy functioBcopy() [6]. Thus, the ping-
fixed message size (800KB) with different number of pro- pong operation is accomplished by directly copying data
cessors involved. On this DEC machine, MPI is built on from the space owned by the source processor to the desti-
top of its shared memory communication protocol. There-nation processor, without going through an intermediate
fore, MPI performance is always slightly worse than shared space [4]. Therefore, the shared memory scheme,
shared memory because of the overhead involved in thavhich uses an intermediate shared space as an interim,
MPI implementation. Also, MPI processes seem to betakes more than twice as long as MPI does.

“heavy”. Although only two processors participate in the
ping-pong operation, the time slightly grows up when the  The performance of shared memory broadcast and
number of MPI processes increases. This is probably dueeduction on the SGI machine (Figure 13 and 14) is similar
to the interruption from the operating system and the otherto what is observed on the DEC AlphaServer because of
MPI processes, which are supposed to be idle. On thehe identical architecture and the same version of shared
other hand, the time for the shared memory ping-pongmemory code. The time for broadcast grows up with more
operation remains constant, regardless of the number oprocessors because of the increasing queue length for read-
processors in the run. This is because the cache coherenasg the shared space. For reduction, the cost from the criti-
caused by invalidating the shared cache line on each proeal section increases with more processors involved. The
cessor is performed by broadcasting the message on thEIPI performance behaviors for broadcast and reduction on
bus, instead of sending it to each processor separately [6].the SGI Power Challenge are interesting. In fact, the MPI
performance illustrated in Figure 13 and 14 reflect the

The broadcast performance on the DEC AlphaServerunderlying implementation of the SGI MPI. The MPI
(Figure 10) is easy to understand. The increase of theperation for broadcast is implemented as a fan-out tree on
shared memory broadcast time with more processors ighe top of theBcopy() point-to-point mechanism [6]. For
caused by the increasing queue length of the slave proceseduction operations, it is in the reversed order as a fan-in

Table 1. Three tested shared memory system configurations

SGI Power
Challenge DEC Turbolasery Convex SPP100
CPU/clock 8 * MIPS R10K/ 10 * Alpha 21164/ 8 * HP 7200 /
194MHz 300MHz 120MHz
Data Cache L1:32KB L2: 2MH L1: 8KB L1: 1MB
L2: 96KB (plus 2KB on-chip
L3: 4MB cache)
Memory 2304MB 1-way inter] 4GB 8-way inter- 1Gb 4-way inter-
leaved leaved leaved

sors. In MPI, the synchronization cost causes the broadtree. Both of them have some parallelism as each pair of
cast time to increase more significantly with more processors can perform fan-in or fan-out independently.
processors. The same situation holds for reduction (FigureSince the algorithm of fan-in/ffan-out tree requires a syn-
11). However, because the shared memory reductiorchronization at each tree-fork/join stage, the cost of broad-
involves a critical section (as listed in the pseudocode), thecast/reduction will grow up with more fork/join
reduction time increases more as more processors are waisynchronizations as more processors participate into the
ing to enter the critical section. operation. Therefore, the time for reduction on eight pro-
cessors is nearly the same as that for six processors
Similarly, the ping-pong operation has a flat perfor- because they both involve the same number of join syn-
mance on the SGI Power Challenge (Figure 12). The dif-chronization stages. The big growth in the time for broad-
ference from the situation of the DEC AlphaServer is thatcast on eight processors (Figure 13) in fact is caused by the
the MPI ping-pong time does not grow up with more pro- synchronization at the completion of broadcast. With all
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Figure 4. Broadcast rate

the processors in the system being synchronized at certaimanipulations must have done to achieve nearly 8 times

point, the OS overhead can be significant. On the otheffaster pingpong speed in the Convex implementation of

hand, there is no need for such a synchronization in reducMPI. Since the details of collective communications in the

tion. Convex version of MPI are unclear at this moment, those

performance data are not illustrated and discussed here.

The ping-pong performance on the Convex SPP1600

(Figure 15) is very similar to that on the SGI Power Chal- 5. Conclusions

lenge. From the phenomenon that the MPI takes nearly

half time of what the shared memory scheme takes to per- From the COMOPS benchmark results measured on

form the ping-pong operation, it is reasonable to anticipatethree shared memory machines, the following conclusions

that the MPI implementation on the SPP1600 may be alsaan be made.

based on the direct memory copy, instead of going through

an intermediate shared space [4]. Also, some special 1. The MPIimplementation on the SGI Power Chal-
lenge is generally superior to the others, at least for
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Figure 6. Small message ping-pong time

COMOPS collective operations. For pingpong opera- It is clear that customizing the MPI implementation
tions, the Convex MPI is the best. based on the specific hardware architecture is a good way
to achieve high performance for message passing opera-
2.1n general, the communication performance for  tions on a shared memory platform. Also, using direct
COMOPS operations is better in two customized ver- memory copy, instead of going through an intermediate

sions of MPI, the Convex MPI and the SG MPI, than  shared space, is critical to the improvement of the commu-
in their corresponding shared memory schemes. nication performance.

3. On the DEC Turbolaser, the communication per-
formance in the shared memory scheme is slightly
better than that in the MPI because of the MPI over-
head.
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