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Abstract

This paper presents the comparison of the COMO
benchmark performance in MPI and shared memory
three different shared memory platforms: the DE
AlphaServer 8400/300, the SGI Power Challenge, and
HP-Convex Exemplar SPP1600. The paper also qua
tively analyzes the obtained performance data based o
understanding of the corresponding architecture and
MPI implementations. Some conclusions are made for
inter-processor communication performance on these t
shared memory platforms.

1. Introduction

Parallel computing on shared memory multi-process
has become an effective method to solve large scale s
tific and engineering computational problems.  Both M
and shared memory are available for data communica
between processors on shared memory platforms.  N
mally, performing inter-processor data communication 
copying data into and out of an intermediate shared bu
seems natural on a shared memory platform.  Howe
some vendors have recently claimed that their custom
MPI implementations performed better than the cor
sponding shared memory protocol on their shared mem
platforms even though the MPI protocol was origina
designed for distributed memory multi-processor syste
This situation makes it hard for users to choose the 
tool for inter-processor communication on those sha
memory platforms on which both MPI and shared mem
protocols are available.  Some previous studies have 
carried out on benchmarking or even modeling the m
sage passing performance on similar platforms [8, 
1060-3425/98 $10.
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However, the direct comparison between mess
exchange in shared memory programming model and M
message passing is needed in order to clarify this co
sion. A few such attempts were made during the p
decade [11, 12].  Now shared memory technique has b
signicantly improved.  A new study is expected for t
new-generation shared memory multiprocessor system
comparison experiment was conducted in this study
illustrate the communication performance for th
COMOPS operations on major shared memory platfor
This paper presents the experimental results and pres
some qualitative analyses to interpret the results.

This paper has four sections.  In the first section, 
architectures of three shared memory platforms are bri
described.  The implementation details of the experim
are described in the second section.  The second se
also discusses the shared memory simulation of those c
munication patterns defined in the COMOPS benchm
set.  The third section presents the data and analyse
graphically exhibits the collected communication perfo
mance data and qualitatively interprets the performa
behavior based on an understanding of underlying archi
tures.  In the final section, some conclusions and rec
mendations are made regarding the interproces
communication performance on the three shared mem
platforms.

2. Architectures

This paper studies two major types of shared mem
connections for multi-processor systems.  One is the b
connected shared memory system as illustrated in Figu
The DEC AlphaServer 8400/300 and the SGI Power Ch
lenge have this type of architecture.  In this type of syst
every processor has equal access to the entire memory
tem through  the same bus.  Another type of shared m
ory multi-processor connection architecture is the cross
switch.  This crossbar connection is a typical connect
00 (c) 1998 IEEE
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plar and NEC SX-4.  The Exemplar SPP architecture
shown in Figure 2.  The Convex machine we have acces
(courtesy of Convex) is a one-hypernode 8-proces
machine.  The inter-hypernode connection is irrelevant
this experiment and this paper focuses on the intra-hype
ode structure only.

The memory access pattern and the physical dista
between two processors are different in bus-connected 
distributed shared memory systems.  In a bus-connec
shared memory structure, the memory access for each 
cessor is uniform.  But in a distributed shared memo
1060-3425/98 $10.
d
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structure, the memory access is non-uniform.  This st
ture is called a NUMA (Non-Uniform Memory Acces
Figure 2. Convex Exemplar hypernode structure
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Figure 1. Bus-connected shared memory multiprocessors
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architecture.  Also, the inter-processor communication
bus-connected shared memory systems is homogene
and every processor is equi-distant to any other proce
in the same system.  On the other hand, in a NUMA syst
such as Convex SPP, a processor always has some n
bors electrically closer than the others in the system.  
illustrated in Figure 2, even though the memory acces
still uniform within one hypernode of the SPP1600, ea
processor is electrically closer to the one shared with 
same agent because it does not need to go through
crossbar switch for the inter-processor communicatio
0 (c) 1998 IEEE
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In this experiment, none of the three shared mem
machines has a physical implementation for  CPU-priv
or thread-private memory.  In a bus-connected mu
processor system, such as the SGI Power Challenge
the DEC AlphaServer 8400/300 (nickname Turbolas
the memory system is purely homogeneous.  There
there is no physical distinction between a logically-priv
memory space and a logically-shared memory space.
the NUMA system SPP1600, although it is a DSM syst
its CPU-private or thread-private memory is not physic
implemented [1].  Instead, the operating system partit
hypernode-private memory (memory modules within o
hypernode) used as CPU-private memory for each of
processors in the hypernode.  The reason for this is
implementation of a physical CPU-private memory wo
not result in substantially lower CPU-to-memory laten
and the latency from a processor to hypernode-pri
memory would be increased [1].

3. The Experimental Method
1060-3425/98 $10.0
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The direct objective of this experiment is to clarify th
difference in the performance of inter-processor commu
cation between the shared memory protocol and the m
sage passing protocol on a shared memory platform.  
achieve this goal, the common inter-processor communi
tion operations specified in the LANL COMOPS bench
mark set are used to perform the comparison.  The po
to-point communication operation actually used in th
experiment is ping-pong.  The tested collective operatio
include broadcast, reduction, gather, and scatter.

The COMOPS benchmark set is designed to meas
the performance of inter-processor point-to-point and co
lective communication in MPI.  It measures the commun
cation bandwidth and message transfer time for differe
message sizes.  The set includes ping-pong, broadc
reduction, and gather/scatter operations.  The MPI perf
mance measurement can be directly performed on the th
platforms with the corresponding best available MP
implementation.  Both SGI and HP-Convex have their ow
Ping-pong:

       call timer

         do ntimes

     if (my_thread .eq. 0) then

       shared_temp=private_send     !! Thread 0 sends out message

     endif

     barrier                        !! synchronization

     if (my_thread .eq. 1) then

      private_val=shared_tmp        !! Thread 1 receives the message

      shared_tmp2=private_recv      !! Thread 1 sends out the message

     endif

     barrier                        !! synchronization

     if (my_thread .eq. 0) then

      private_val=shared_tmp2       !!Thread 0 receives back the message

     endif

         enddo

       call timer

Broadcast:

       call timer

         do ntimes

     if (my_thread .eq. 0) then

       shared_temp=privated_send    !! Thread 0 sends out message

     endif

     barrier                        !! synchronization

     if (my_thread .ne. 0) then     !! Other threads receives the

       private_recv=shared_tmp      !! message simultaneously

     endif

     barrier                        !! synchronization

         enddo

       call timer
0 (c) 1998 IEEE
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customized MPI implementations on their shared mem
platforms.  Although the current version of MPI impleme
tation on our DEC AlphaServer 8400/300 Turbolaser 
public-domain MPICH version, according to the inform
tion from DEC, this MPICH implementation performs n
worse than the DEC customized version MPI within o
shared memory multi-processor box.  The main effort
this experiment is to write a shared memory version of
COMOPS benchmark set.  The shared memory m
thread version of pingpong and broadcast communica
operations is illustrated in  pseudo-code.  The intermed
copy is presented here purely for multi-threading progra
ming model, in which all thread-local data are not sha
In fact, the new SGI MPI 3.0 implementation on the DS
Origin2000 is using this two-copy scheme [10].

As shown in the pseudocode list, only one pair of p
cessors participate in the operation of ping-pong, reg
less of the total number of processors involved.  T
collective communication operations involves all the p
cessors in the run.  The shared memory version acc
plishes the same operations performed in the original M
version of the COMOPS benchmark.

4. Performance Data and Analysis

The original MPI COMOPS benchmark set and 
equivalent multi-thread shared memory version have b
run on three platforms outlined in Table 1 [1, 2, 7].  
both SGI and Convex machines, vendor’s customized 
sion of MPI are used in this experiment.  On the D
Alpha machine, a public-domain MPI implementati
(MPICH) is used.

The collected performance data are illustrated in F
ures 3 through 15.  Figures 3 through 5, Figure 7, and 
ure 8 exhibit the cross-platform bandwidth comparison 
the comparison between the shared memory commun
tion protocol as well as the message passing commun
tion protocol.  These performance data are all obtai
using four processors with different message sizes.  
clear that the performance of the SGI MPI is gener
superior to the other ones (except for pingpong per
mance).  The SGI MPI is also better than its correspon
shared memory performance on all 5 communication o
ations (ping-pong, broadcast, reduction, gather, and s
ter).

More specifically, on the SGI Power Challenge, MPI
about three times faster than shared memory for the pe
mance ping-pong.  The broadcast performance on this
shared memory machine is about the same for  MPI 
shared memory.  Scatter operations in the SGI MPI 
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nearly 10 times faster than shared memory for medium and
big message sizes.  As for gather operations, MPI band-
width is nearly five times higher than shared memory band-
width for medium message size.  For a message size of
800KB, this MPI performance still holds at the level of
twice as fast as the shared memory.

The DEC AlphaServer 8400/300 has comparable MPI
and shared memory performance for the ping-pong opera-
tion.  But for all the tested collective operations (broadcast,
reduction, gather, and scatter), its shared memory band-
width is considerably higher than the MPI bandwidth.

On the Convex Exemplar SPP1600, the Convex-cus-
tomized MPI performs eight times faster than its shared
memory does for the ping-pong operation.   The Convex
MPI is also the best one in terms of pingpong performance.
For the other four collective operations, the performance of
MPI is just slightly better than that of shared memory
method.

Figure 6 demonstrates the ping-pong round trip transfer
time for small message sizes (8 Bytes to 80 Bytes).  This
performance typically reflects the communication latency.
It is clear that the shared memory method on the DEC
AlphaServer8400  has the lowest ping-pong latency.  In
Figures 9 through 15, the performance behaviors for ping-
pong, broadcast, and reduction are respectively shown on
each platform for a fixed message size (800KB) with dif-
ferent number of processors.   It should be noted that the
bandwidth calculation of ping-pong in COMOPS is what
some people called “ping-pong rate = message_size /
round_trip_time”.  So, it’s only half of the “one-way” ping-
pong bandwidth as other benchmark reported.

Figure 7 and Figure 8 reflect a big difference between
the gather and the scatter bandwidth in the SGI MPI.
According to Eric Salo [6], a SGI MPI expert, for scatter
operations, the root processor essentially sends a pointer
and a length of the targeted data block to each of the slave
processors, which then copy the data in parallel.  This turns
out to be the situation in which every slave processor
directly reads the corresponding block of data from the
space owned by the root processor.  Since in scatter opera-
tions, every slave processor reads a different block of data,
virtually no memory conflicts exist, and all processors can
read the data at full bandwidth.  But for gather operations,
the situation is reversed.  The root processor has to move
the data from different locations all by itself.  So, the gather
bandwidth is limited by this implementation at the level of
about 70MB/sec.
.00 (c) 1998 IEEE



d t
or
ti
re
r 
ro
 o
re
an
 t
 b
the
th
 d
th
 t
on
r 
re
 p
n 
 [6

rv
 t
rs 
oc
Now, based on an understanding of architectures an
underlying MPI implementations, the qualitative perf
mance analysis of ping-pong, broadcast, and reduc
operations on each platform is presented here.  Figu
shows the ping-pong time on the DEC AlphaServer fo
fixed message size (800KB) with different number of p
cessors involved.  On this DEC machine, MPI is built
top of its shared memory communication protocol.  The
fore, MPI performance is always slightly worse th
shared memory because of the overhead involved in
MPI implementation.  Also, MPI processes seem to
“heavy”.  Although only two processors participate in 
ping-pong operation, the time slightly grows up when 
number of MPI processes increases.  This is probably
to the interruption from the operating system and the o
MPI processes, which are supposed to be idle.  On
other hand, the time for the shared memory ping-p
operation remains constant, regardless of the numbe
processors in the run.  This is because the cache cohe
caused by invalidating the shared cache line on each
cessor is performed by broadcasting the message o
bus, instead of sending it to each processor separately

The broadcast performance on the DEC AlphaSe
(Figure 10) is easy to understand.  The increase of
shared memory broadcast time with more processo
caused by the increasing queue length of the slave pr
a
r
u
i
t

r

o

sors.  In MPI, the synchronization cost causes the bro
cast time to increase  more significantly with mo
processors.  The same situation holds for reduction (Fig
11).  However, because the shared memory reduct
involves a critical section (as listed in the pseudocode), 
reduction time increases more as more processors are w
ing to enter the critical section.

Similarly, the ping-pong operation has a flat perfo
mance on the SGI Power Challenge (Figure 12).  The d
ference from the situation of the DEC AlphaServer is th
the MPI ping-pong time does not grow up with more pr
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cessors.  It looks like the MPI processes are “light” on the
SGI Power Challenge because the OS interruption does not
steal the effective bandwidth even if all processors are in
the run.  The SGI implementation of MPI is based on the
global memory copy function Bcopy() [6].  Thus, the ping-
pong operation is accomplished by directly copying data
from the space owned by the source processor to the desti-
nation processor, without going through an intermediate
shared space [4].  Therefore, the shared memory scheme,
which uses an intermediate shared space as an interim,
takes more than twice as long as MPI does.

The performance of shared memory broadcast and
reduction on the SGI machine (Figure 13 and 14) is similar
to what is observed on the DEC AlphaServer because of
the identical architecture and the same version of shared
memory code.  The time for broadcast grows up with more
processors because of the increasing queue length for read-
ing the shared space.  For reduction, the cost from the criti-
cal section increases with more processors involved.  The
MPI performance behaviors for broadcast and reduction on
the SGI Power Challenge are interesting.  In fact, the MPI
performance illustrated in Figure 13 and 14 reflect the
underlying implementation of the SGI MPI.  The MPI
operation for broadcast is implemented as a fan-out tree on
the top of theBcopy() point-to-point mechanism [6].  For
reduction operations, it is in the reversed order as a fan-in
Table 1. Three tested shared memory system configurations

SGI Power
Challenge DEC Turbolaser Convex SPP1600

CPU/clock 8 * MIPS R10K/
194MHz

10 * Alpha 21164/
300MHz

8 * HP 7200  /
120MHz

Data Cache L1: 32KB   L2: 2MB L1: 8KB

L2: 96KB

L3: 4MB

L1: 1MB

(plus 2KB on-chip
cache)

Memory 2304MB 1-way inter-
leaved

4GB 8-way inter-
leaved

1Gb 4-way inter-
leaved
d-
e
re

on
he
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tree.  Both of them have some parallelism as each pair of
processors can perform fan-in or fan-out independently.
Since the algorithm of  fan-in/fan-out tree requires a syn-
chronization at each tree-fork/join stage, the cost of broad-
cast/reduction will grow up with more fork/join
synchronizations as more processors participate into the
operation.  Therefore, the time for reduction on eight pro-
cessors is nearly the same as that for six processors
because they both involve the same number of join syn-
chronization stages.  The big growth in the time for broad-
cast on eight processors (Figure 13) in fact is caused by the
synchronization at the completion of broadcast.  With all
00 (c) 1998 IEEE
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the processors in the system being synchronized at ce
point, the OS overhead can be significant.  On the ot
hand, there is no need for such a synchronization in red
tion.

The ping-pong performance on the Convex SPP16
(Figure 15) is very similar to that on the SGI Power Ch
lenge.  From the phenomenon that the MPI takes ne
half time of what the shared memory scheme takes to p
form the ping-pong operation, it is reasonable to anticip
that the MPI implementation on the SPP1600 may be a
based on the direct memory copy, instead of going throu
an intermediate shared space [4].  Also, some spe
1060-3425/98 $10.
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manipulations must have done to achieve nearly 8 tim
faster pingpong speed in the Convex implementation
MPI.  Since the details of collective communications in t
Convex version of MPI are unclear at this moment, tho
performance data are not illustrated and discussed here

5.  Conclusions

From the COMOPS benchmark results measured 
three shared memory machines, the following conclusio
can be made.

1. The MPI implementation on the SGI Power Chal-
lenge is generally superior to the others, at least for
00 (c) 1998 IEEE
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Figure 6. Small message ping-pong time
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COMOPS collective operations. For pingpong oper
tions, the Convex MPI is the best.

2. In general, the communication performance for
COMOPS operations is better in two customized ve
sions of MPI, the Convex MPI and the SG MPI, tha
in their corresponding shared memory schemes.

3. On the DEC Turbolaser, the communication per
formance in the shared memory scheme is slightly
better than that in the MPI because of the MPI ove
head.
1060-3425/98 $10.
It is clear that customizing the MPI implementatio
based on the specific hardware architecture is a good 
to achieve high performance for message passing op
tions on a shared memory platform.  Also, using dire
memory copy, instead of going through an intermedia
shared space, is critical to the improvement of the comm
nication performance.
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