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Abstract. We consider the construction of a class of numerical methods based on the general

matrix inverse [14] which provides continuous interpolant for dense approximations (output).

Their stability properties are similar to those for Runge-Kutta methods. These methods provide a

unifying scope for many families of traditional methods. They are self-starting, to change stepsize

during integration is not difficult when using them. We exploited these properties by first obtaining

the direct block methods associated with the continuous schemes and then converting the block

methods into uniformly A-stable high order general linear methods that are acceptable for solving

stiff initial value problems. However, we will limit our formulation only for the step numbers

k = 2, 3, 4. From our preliminary experiments we present some numerical results of some initial

value problems in ordinary differential equations illustrating various features of the new class of

methods.

Mathematical subject classification: 65L05.
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1 Introduction

General linear methods emerged as a result of the desire to obtain a wider general-

ization of a large family of traditional numerical methods for ordinary differential

equations. They were first introduced by [2] as a unifying theory for studying
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stability, consistency and convergence for a wide variety of traditional methods.

Their formulations include both the multi-stage nature of Runge-Kutta methods

as well as the multi-value nature of linear multistep methods which also allows

for many generalizations of the traditional methods [4]. General linear meth-

ods, however, have not yet gained the popularity they deserve despite they have

been in existence for over forty years. Their discovery opened up many possi-

bilities of obtaining essentially new methods that were neither Runge-Kutta nor

linear multistep methods which exist practically and have advantages over the

traditional methods. For example “Almost Runge-Kutta” methods [5], two step

Runge-Kutta methods [9, 12] and Hybrid methods [10] etc. Some of the reasons

for their generalizations are:

• Runge-Kutta methods, which are always termed to be the best known

one-step methods, have been regarded as expensive because of their mul-

tistage structure (multiple function calls in each time step [7]). Runge-

Kutta methods use more function evaluations to attain the same accuracy

as compared with the linear multistep methods. The implementation costs

for implicit Runge-Kutta methods (Gauss, Lobatto and Radau) present

obstacle to finding cheap implementation because of the structure of the

coefficient matrix A in Butcher’s array, which has a pair of complex con-

jugate eigenvalue. For both explicit and implicit Runge-Kutta methods it

is very difficult to estimate errors for variable stepsize h and order p [7].

• Linear multistep methods, on the other hand suffer the disadvantages of

poor stability property as the step number increases with accuracy and

requiring additional starting values with constant step size from other one-

step methods. For the A-stability which is a desirable property for stiff

problems, order is limited by Dahlquist barriers to two.

In this paper we consider some possible generalizations which retains the

Runge-Kutta stability with the general nature of linear multistep methods but

overcome some of the handicaps involved in the two well known traditional

methods with some advantages than the two traditional methods. This could be

done by including an “off-step point” midway between the step numbers which

yields order 2k +1 [3]. In this way the idea of looking for a starter for a particular

method is avoided, since the general linear method can now be used in a block

form, see [15].

Comp. Appl. Math., Vol. 31, N. 2, 2012



“main” — 2012/8/28 — 0:49 — page 261 — #3

D.G. YAKUBU, A.M. KWAMI and M.L. AHMED 261

2 General linear methods

The name “general linear methods” applies to a large family of numerical meth-

ods for ordinary differential equations. Runge-Kutta methods and linear multi-

step methods are examples of these methods. Further, a general linear method

used for the numerical solution of system of initial value problem in ordinary

differential equations of the form

y′ = f (x, y), y(x0) = y0, a ≤ x ≤ b, (1)

is both multistage as the Runge-Kutta methods and multivalue as the linear

multistep methods. In the general linear methods we denote the internal stage

values of step number n by

Y [n]
1 , Y [n]

2 , . . . , Y [n]
s

and the derivatives evaluated at these steps by

f (Y [n]
1 ), f (Y [n]

2 ), . . . , f (Y [n]
s ).

At the start of the step number n, r quantities denoted by

y[n−1]
1 , y[n−1]

2 , . . . , y[n−1]
r

are available from approximations computed in step n −1. Corresponding quan-

tities

y[n]
1 , y[n]

2 , . . . , y[n]
r

are evaluated in the step number n. Introducing the vectors

Y [n], f (Y [n]), y[n−1] and y[n]

we can write them as follows:

Y [n] =











Y [n]
1

Y [n]
2

...

Y [n]
s











, f (Y [n]) =











f (Y [n]
1 )

f (Y [n]
2 )

...

f (Y [n]
s )











, y[n−1] =











y[n−1]
1

y[n−1]
2

...

y[n−1]
r











, y[n] =











y[n]
1

y[n]
2

...

y[n]
r
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where r denotes quantities as output from each step and input to the next step and

s denotes stage values used in the computation of the step Y [n]
1 , Y [n]

2 , . . . , Y [n]
s .

If the stepsize is h then the quantities imported into and evaluated in step

number n are related by the relations

Y [n] = h(A ⊕ Im) f (Y [n])+ (U ⊕ Im)y
[n−1],

y[n] = h(B ⊕ Im) f (Y [n])+ (V ⊕ Im)y
[n−1],

where n = 1, 2, . . . , N ; I is the identity matrix of size equal to the differential

equation system to be solved and m is the dimension of the system. Also ⊕ is

the Kronecker product of two matrices. For simplicity, we write the method as:

Y [n] = h A f (Y [n])+ U y[n−1],

y[n] = h B f (Y [n])+ V y[n−1], (2)

and the coefficients of the method, that is, the elements of A, B,U and V as a

partitioned (s + r)× (s + r) matrix:

M =

[
A U

B V

]

.

This formulation of general linear methods was introduced by Burrage and

Butcher [1]. The structure of the leading coefficient matrix A which is similar

to that of the A matrix in Runge-Kutta methods, determines the implementation

cost of these methods. The V matrix determines the stability of these methods.

The B matrix gives the weights. The U matrix is simply e. The vector y[n] can

have a very general structure. That is to say the quantities could approximate

the solution and the derivatives of various previous points, backward difference

approximations to the derivatives or approximations to a Nordsieck vector, all

of which are common choices in linear multistep methods. In the case of the

Runge-Kutta methods, y[n] could be an approximation to yn or perturbation of

yn using the generalization to effective order.

Definition 2.1. [8] For a general linear method (A,U, B, V ) the ‘stability

matrix’ M(z) is defined by

M(z) = V + zB(I − z A)−1U
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and the characteristic polynomial is given by

8(ω, z) = det(ωI − M(z)).

Definition 2.2. [8] If a general linear method (A,U, B, V ) has a stability

function which takes the special form:

8(ω, z) = ωr−1(ω − R(z))

where the rational function R(z) is known as the ‘stability function’ of the method,

then the method is said to have Runge-Kutta stability.

Definition 2.3. [8] A general linear method (A,U, B, V ) is A-stable if for all

z ∈ C−, I − z A is non-singular and M(z) is a stability matrix.

For methods with this property the step size is never restricted by stability on

linear constant coefficient problems, regardless of the stiffness.

Definition 2.4. [6] A general linear method (A,U, B, V ) is L-stable if it is

A-stable and ρ(M(∞)) = 0 or the stronger condition M(∞) = 0.

3 Derivation technique

A particularly useful class of discrete methods for the numerical integration

of (1) is the class of linear multistep methods of the form

yn+k =
k∑

j=0

φ j yn+ j + h
k∑

j=0

ψ j fn+ j (3)

where k > 0 is the step number, φ j , j = 0, 1, . . . , t − 1; ψ j , j = 0, 1, . . .,

s − 1 are the coefficients of the discrete scheme, with yn+ j = y(xn+ j ), j =

0, 1, . . . , k − 1, h is assumed (for simplicity of the analysis) to be a constant

step-size given by

h = xn+1 − xn; n = 0, 1, . . . , N ; hN = b − a;

and a set of equally spaced points on the integration interval also given by

a = x0 < x1 < ∙ ∙ ∙ < xn < xn+1 < ∙ ∙ ∙ < xn+k < ∙ ∙ ∙ < xN = b.
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To obtain its continuous formulation, in the sense of [14] which was a gen-

eralization of [13], we consider a polynomial y(x) of degree p = t + s − 1,

t > 0, s > 0, of the form

y(x) =
t−1∑

j=0

φ j (x)yn+ j + h
s−1∑

j=0

ψ j (x) f (x j , y(x j )) (4)

defined over the k-steps , x ∈ {xn, xn+k} such that it satisfies the conditions

y(xn+ j ) = yn+ j , j ∈ {0, 1, . . . , t − 1} (5)

y′(x j ) = f (x j , y(x j )), j = 0, 1, . . . , s − 1, (6)

where φ j (x) and ψ j (x) are assumed polynomials of the form:

φ j (x) =
t+s−1∑

i=0

φ j,i+1xi , j ∈ {0, 1, . . . , t − 1}; (7)

hψ j (x) = h
t+s−1∑

i=0

ψ j,i+1xi , j = 0, 1, 2, . . . , s − 1, (8)

xn+ j in (5) are t (t > 0) arbitrarily chosen interpolation points taken from

{xn, xn+k} and the collocation points x j , j = 0, 1, . . . , s − 1 in (6) also be-

long to {xn, xn+k}. From the interpolation and collocation conditions (5) and

(6), and the expression for y(x) in (4), the following conditions are imposed on

φ j (x) and ψ j (x):

φ j (xn+i ) = δi j , j = 0, 1, . . . , t − 1; i = 0, 1, . . . , t − 1

hψ j (xn+i ) = 0, j = 0, 1, . . . , s − 1; i = 0, 1, . . . , t − 1 (9)

and

φ′
j (xi ) = 0, j = 0, 1, . . . , t − 1; i = 0, 1, . . . , t − 1

hψ ′
j (xi ) = δi j , j = 0, 1, . . . , s − 1; i = 0, 1, . . . , t − 1. (10)

Next we write (9)-(10) in a matrix equation of the form

DC = I (11)
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where I is an identity matrix of appropriate dimension,

D =























1 xn x2
n ∙ ∙ ∙ xt+s−1

n

1 xn+1 x2
n+1 ∙ ∙ ∙ xt+s−1

n+1

...
...

...
. . .

...

1 xn+t−1 x2
n+t−1 ∙ ∙ ∙ xt+s−1

n+t−1

0 1 2xn ∙ ∙ ∙ (t + s − 1)xt+s−2
n

...
...

...
. . .

...

0 1 2xn+s ∙ ∙ ∙ (t + s − 1)xt+s−2
n+s























(12)

and

C =











φ0,1 φ1,1 ∙ ∙ ∙ φt−1,1 hψ0,1 ∙ ∙ ∙ hψs−1,1

φ0,2 φ1,2 ∙ ∙ ∙ φt−1,2 hψ0,2 ∙ ∙ ∙ hψs−1,2

...
...

. . .
...

...
. . .

...

φ0,t+s φ1,t+s ∙ ∙ ∙ φt−1,t+s hψ0,t+s ∙ ∙ ∙ hψs−1,t+s











. (13)

The matrices D and C are both of dimensions (t + s) × (t + s). It follows

from (11) that the columns of C = D−1 give the continuous coefficients φ j (x)

and ψ j (x). We now derive the continuous formulation of the general linear

methods following the derivation techniques discussed in Section 3.

4 The class of continuous general linear methods

Here we propose a more elegant and computationally attractive procedure, which

leads to a class of stable general linear methods for both non-stiff and stiff systems

of initial value problems. Although these methods were formulated in terms

of multistep collocation methods, yet they preserve many of the Runge-Kutta

properties, such as being self-starting and of permitting easy change of step

length during implementation and have more advantages than for the traditional

Runge-Kutta methods. In this family for k = 2, ζ = (x − xn), the matrix D
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in (12) becomes

D =





















1 xn x2
n x3

n x4
n x5

n

1 xn+1 x2
n+1 x3

n+1 x4
n+1 x5

n+1

1 xn+2 x2
n+2 x3

n+2 x4
n+2 x5

n+2

0 1 2xn 3x2
n 4x3

n 5x4
n

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1

0 1 2xn+2 3x2
n+2 4x3

n+2 5x4
n+2





















. (14)

Inverting the matrix in (14) once, using computer algebra, for example, Maple

or Matlab software package, give rise to the following continuous scheme

y(x) = φ0(x)yn + φ1(x)yn+1 + φ2(x)yn+2

+
[
ψ0(x) fn + ψ1(x) fn+1 + ψ2(x) fn+2

]
, (15)

where

φ0(x) =
[

3ζ 5 − 17hζ 4 + 33h2ζ 3 − 23h3ζ 2 + 4h5

4h5

]
,

φ1(x) =
[
ζ 4 − 4hζ 3 + 4h2ζ 2

h4

]
,

φ2(x) =
[
−3ζ 5 + 13hζ 4 − 17h2ζ 3 + 7h3ζ 2

4h5

]
,

ψ0(x) =
[
ζ 5 − 6hζ 4 + 13h2ζ 3 − 12h3ζ 2 + 4h4ζ

4h4

]
,

ψ1(x) =
[
ζ 5 − 5hζ 4 + 8h2ζ 3 − 4h3ζ 2

h4

]
,

ψ2(x) =
[
ζ 5 − 4hζ 4 + 5h2ζ 3 − 2h3ζ 2

4h4

]
.
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Evaluating the continuous scheme in (15), we first obtain the block method

associated with the continuous scheme and we converted the block method into

uniformly accurate order general linear method:



























0 0 0 0 0 0 0 1
9

128 0 −9
32 0 −3

128
11

128
9

16
45

128

5
32

2
3

1
8 0 −1

96
1

32 0 31
32

3
128 0 9

32 0 −9
128

45
128

9
16

11
128

−1
93 0 4

31
64
93

5
31 0 32

31
−1
31

−1
93 0 4

31
64
93

5
31 0 32

31
−1
31

3
128 0 9

32 0 −9
128

45
128

9
16

11
128

5
32

2
3

1
8 0 −1

96
1

32 0 31
32




























. (16)

We plotted the region of absolute stability of the general linear method (16) using

the method used in [9] as shown below:

Figure 1 – Region of absolute stability of the general linear method (16).
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For k=3, the matrix D in (12) takes the following form:

D =





























1 xn x2
n x3

n x4
n x5

n x6
n x7

n

1 xn+1 x2
n+1 x3

n+1 x4
n+1 x5

n+1 x6
n+1 x7

n+1

1 xn+2 x2
n+2 x3

n+2 x4
n+2 x5

n+2 x6
n+2 x7

n+2

1 xn+3 x2
n+3 x3

n+3 x4
n+3 x5

n+3 x6
n+3 x7

n+3

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n 7x6
n

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1 6x5

n+1 7x6
n+1

0 1 2xn+2 3x2
n+2 4x3

n+2 5x4
n+2 6x5

n+2 7x6
n+2

0 1 2xn+3 3x2
n+3 4x3

n+3 5x4
n+3 6x5

n+3 7x6
n+3





























(17)

and we obtain

y(x) = φ0(x)yn + φ1(x)yn+1 + φ2(x)yn+2 + φ3(x)yn+3

+
[
ψ0(x) fn + ψ1(x) fn+1 + ψ2(x) fn+2 + ψ3(x) fn+3

]
. (18)

as the continuous scheme, where also

φ0(x) =

[
11ζ 7− 129hζ 6+ 602h2ζ 5− 1410h3ζ 4+ 1691h4ζ 3− 873h5ζ 2+ 108h6

108h7

]

,

φ1(x) =

[
ζ 7 − 10hζ 6 + 37h2ζ 5 − 60h3ζ 4 + 36h4ζ 3

4h7

]

,

φ2(x) =

[
−ζ 7 + 11hζ 6 − 46h2ζ 5 + 90h3ζ 4 − 81h4ζ 3 + 27h5ζ 2

4h7

]

,

φ3(x) =

[
−11ζ 7 + 102hζ 6 − 359h2ζ 5 + 600h3ζ 4 − 476h4ζ 3 + 144h5ζ 2

108h7

]

,

ψ0(x) =

[
ζ 7 − 12hζ 6 + 58h2ζ 5 − 144h3ζ 4 + 193h4ζ 3 − 132h5ζ 2 + 36h6ζ

36h6

]

,
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ψ1(x) =

[
ζ 7 − 11hζ 6 + 47h2ζ 5 − 97h3ζ 4 + 96h4ζ 3 − 36h5ζ 2

4h6

]

,

ψ2(x) =

[
ζ 7 − 10hζ 6 + 38h2ζ 5 − 68h3ζ 4 + 57h4ζ 3 − 18h5ζ 2

4h6

]

,

ψ3(x) =

[
ζ 7 − 9hζ 6 + 31h2ζ 5 − 51h3ζ 4 + 40h4ζ 3 − 12h5ζ 2

36h6

]

.

Evaluating the continuous scheme (18) we obtain the block method first and

then converted the block method into general linear method:
















































0 0 0 0 0 0 0 0 0 0 1

25
512 0 225

512 0 −75
512 0 −5

512
61

1536
125
512

225
512

425
1536

155
1305

768
1305

−45
1305 0 −162

1305 0 −13
1305

31
783

5
29 0 617

783

3
512 0 81

512 0 −81
512 0 −3

512
13

512
243
512

243
512

13
512

1
405 0 81

405
256
405

81
405 0 1

405
−1
81 0 1 1

81

5
512 0 75

512 0 225
512 0 −25

512
425

1536
225
512

125
512

61
1536

−39
3085 0 −495

3085 0 −135
3085

2304
3085

465
3085 0 783

617
−135
617

31
617

−39
3085 0 −495

3085 0 −135
3085

2304
3085

465
3085 0 783

617
−135
617

31
617

5
512 0 75

512 0 225
512 0 −25

512
425

1536
225
512

125
512

61
1536

1
405 0 81

405
256
405

81
405 0 1

405
−1
81 0 1 1

81

155
1305

768
1305

−45
1305 0 −162

1305 0 −13
1305

31
783

5
29 0 617

783
















































. (19)

We plotted the region of absolute stability of the general linear method (19)

using the method used in [9]:
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Figure 2 – Region of absolute stability of the general linear method (19).

For k = 4, the matrix D in (12) and the polynomial equation in (4) are re-

spectively:

D =








































1 xn x2
n x3

n x4
n x5

n x6
n x7

n x8
n x9

n

1 xn+1 x2
n+1 x3

n+1 x4
n+1 x5

n+1 x6
n+1 x7

n+1 x8
n+1 x9

n+1

1 xn+2 x2
n+2 x3

n+2 x4
n+2 x5

n+2 x6
n+2 x7

n+2 x8
n+2 x9

n+2

1 xn+3 x2
n+3 x3

n+3 x4
n+3 x5

n+3 x6
n+3 x7

n+3 x8
n+3 x9

n+3

1 xn+4 x2
n+4 x3

n+4 x4
n+4 x5

n+4 x6
n+4 x7

n+4 x8
n+4 x9

n+4

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n 7x6
n 8x7

n 9x8
n

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1 6x5

n+1 7x6
n+1 8x7

n+1 9x8
n+1

0 1 2xn+2 3x2
n+2 4x3

n+2 5x4
n+2 6x5

n+2 7x6
n+2 8x7

n+2 9x8
n+2

0 1 2xn+3 3x2
n+3 4x3

n+3 5x4
n+3 6x5

n+3 7x6
n+3 8x7

n+3 9x8
n+3

0 1 2xn+4 3x2
n+4 4x3

n+4 5x4
n+4 6x5

n+4 7x6
n+4 8x7

n+4 9x8
n+4








































(20)
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and

y(x) = φ0(x)yn + φ1(x)yn+1 + φ2(x)yn+2 + φ3(x)yn+3 + φ4(x)yn+4

+
[
ψ0(x) fn + ψ1(x) fn+1 + ψ2(x) fn+2 + ψ3(x) fn+3 + ψ4(x) fn+4

]
(21)

where

φ0(x) =








25ζ 9 − 494hζ 8 + 4130h2ζ 7 − 18980h3ζ 6 + 52025h4ζ 5

− 85862h5ζ 4 + 80620h6ζ 3 − 34920h7ζ 2 + 3456h9

3456h9







,

φ1(x) =








5ζ 9 − 92hζ 8 + 701h2ζ 7 − 2846h3ζ 6 + 6572h4ζ 5

− 8456h5ζ 4 + 5376h6ζ 3 − 1152h7ζ 2

108h9







,

φ2(x) =
[
ζ 8−16hζ 7+102h2ζ 6−328h3ζ 5+553h4ζ 4−456h5ζ 3+144h6ζ 2

16h8

]
,

φ3(x) =








− 5ζ 9 + 88hζ 8 − 637h2ζ 7 + 2446h3ζ 6 − 5356h4ζ 5

+ 6664h5ζ 4 − 4352h6ζ 3 + 1152h7ζ 2

108h9







,

φ4(x) =








−25ζ 9 + 406hζ 8 − 2722h2ζ 7 + 9748h3ζ 6 − 20089h4ζ 5

+ 23758h5ζ 4 − 14892h6ζ 3 + 3816h7ζ 2

3456h9







,

ψ0(x) =








ζ 9 − 20hζ 8 + 170h2ζ 7 − 800h3ζ 6 + 2273h4ζ 5 − 3980h5ζ 4

+ 4180h6ζ 3 − 2400h7ζ 2 + 576h8ζ

576h8







,

ψ1(x) =








ζ 9 − 19hζ 8 + 151h2ζ 7 − 649h3ζ 6 + 1624h4ζ 5

− 2356h5ζ 4 + 1824h6ζ 3 − 576h7ζ 2

36h8







,
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ψ2(x) =








ζ 9 − 18hζ 8 + 134h2ζ 7 − 532h3ζ 6 + 1209h4ζ 5

− 1562h5ζ 4 + 1056h6ζ 3 − 288h7ζ 2

16h8







,

ψ3(x) =








ζ 9 − 17hζ 8 + 119h2ζ 7 − 443h3ζ 6 + 944h4ζ 5

− 1148h5ζ 4 + 736h6ζ 3 − 192h7ζ 2

36h8







,

ψ4(x) =








ζ 9 − 16hζ 8 + 106h2ζ 7 − 376h3ζ 6 + 769h4ζ 5

− 904h5ζ 4 + 564h6ζ 3 − 144h7ζ 2

576h8







,

Evaluating the continuous scheme in (21) we obtain the block method which was

converted to general linear method:
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. (22)
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5 Numerical illustrations

In order to test the methods of section 4 we present some numerical results. The

absolute errors of the results obtained from computed and exact solutions at some

selected mesh points are shown in Tables.

Problem 5.1: y′ = 20x2 − 20y + 2x, y(0) =
1

3
, y(x) = x2 +

1

3
e20x

Mesh Block Adams- New General Linear

values Moulton [15] Method (19)

0.1 1.0629 × 10−2 1.5230 × 10−5

0.2 5.3890 × 10−3 1.2075 × 10−5

0.3 1.2320 × 10−2 1.6286 × 10−4

0.4 1.3008 × 10−3 2.1996 × 10−5

0.5 4.1148 × 10−4 3.0206 × 10−6

0.6 3.9430 × 10−4 8.8700 × 10−7

0.7 4.0724 × 10−5 1.1990 × 10−7

0.8 1.3629 × 10−5 1.6357 × 10−8

0.9 1.3672 × 10−5 3.6327 × 10−9

1.0 1.4145 × 10−6 4.8996 × 10−10

Table 1 – Absolute errors of numerical solutions of Problem 5.1 with, h = 0.1.

Problem 5.2: y′ = −y, y(0) = 1, y(x) = e−x

Mesh Block Adams- New General Linear

values Moulton [15] Method (22)

0.1 2.1541 × 10−7 2.5817 × 10−13

0.2 6.9544 × 10−8 2.3105 × 10−13

0.3 2.8062 × 10−7 7.4733 × 10−13

0.4 4.1350 × 10−7 1.2390 × 10−13

0.5 2.8127 × 10−7 1.1002 × 10−13

0.6 4.1578 × 10−7 1.1066 × 10−13

0.7 4.9444 × 10−7 4.1514 × 10−14

0.8 3.7858 × 10−7 3.6091 × 10−14

0.9 4.6203 × 10−7 1.2298 × 10−13

1.0 5.0564 × 10−7 6.3784 × 10−15

Table 2 – Absolute errors of numerical solutions of Problem 5.2, with, h = 0.1.
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Problem 5.3: y′ = −λy, y(0) = 1, y(0) = e−λx

Mesh Block Adams- New General Linear

values Moulton [15] Method(16)

0.1 7.4622 × 10−2 6.3759 × 10−3

0.2 9.7739 × 10−2 4.6451 × 10−3

0.3 2.2659 × 10−4 3.8855 × 10−4

0.4 1.0870 × 10−2 8.4175 × 10−5

0.5 7.7732 × 10−5 6.9921 × 10−6

0.6 1.1401 × 10−3 1.1690 × 10−6

0.7 8.8455 × 10−6 9.6903 × 10−8

0.8 1.1914 × 10−4 1.4728 × 10−8

0.9 8.8900 × 10−7 1.2197 × 10−9

1.0 1.2448 × 10−5 1.7723 × 10−10

Table 3 – Absolute errors of numerical solutions of Problem 5.3, with stiffness ratio, λ = 10000.

The fourth problem is a system of standard test problem with the exact solutions

for easy comparison purposes:

y′
1 = −8y1 + 7y2, y1(0) = 1

y′
2 = 42y1 − 43y2, y2(0) = 8

The coefficient matrix of this problem has two eigenvalues, λ1 = −1 and λ2 =

−50. The stiffness ratio is R = 50. This is a mildly stiff linear problem with the

exact solutions as:

y1(x) = 2 exp(−x)− exp(−50x)

y2(x) = 2 exp(−x)+ 6 exp(−50x)

This problem shows that to solve stiff equations the stability of a good method

should impose no limitation on the step size, and hence it requires a large stability

region. From the plots of Figure 3, it is indicated that both the block Adams-

Moulton methods(BAMMs)and the GLMs are good methods for stiff equations.

Though, for the BAMM as k increases the method becomes less stable (see

Table 4). For the GLMs the numerical results in Table 4 show that the new

GLMs are very promising and the implementation is reasonably efficient. Their

performances are no doubt very excellent.
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Solution of problem 4.4 using BAMM k = 2, with nfe = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

y1

y2

Solution of problem 4.4 using BAMM k = 3, with nfe = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

y1

y2

Solution of problem 4.4 using BAMM k = 4, with nfe = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
y1

y2

Figure 3 – Computed solutions of the system of equations in (4.4) using BAMMs [15]

and the GMLs with the same number of functions evaluations (nfe).
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Solution of problem 4.4 using GLM (16), with nfe = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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-120

-100

-80

-60

-40

-20

0

20

y1

y2

Solution of problem 4.4 using GLM (19), with nfe = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-5

-4

-3

-2

-1

0

1
x 10

166

y1

y2

Solution of problem 4.4 using GLM (22), with nfe = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

-8

-6

-4

-2

0

2

4

6
x 10

15

y1

y2

Figure 3 (continuation) – Computed solutions of the system of equations in (4.4) using

BAMMs [15] and the GMLs with the same number of functions evaluations (nfe).
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Mesh BAMM BAMM BAMM GLM GLM GLM

values [15] [15] [15] (16) (19) (22)

10.0 2.05 × 10−4 5.15 × 10−5 9.82 × 10−5 5.77 × 10−5 1.14 × 10−17 1.04 × 10−2

20.0 2.73 × 10−6 6.94 × 10−7 8.05 × 10−7 1.51 × 10−10 4.92 × 10−33 3.81 × 10−3

30.0 7.94 × 10−9 6.65 × 10−9 7.04 × 10−7 2.75 × 10−24 2.12 × 10−50 1.34 × 10−5

40.0 2.24 × 10−8 8.62 × 10−11 8.71 × 10−7 1.90 × 10−33 9.18 × 10−66 4.74 × 10−6

50.0 2.57 × 10−8 1.63 × 10−10 9.89 × 10−7 1.31 × 10−42 3.96 × 10−83 1.67 × 10−8

60.0 2.80 × 10−8 1.78 × 10−10 1.07 × 10−6 9.05 × 10−52 1.71 × 10−100 5.90 × 10−9

70.0 2.96 × 10−8 1.88 × 10−10 1.13 × 10−6 6.24 × 10−61 7.40 × 10−116 2.08 × 10−11

80.0 3.06 × 10−8 1.95 × 10−10 1.17 × 10−6 4.31 × 10−70 3.19 × 10−133 7.33 × 10−12

90.0 3.12 × 10−8 1.98 × 10−10 1.20 × 10−6 2.97 × 10−79 1.38 × 10−150 2.58 × 10−14

100 3.14 × 10−8 1.99 × 10−10 1.20 × 10−6 2.05 × 10−88 5.96 × 10−166 9.12 × 10−15

Table 4 – Absolute errors of numerical solutions of the systems of equations.

Solution of example 4.5 using BAMM k = 2, with nfe = 100

0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y(1)
y(2)
y(3)

Solution of example 4.5 using BAMM k = 3, with nfe = 100

0 2 4 6 8 10 12 14 16 18 20
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-0.6

-0.4
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0
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0.4

0.6

0.8

1

y(1)
y(2)
y(3)

Figure 4 – Computed solutions of the system of equations in (4.5) using BAMMs [15]

and the GLMs with indicated number of functions evaluations (nfe).
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Solution of example 4.5 using BAMM k = 4, with nfe = 100
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Solution of example 4.5 using GLM (16), with nfe = 100
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Solution of example 4.5 using GLM (19), with nfe = 100
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Figure 4 (continuation) – Computed solutions of the system of equations in (4.5) using

BAMMs [15] and the GLMs with indicated number of functions evaluations (nfe).
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Solution of example 4.5 using GLM (22), with nfe = 100
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See ODE45, ODE23, ODE113 of Matlab Work
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Figure 4 (continuation) – Computed solutions of the system of equations in (4.5) using

BAMMs [15] and the GLMs with indicated number of functions evaluations (nfe).

In Figure 4 we report the graphical plots of the Euler equation of motion for a

rigid body without external forces which is one of the standard test problems of

the DETest set, see Hull et al. (1972):

y′
1 = y2 y3, y1(0) = 0

y′
2 = −y1 y3, y2(0) = 1

y′
3 = −5.1y1 y2, y3(0) = 1
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Our graphical plots confirm that all the derived methods are promising in solv-

ing higher order equation written in form of first order system of initial value

problems. Hence for fair comparison all the methods are comparable with the

ode solvers as we can see from Figure 4.

6 Conclusion

The new feature considered in this paper is the use of matrix inversion procedure

which extends some conventional multistep collocation at the step points. In this

way acceptable stability for stiff problems as for the Runge-Kutta methods [3]

is retained. All the derived methods obtained through this approach performed

remarkably well in both stiff and non-stiff systems of initial value problem in

ordinary differential equations (see Tables 1, 2, 3 and 4). The plots of the fourth

test problem are system of differential equations written as first order initial value

problems. We plotted these solutions and compare them with the exact values,

we found out that it is difficult to distinguish between the computed solutions and

the exact values on the interval of integration and there is remarkable agreement

over very much longer intervals (see Fig. 3). Similarly the solutions of the fifth

problem were compared with ODE solvers (see Fig. 4).
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