
A production implementation of an
associative array processor-ST ARAN

by JACK A. RUDOLPH

Goodyear Aerospace Corporation
Akron, Ohio

INTRODUCTION

The associative or content-addressed memory has
been an attractive concept to computer designers ever
since Slade and McMahon's 1957 paperl described a
"catalog" memory. Associative memories offered relief
from the continuing problem presented by the typical
coordinate-addressed memory which requires that an

. "address" be obtained or calculated before data stored
at that address may be retrieved. The associative
memory could acquire in a single memory access any
data from memory without pre-knowledge of its loca
tion. Ordered files and sorting operations could be
eliminated. Unfortunately, early associative memories
were expensive, hence none found their way as the
"main frame" memory into any commercial computer
design. .

The organization of an associative memory (AM)
requires that each n-bit physical word of the memory
be connected to a dedicated processing element (PE)
which performs the compare function between a bit
read non-destructively from the word and a corre
sponding input bit from a query word. The PE's for
all words are driven by a central controller, thus a
single query bit is simultaneously compared with the
corresponding stored bit in every word of the AM.
With the ability to simultaneously write back the
state of each PE into a specified bit position of each
word it became possible to perform bit-serial arith
metic between fields of bits within each physical
memory word. An array of associative memory words
could then be viewed as an array of simple computers
an associative array processor-with all the simple
computers in the array simultaneously executing the
same instruction obtained from a common control unit
as is done in the more complex ILLIAC-IV design.

An alternative AP design provides a PE at each bit

229

of each physical memory word. This design, though
complex in terms of logic and interconnection require
ments, permits a simultaneous compare of all bits in a
query word with all bits of the memory word rather
than the serial-by-bit operation described earlier;

Due to the early high cost of semi-conductor mem
ory and logic elements none of the many associative
processor designs described in the literature were
attractive enough to warrant development. However,
it has now become commercially feasible to construct
a computing system embodying "main frame" memory
content addressability coupled with array arithmetic
capability operating under a more or less conventional
stored program control system.

Several proprietary versions of the associative pro
cessor (AP) are being developed. The first working
engineering model2 known to the author, built for
USAF by Goodyear Aerospace Corporation, was
demonstrated during a Tri-Service contract review in
June, 1969 at Akron, Ohio. The same machine, modi
fied to include a larger instruction memory, was loaned3

by USAF in 1971 to the FAA for conflict detection
tests in a live air traffic control terminal environment
at Knoxville, Tennessee operating in a multi-computer
configuration with a Univac 1230 conventional com
puter. The original test objectives were achieved by
December, 1971 and additional experiments involving
terrain avoidance processing were completed success
fully in June, 1972.

The lessons learned in programming and testing the
USAF AP model resulted in a new design called
STARAN S which was committed to production in
1971. This first commercial AP was publicly intro
duced in a series of live demonstrations in May, 1972
at the TRANSPO exhibit in Washington, D.C. and
in June, 1972 at Boston,Mass.

This paper describes STARAN S and its program-

From the collection of the Computer History Museum (www.computerhistory.org)

230 Fall Joint Computer Conference, 1972

ming language, provides examples of its applications,
and discusses measures of AP cost-effectiveness.

STARAN* DESCRIPTION

A configuration diagram of ST ARAN S is shown
in Figure 1. Studies have shown that initial uses of
AP's would be weighted toward real-time applications
involving interface with a wide variety of sensors,
conventional computers, signal processors, interactive
displays, and mass storage devices. To accommodate
all such interfaces the STARAN system was divided
into a standardized main frame design and a custom
interface unit. A variety of I/O options implemented
in the custom interface unit include conventional
direct memory access (DMA), buffered I/O (BIO)
channels, external function channels (EXF) and a
unique interface called parallel I/O (PIO).

STARAN

ASSOCIAT IVE

ARRAY

PROCESSOR

MAIN

FRAME

DIRECT
MEMORY

DMA 1 ACCESS

I I

BUFFERED

CUSTOM
IN PUT I

• BIO I OUTPUT

I INTERFACE 1
UNIT

EXT ERNAL
FUNCT ION

II EXF I COMMANDS

~ I -
PAR ALL E L

INPUT I

II PIO J I. OUT PUT

~ r

'--I
~

";
I
I

.....J
I

I
I
1
J

"I

I
I
J

"'

TYPICAL

USER

EQUIPMENT

I
I
I
I
I

e COMPUTE RS I
ePERIPHERALS

e DISPLAYS I
eSENSORS I

I
I
I

L __ ..J

Figure l-STARAN system configuration

A top-cut diagram of the STARAN main frame is
shown in Figure 2. It consists ofa conventionally
addressed control memory for program storage and
data buffering, a control logic unit for sequencing and
decoding instructions from control memory and from
one to thirty-two modular AP arrays.

A typical AP array is also shown in Figure 2. This
key element of the STARAN S computer system is
the "main frame" memory which provides content
addressability and parallel processing capabilities.
Each array consists of 65,536 bits organized as a
multi-dimensional access memory matrix of 256 words

* T. M. Goodyear Aerospace Corporation, Akron, Ohio

ASSOCIATIVE

PROCESSOR

CONVENTIONAL

ASSOCIATIVE PROCESSOR ARRAY

TO/FROM CONTROL
I ,

• O--------~--~ I
'i'f-'
i r---"!r- ~
1
1

INPUT-OUTPUT :

PARALLEL
INPUT-OUTPUT

1
1
1

~:~~Lll~LU~7Lunt4~~,-
01 \

~', \.
WORD

: SLICE

\"
256 PE's

256 WORDS. 256 BITS PER ARRAY

Figure 2-Associative processor diagrams

by 256 bits with parallel access to up to 256 bits at a
time in either the word or bit direction. In addition
to the storage elements, each array contains 256 bit
serial PE's often referred to in associative memory
literature as the response store. The unique PIO capa
bility is provided by the response store, where every
PE has an independent external device I/O path.
Control signals generated by the control logic unit are
fed to the processing elements in parallel and all pro
cessing elements execute the instruction simultane
ously. As additional arrays are added to the system
these are also connected in 'parallel to the control logic
unit, thus application programs need not be modified
as the capacity of the system increases.

Major elements of the STARAN block diagram
shown in Figure 3 are described below:

[

M'CRO PROGRAM
AP MEMORy

CONTROL PAGE 0
Mf.MORy

S1ZX32

Figure 3-STARAN basic block diagram

From the collection of the Computer History Museum (www.computerhistory.org)

AP control memory

The conventionally addressed and indexed AP con
trol memory is used to store assembled AP application
programs. It is also used for data storage and to act
as a buffer between AP control and other elements of
STARAN S. The AP control memory and associative
array cycles are overlapped.

Control memory is divided into several memory
blocks. Three fast "page" memories contain the current
AP program _ segments; the slower core memory con
tains the remainder of the AP program. A program
pager transfers program segments from the slow to
the fast memory blocks. Control memory words con
tain 32 bits of either data or instructions.

The "page" memories use volatile, bipolar, semi
conductor elements. A page contains 512 words but
can be doubled to 1024 words each on an optional
basis. Page 0 may contain a library of microprograms
such as arithmetic subroutines. Pages 1 and 2 are used
in ping-pong fashion, with AP control executing in
structions out of one page while the other is being
loaded by the program pager. This permits use of the
page memories for selected segments of the program
or for the entire program if fast execution is required.

The high-speed data buffer (HSDB), like the page
memories, uses volatile, bipolar, semi-conductor ele
ments. It contains 512 words but also can be doubled
to 1024 words. All buses can access the HSDB to
store data or instruction items that need to be accessed
quickly by the different STARAN elements.

The bulk core memory uses nonvolatile core storage.
It contains 16,384 words and is optionally expandable
to 32,768 words. It is used for storing complete AP
application programs. Since the bulk core memory is
accessible to all buses it is useful as a buffer for data
items that do not require the high-speed of the HSDB.

A block of up to 30,720 AP control memory ad
dresses is reserved for the direct memory access (DMA)
channel to external memory. All buses can access the
DMA block, thus it is possible to operate the AP
solely from programs stored on external memory as,
for example, the main frame memory of a conventional
computer.

AP control logic

Executing instructions from control memory, AP
control logic directly manipulates data within the
associative arrays and is the data communication
path between control memory and the arrays.

STARAN 231

Program pager logic

The program pager loads the fast page memories
from the slow core memory. While the AP control is
executing a program segment out of one page, the
pager can be loading the other page with a future
program segment.

E~ternal function logic

External function (EXF) logic enables the AP
control, sequential control, or an external device to
control the STARAN S operation. By issuing external
function codes to EXF a STARAN S element can
interrogate and control the status of -the other ele
ments.

Sequen~ial control processor

The sequential control (SC) portion of STARAN S
consists of a sequential processor having an 8K 16-bit
memory, a keyboard-printer, a perforated tape reader/
punch unit, and logic capability to interface the se
quential processor with other ST ARAN S elements.
SC is used for system software programs such as
assembler operating system, diagnostic programs,
debuggin~, and housekeeping routines. SC perip~erals
which may be useful programming aids are avaIlable
as options.

I nput/ output options

A custom interface unit (not shown in Figure 3) can
provide any required combination of DMA, BIO,
EXF or PIO channels. A DMA channel to a conven
tionai computer, for example, would permit rapid
interchange of data between the systems in the com
mon memory bank. The unique parallel I/O (PIO)
channel with a width of up to 256 bits per array,
provide~ an extreme width channel up to 8192 ?its
wide at transfer rates in the sub-microsecond regIOn.
For example, a four-array STARAN S can input . or
output 1024-bit word or bit slices at an average slIce
rate exceeding 3 megacycles/sec providing an I/O
bandwidth many times wider than that of a conven
tional computer. PIO provides a unique c~pabil~ty
for large data base' processing when used WIth WIde
bandwidth mass storage devices.

A photograph of a six array (model S-1500)
STARAN is shown in Figure 4.

From the collection of the Computer History Museum (www.computerhistory.org)

232 Fall Joint Computer Conference, 1972

Figure 4-STARAN S-1500

ASSOCIATIVE PROCESSOR SOFTWARE

The STARAN software system consists of a sym
bolic assembler called APPLE (for Associative Pro
cessor Programming LanguagE), and a set of super
visor, utility, debug, diagnostic, and subroutine library
program packages. An associative compiler has not
yet been developed for ST ARAN. Early applications
of STARAN must therefore be accomplished by assem
bly language programmers. Programmers find APPLE
a convenient language to use, however, and write
significantly fewer instructions to program a suitable
application on STARAN than would have to be written
for a conventional machine since APPL"E's command
structure reflects the content address ability and pro
cessing characteristics of the associative arrays the
language controls. For example, although the pro
grammer must explicitly define his record formats via
field definition statements, he usually need not be con
cerned with physical record location in the arrays.
Also, he need not order data tables by key, since any
desired datum may be located in one parallel search
operation. A third example of APPLE convenience is
the elimination of the conventional programming loop
which requires advancing a list pointer, examination
of an exit criterion, and making a decision for each pass
over different data sets. The APPLE array instruction
processes all pertinent data sets simultaneously and
does not require initialization of an index register with
the count of data sets to be processed.

Internally, all software packages with the exception

of array diagnostics and the subroutine library operate
on the SC. In the minimum STARAN configuration
the software packages are furnished on paper tape for
input via the SC tape reader. Where STARAN is
installed with interface to a conventional computer
system in a multicomputer configuration, APPLE and
supporting software can be input to STARAN using
the existing peripherals of the conventional computer.

The usual load, store, test, branch, and control
instructions required for sequential execution of an
application program are present in APPLE. Where
APPLE departs most from conventional assemblers
is in the search and arithmetic array instructions. A
representative set of fixed point standard instructions
is shown in Table I with the approximate timing for
mulas. Hardware floating point is available on special
order.

Associative search and arithmetic instructions are
of two types, "argument register" and "field". In the
first an operand (32 bits max) stored in the argument
register of AP control is used as the search or arith
metic argument against a specified field in all array
words simultaneously. Instructions of the field type
perform similar operations but between specified
fields within each array word.

Instruction execution times are dependent upon n,
the number of bits in the operands (fields) involved
in the instruction executions, but are not functions of
the number of operands being processed, which rela
tionship is exactly the opposite of that existing in the
conventional computer. This characteristic dependence
of execution time on operand or field length is a con
sequence of the word-parallel bit-serial design of the
associative arrays discussed earlier.

From the programmer's point of view, Table I has
interesting connotations; some of which are:

1. in real time applications the programmer can
easily time out his initial flow diagram since
programming loops in the conventional sense
are eliminated. This single consequence of
associative processing can save much of the
reprogramming effort invariably found neces
sary during the testing phase of conventional
attacks on real-time problems;

2. he can conserve on execution time (and array
memory space) by defining fields to use only as
many bits as are required by the application;
and

3. he has no need for overhead-generating tech
niques such as indexed file constructions, linked
lists, or sort and merge operations usually
needed in a conventional computer. This capa-

From the collection of the Computer History Museum (www.computerhistory.org)

STARAN 233

TABLE I-Typical APPLE Associative Fixed Point Instructions

MNEMONIC INSTRUCT 10K APPROX. EXECUTIO:J TIME (ps) ** MIPS* PEn. ARRAY
FORMULA n = fa n=32 POR n=32

ARGUMENT REGISTER I::--1STRUCTIOt,:S

::QC EXACT MATCH COMPARAND 0.6+0.15n 3.0 5.4 47
C:Te GREATER THAN COMPARAND 0.7+0.15n 3.1 5.5 47
LTC LFSS THAl'! COMPARAND 0.7+0.15n 3. 1 5.5 47
ADC ADD An. TO FIELD 2.8+0. R5n 16 30 8.5

FIELD INSTRUCTIONS

EQF EXACT MATCH FIfLDS 0.6+0.43n 7.4 14 18
GTF (~RFATER THAt; FIELDS 2.3+0.43n 9.1 16 16
LTF LESS THM~ FIELDS 2.3+0.43n 9.1 16 16
MAXF MAX FIELDS 0.6+0.68n 11 23 11
MU:P Mn~ P IELDS 0.6+0.68n 11 23 11
ADF ADD FIELD TO FIELD 2.8+0.85n 16 30 8.5
MPF MULTIPLY FIELD BY FIELD 5.8+2.9m+ 277 980 0.26

0.85mn+0.4

-k Max execution rate of specified instructior.s for sing Ie array wi th all 256 PE ts active.

** n or m equal number of bits in operand

bility results in a significant reduction both in
the number of instructions which must be
written and executed and the amount of mem
ory required.

ARRAY STORAGE ALLOCATION

The concept of a file of related records as used in
associative processing requires some discussion. In
conventional approaches to file generation one thinks
of the distinction between a logical file and a corre
sponding physical file; that is, a logical collection of
records, usually ordered by some key, is placed as a
block of contiguous addresses in a physical file. The
conventional operating system· keeps track of the
beginning address and the block length for the file
whether stored in core or on external stores. Thus in
most cases logically different files are stored in physi
cally separate areas of store.

The associative approach differs from the conven
tional approach in several ways: the records within
the logical file need not and usually are not ordered
by any key; records within a logical file usually are
not stored in contiguous locations in an area of the

array or on external devices; and the operating system
generally is not required to keep track of individual
file beginning addresses and block lengths.

In STARAN, records belonging to different logical
files may be physically intermixed in the array as
well as being logically unordered. Within each record
format, in addition to defining the item fields, the pro
grammer defines a set of control tag fields. How these
tags are used is described below.

When new records are added to a logical file the
update program writes the new, properly formatted
record into the first available empty array location.
Since empty array locations usually are not contigu
ously located within the array, records belonging to a
specific file are scattered throughout the array in
random locations. This characteristic is illustrated in
the array map example of Figure 5.

Empty array memory locations are identified by
executing an EQC on a one-bit activity tag field using
an "0" as the search criteria. The execution time for
this search (see Table I) is less than one microsecond
at the end of which time all processing elements for
physical memory words containing a 0 in the activity
field will be in the "ON" state. At the conclusion of
the search a hardware pointer automatically points to

From the collection of the Computer History Museum (www.computerhistory.org)

234 Fall Joint Computer Conference, 1972

INTERMIXED, UNORDERED RECORDS FROM THREE FILES

0 I OSIS 1 I
MONT I T

2
CI)

JONES 1 I I I
CI) :3 w STATE I 71 SALES T 72 SALES
a::
a
a
<{

BROWN I I I I
\ 41 i L \ I

a
a:: JONES \ I I
0
3:

I

I

I

SECT ION
IDENT

TAG *
\
,\1
\

I " 10 0

REP EXPENSES

\
I \

\\0 1

\

/

FILE DESCRIPTOR TAG

IACTIVITY TAG

0 1 1

0 0 1

1 0 1

0 0 i SALES RECORD

1 0 i

0 1 1

1 0 1

0

>- COST I PROJECT ·1 ENGR 1 CUSTOMER 1 DIVISION 0 1 1

EMPTY ARRAY WORD

PROJECT RECORD
<{

a:: L.'
a::
<{

0 0 DELETED RECORD
-l

NAME <{ 0 0 PERSON NEL RECORD, SEC 1
u
- OHIO 0 0 CI)

~ 252 DAVIS 0 0 1 0
a..

253 NAME DIV DEPT HIRE DATE 0 1 0 PERSONNEL RECORD, SEC 2

254 SMITH 0 0 0

255 SMITH 0 0

0 255

4-- BIT ADDRESS--+

*PARENT RECORD IDENTIFIER IN TWO-SECTION PERSONNEL RECORD
IS EMPLOYEE NAME

Figure 5-Associative array map example

the PE having the lowest physical address in the array
(or arrays). The new record, with its activity field set
to a "1," is written into this first empty location. The
hardware pointer then moves to the next available
empty memory location for writing another record if a
batch of new entries must be loaded. If no empty loca
tions are found the program will exit to whatever
routine the programmer has chosen for handling this
type of error-for example, if appropriate to a specific
application, the program may select an age test of all
records in a particular file, purging the oldest to make
room for the newest. A record once located may be
deleted from a file by merely setting the activity bit
to an "0."

When a specific file is to be processed in some man
ner, the scattered locations containing the file's records
are activated by performing EQC's on both the ac
tivity field and an n-bit "file descriptor" tag field. If,
as in the example of Figure 5, the file descriptor field

is two bits long, the entire selected file will be ready
for processing in less than 2 microseconds « 1 p..s for
the activity bit search, < 1 p..s for the file descriptor
field search).

Where record lengths are greater than the 256-bit
length of the associative array word, several non
contiguous associative array words may be used to
store the single· record in sections, one section per
array word. The format for each record section must
contain the same activity and file descriptor fields as
are used in all record formats, and in addition it must
contain a parent record identifier and an n-bit "sec
tion identifier" tag field. The scattered locations
containing the desired section of all records in the
specific file may be activated by performing EQC's on
the activity, file descriptor, and section identifier
fields. All three searches can be completed in approxi
mately 2 or 3 microseconds.

These two or three tag search operations in the AP

From the collection of the Computer History Museum (www.computerhistory.org)

permit random placement of records in the physical
file and eliminate the bookeeping associated with file
structuring and control required in conventional
systems. The same approach is used for files which
exceed the capacity of the associative arrays-the
records of such files are stored in a similar manner on
external mass storage devices and are paged into the
arrays as required.

The strategy used to allocate array storage space
can have a significant effect on program execution
time. An example is shown in Figure 6 where the
products of three operand pairs are required. In A,
the operands are stored in a single array word. For
20-bit fixed point operands the three MPF instructions
would execute in a total of 1175 microseconds. All
similar data sets stored in other array words would
be processed during the same instruction execution.
However, an alternative storage scheme (B) which
utilizes three PE's per data set requires only one MPF
execution to produce the three products in 392 micro
seconds. If one thousand data sets were involved in

STARAN 235

each case the average multiply times per product
would be 392 and 131 nanoseconds, respectively, but
at the expense, in B, of using 3000 processing elements.
Unused bits in B may be assigned to other functions·

A last example of how array storage allocation can
affect program execution time is shown in Figure 7
where the columns represent fields. Here the sum
el, of 16 numbers is required. If the 16 numbers are
directly or as a result of a previous computation stored
in the same field of 16 physically contiguous array
words, the near-neighbor relationships between the
processing elements can be used to reduce the number
of ADF executions to four. All similar 16 number sets
would be processed at the same time.

STARAN APPLICATIONS

While many papers have appeared (see Minker4

for a comprehensive bibliography) which discuss the
application of AM's and AP's in information retrieval,

PROBLEM: 0i , bi , ci ,di ,ei ,fj ARE 20 BIT OPERANDS.

FORM PRODUCTS ojbj, cjdj , ejfj FOR n DATA SETS

METHOD A - ALLOCATE ONE ARRAY WORD (PROCESSING ELEMENT) PER DATA SET FILE

SET IDENT

PROGRAM A-i. MPF A, B, G I
2. MPF C, D, H n sets processed in 1175.A(s (fixed point)
"3. MPF E, F, J

METHOD B - ALLOCATE THREE ARRAY WORDS (PROCESSING ELEMENTS) PER DATA SET

FIELD NAME - A B C

°i bi OJ bj j 01 1

Cj dj ci di j 01 t

ej fj ej fj i 01 t

/ I ! ? 1 III
an bn On bn n 011

cn dn cn dn n 011

en fn en fn n 011

PROGRAM B - MPF A, B, C 1 n sets processed in 392 .A(s (fixed point)

Figure 6-Effect of array memory allocation on execution time

From the collection of the Computer History Museum (www.computerhistory.org)

236 Fall Joint Computer Conference, 1972

~1---~--- ~] JJT~ ~~ JT~;:r '<

0e be

°9
010

°11

°12

013

°14

°15

°16

16

Lai
1

NUMBER OF OPERATIONS IS

-fn2N = ..In216 = 4

Figure 7-Tree-sum example

text editing, matrix computations, management in
formation systems and sensor data processing systems,
there are none yet published which describe actual
results with operating AP equipment in any applica
tion. (But see Stillman: for a recent AM application
result.)

Recent actual applications of the AP have been in
real time sensor related surveillance and control sys
tems. These initial applications share several common
characteristics:

1. a highly active data base;
2. operations upon the data base involve multiple

key searches in complex combinations of equal,
greater, between-limits, etc., operations;

3. identical processing algorithms may be per
formed on sets of records which satisfy a com
plex search criterion;

4. one or more streams of input data must be
processed in real time; and

5. there is a requirement for real time data output
in accordance with individual selection criteria
for multiple output devices.

A portion of the processing inherent in these applica
tions is parallel-oriented and well suited to the array
processing capability of the AP. On the other hand
these same applications also involve a significant
amount of sequentially-oriented computation which
would be inefficient to perform upon any array pro
cessor, a simple example being coordinate conversion
of serially occurring sensor reports.

A ir traffic control

An example of an actual AP application in an air
traffic control environment is shown in Figure 8. In
this application a two array (512 processing elements)
ST ARAN 8-500 model was interfaced via leased tele
phone lines with the output of the FAA ARSR long
range radar at Suitland, Maryland. Digitized radar
and beacon reports for all air traffic within a 55 mile
radius of Philadelphia were transmitted to ST ARAN
in real time. An FAA air traffic controller's display
of the type used in the new ARTS-III terminal ATC
system and a Metrolab Digitalk-400 digital voice
generator were interfaced with STARAN to provide
real-time data output. The controller's keyboard was
used to enter commands, call up various control pro
grams and select display options.

Although a conventional computer is not shown
explicitly in Figure 8 the sequentially oriented portions
of the overall data processing load were programmed
for and executed in the ST ARAN sequential controller
as shown in Figure 9. Sequential and associative pro
grams and instruction counts for ST ARAN are shown
in Table II. In a larger system involving multiple
sensors and displays, and more ATC functions such as
metering and spacing, flight plan processing, and
digital communications, the sequential and parallel
workloads would increase to the point where a separate
conventional computer system interfaced with the
AP would be required.

The STARAN system was sized to process 400
tracks. Since the instantaneous airborne count in the
55 mile radius of Philadelphia was not expected to
exceed 144 aircraft, a simulation program was de
veloped to simultaneously generate 256 simulated

ARSR
RADAR

r STARAN
TELEPHONE LINES

S- 500 ..
SUITLAND,
MARYLAND

l
FAA

DISPLAY MONITOR

• BEACON TRACKI NG

• RADAR TRACK I NG 1 • CONFLICT DETECT ION

• CONFLICT RESOLUTION

• TERRAIN AVOI DANCE
VFR

• AUTOMAT IC vorCE ADVISORY

• DIGITAL DISPLAY
VOICE GENERATOR

PROCESSING

Figure 8-Air traffic control application

From the collection of the Computer History Museum (www.computerhistory.org)

---...,
I
I

I M~E1_""'...I.:_--.j _
DATA DATA
LINE RECEIVER

ASSEMBLY

TELETYPE SC''''-f---t

TAPE

READER/PUNCH

SC
LIVE DATA
INTERRUPT
HANDLER

, __________ .J

I
I

AP

EXECUTIVE

SC
---+---1 ..

CONTROLLER

CLOCK
INTERRUPT

AVA

ON -LINE SC

DEBUG AND
UTILITY
PACKAGE

SC
KEYBOARD
INTERRUPT
HANDLER

STARAN 237

DATA PATH

CONTROL PATH

SC SEQUENTIAL
CONTROL PROCESSOR

AP ASSOCIATIVE
PROCESSOR

• EXTERNAL DEVICE

ARTS m
KEYBOARD

L _______ ..,

SC I
I I

I
I
I
I
I

r---
I

TARGET
SIMULATION
ROUTINE

AUTOMATIC -----....-.. I
I
I
I
I

VOICE ADVISORY
DRIVER

I
L ________ .,

I

I

I AP AP AVA AP

: CONFLICT CONFLICT
1- - - - - - PREDICTION RESOLUTION MESSAGE
I SELECTOR I

I I L _________ 't. ______ ____ :!t __ __________ ~ _________ ...J

Figure 9-ATC program organization

aircraft tracks. Display options permitted display of
mixed live and simulated aircraft. The 400 aircraft
capacity is representative of the density expected as
North-South traffic loads increase through the late
'70s. Conflict prediction and resolution programs based
upon computed track data were demonstrated and
used to display conflict warning options. Automatic
voice services were provided for operator-designated
aircraft, thus simulating warning advisories for VFR
pilots requesting the service. The voice messages,
which in an operational system would be automatically
radioed to the pilot, were generated by the Metrolab
unit from digital formats produced by the associative
processor and broadcast in the demonstration area
via a public address system. A· typical message would
be read out in voice as, "ABLE BAKER CHARLIE,
FAST TRAFFIC SEVEN O'CLOCK, 4 MILES,
ALTITUDE 123 HUNDRED, NORTHEAST
BOUND".

Top level flow charts for four of the associative
programs used in the demonstration are shown in
Figures 10, 11, 12, and 13. A detailed report is in
preparation describing all of the ATC programs used
in this demonstration, but some comments on the
four flow charts shown may be of interest.

Live target tracking (Figure 10) is performed in two
dimensions (mode C altitude data was not available)
using both radar· and beacon target reports to track
all aircraft. Incoming reports are correlated against
the entire track file using five correlation box sizes,
three of which vary in size with range. Any incoming
report which does not correlate with an existing track
is used to automatically initiate a new tentative track.
An aircraft track must correlate on two successive
scans and have a velocity exceeding 21 knots to qualify
as an established track and must correlate on three
successive scans to achieve a track firmness level high
enough to be displayed to a controller as a live target.

From the collection of the Computer History Museum (www.computerhistory.org)

238 Fall Joint Computer Conference, 1972

TABLE II-STARAN Air Traffic Control Programs

SEQUENTIAL PROGRAMS

INSTR
NAME COUNT

Executive ,
Keyboard Inte rrupt

Real Time Interrupt > 1600

Live Data Input

Automatic Voice Output .

ret Operating Instructions 1"6"00

There are provisions for 15 levels of track firmness
including 7 "coast" levels. If a report correlates with
more than one track, special processing (second pass
resolve) resolves the ambiguity. Correlated new reports
in all tracks are used for position and velocity smooth
ing once per scan via an alpha-beta tracking filter
where for each track one of nine sets of alpha-beta
values is selected as a function of track history and
the correlation box size required for the latest report
correlation. If both beacon and radar reports correlate
with a track, the radar report is used for position
updating. Smoothed velocity and position values are
used to predict the position of the aircraft for the
next scan of the radar and for the look-ahead period
involved in conflict prediction.

Track simulation processing (Figure 11) produces
256 tracks in three dimensions with up to four pro
grammable legs for each track. Each leg can be. of 0
to 5 minute duration and have a turn rate, accelera
tion, or altitude rate change. A leg change can be
forced by the conflict resolution program to simulate
pilot response to a ground controller's collision avoid
ance maneuver command. Targets may have velocities
between 0-600 knots, altitudes between 100-52,000
feet, and altitude rates between 0-3000 feet per minute.

The conflict prediction program sequentially selects

ASSOCIATIVE PROORAMS

INSTR
COUNT

Tracking System 881

Track Simulation System 415

Turn Detection 88

Conf 1 ict Pred ic t ion 488

Conflict Resolution 296

Automat ic Voice Advisory 709

Display Process ing 1140 --
Total 4017

Field Definition Statements Included 514

Net Ope rat ing Instructions 3493

up to 100 operator-designated "controlled" or "AVA"
aircraft, called reference tracks in Figure 12, and
compares the future position of each during the look
ahead period with the future positions of all live and
simulated aircraft and also to the static position of
all terrain obstacles. Any detected conflicts cause
conflict tags in the track word format to be set, making
the tracks available for conflict display processing. A
turn detection program not shown opens up the head
ing uncertainty for turning tracks.

Display processing (Figure 13) is a complex asso
ciative program which provides a variety· of manage
by-exception display options and automatically moves
operator-assigned alpha numeric identification display
data blocks associated with displayed aircraft so as to

. prevent overlap of data blocks for aircraft in close
proximity to one another on the display screen. Sector
control, hand off, and quick-look processing is pro
vided.

All programs listed in Table II were successfully
demonstrated at three different locations in three
successive weeks, using live radar data from the
Suitland radar at each location. The associative pro
grams were operated directly out of the bulk core and
page 0 portions of control memory since there was no
requirement, in view of the low 400 aircraft density

From the collection of the Computer History Museum (www.computerhistory.org)

SECOND PASS RESOLVE
(ONCE PER AMBIGUOUS

TRACK)

U?DATE TRACK FIRMNESS
(ONCE PER 5 SEC.)

*

*

*

*

*ONE REPORT AGAINST ALL TRACKS
-ALL TRACKS

SMOorH TRACK
POSITION AND VELOCITY

(ONCE PER 10 SEC.)

PREDICT TRACKS NEXT
REPORTING POSITIONS

(ONCE PER 5 SEC.)

Figure IO-Live target tracking

involved, for the higher speed instruction accesses
available from the page memories. At intervals during
the demonstration all programs were demonstrated at
a speed-up of 20 times real time with the exception
of the live data and A VA programs which, being
real-time, cannot be speeded up. Timing data for the
individual program segments will be available in the
final report. The entire program executed in less th3ill
200 milliseconds per 2 second radar sector scan or in
less than 10 percent of real time. All programming
effort was completed in 4% months with approxi
mately 3 man-years of effort. This was the first and
as of this writing the only actual demonstration of a
production associative processor in a live signal en
vironment known to the author. It was completed in
June, 1972. Other actual applications currently in the
programming process at Goodyear involve sonar,
electronic warfare and large scale data management
systems. These will be reported as results are achieved.

COST EFFECTIVENESS

Associative processor cost effectiveness can be ex.;.
pressed in elementary terms as shown in Figure 14

STARAN 239

where performance is shown in terms of millions of
instructions per second for the ADF and EQC in
structions using two different operand lengths, and
cost effectiveness is measured in terms of instructions
per second per hardware dollar. This form of presenta
tion was taken from Bell. ~

Another cost effectiveness measure is to compare
projected hardware and software costs of an associa
tive configuration and an all-conventional design for
the same new system requirements, where the asso
ciative configuration may include a conventional
computer. Only a few attempts at this approach have
been made to date and none have been confirmed
through experience. One classified example, using a
customer defined cost effectiveness formula, yielded a
total system cost effectiveness ratio of 1.6 in favor of
the associative configuration.

Of the two methods, the first is least useful because
there is no way of estimating from these data how
much of the associative computing capability can be
used in an actual application. The second method is

tn = time left in leg
13 = turning rate

Vt =acceleration rate

CALCULATE NEW

ie, Y.MODIFIED
BY fil, OR Vc

Figure II-Tracking simulation

NO

From the collection of the Computer History Museum (www.computerhistory.org)

240 Fall Joint Computer Conference, 1972

COO'ARE
ALL INTERCEPrS

TIMES AND
LOOK~AHEAD

PERIOD

YES

Figure 12-Conflict prediction

Figure 13-Display processing

more meaningful but is exceedingly expensive to use
since it implies a significant engineering effort to
derive processing algorithms, system flow charts,
instruction counts, and timing estimates for both
the conventional and the· associative approach. The
weakest element in this approach lies in the conven
tional approach software estimate which historically
has been subject to overruns of major dimensions.

2000

1500

1000
0
Z
0 500
U
ILl

~
<O~

X
VJ

8 100
1-<
U
Sl 50
1-<
VJ

~

10 ~~~ __ ~ _____ ~ ____________________ ~

1000

~ 500

g
o
~
u
~ 100
VJ
Z
9 50
1-<
U

Sl
1-<

~
10

2 4 16 32

ARRA Y MODULES

PERFORMANCE

-~ ~~

.".--~ ",-

.....-
L-' i-"""

-.....-
~~

2 4 16 32

ARRA Y MODULES

COST EFFECTIVENESS

EQC-16-BIT

EQC-32-BlT

ADF-16-BIT

ADF-32-BIT

EQC-16-BIT

EQC-32-BIT

ADF-16-BIT

ADF-32-BIT

Figure 14-Array performance and cost effectiveness

A third method is to compare functional perform
ance, hardware and software cost, growth capability
and growth related costs, reliability, service and other
pertinent aspects of two working examples of com
peting approaches to the same class of system applica
tion. Although it is a reliable method, it is not available
at this time since no operational system of any kind
has been implemented with an associative processor.
The closest approach to it is the ATC demonstration
described above but there is no similar conventional
example to be found anywhere which includes the
urgently needed large scale conflict detection process-

From the collection of the Computer History Museum (www.computerhistory.org)

ing included in the STARAN demonstration. On the
other hand, an experienced ATC data processing
system designer can appreciate the rapid solution
time, small instruction count and low programming
cost achieved with the STARAN for the troublesome
high density tracking and display processing functions,
but others not so well acquainted with ATC data
processing problems may not find these data mean
ingful. This method also includes the benchmark test
which is coming into regular use by the federal govern
ment in competitive large scale procurements of
standard commercial equipment. Here again, however,
due to the associative processor's recent arrival on
the scene, no comparative performance data are yet
available.

A fourth method, least useful in resolving the equip
ment selection and system design problems involved
in a specific near term application, is based upon
theoretical machine design considerations such as gate
count ratios, logic to memory ratios and hardware
efficiency or duty cycle ratios for conceptual machines
which have not been reduced to practice during the
typical seven year development cycle for new com
puter architecture.

Thus, until near term potentially cost effective
associative processor applications are accomplished in
operational environments, comparative cost effective
ness analyses of proposed associative versus con
ventional solutions will continue to be suspect. The
next 12 to 18 months should produce a substantial
improvement in the availability of reliable cost and
performance data for associative processor applica
tions.

SUMMARY

Although several manufacturers are developing asso
ciative processor equipment, the first version to be
produced in a production configuration was introduced
in May of 1972 by Goodyear Aerospace Corporation
following FAA on-site tests in 1971 at Knoxville,
Tennessee of a USAF -owned engineering model built
and demonstrated by Goodyear in 1969.

The processor provides full content addressability
and array arithmetic capability within "main frame"
memory coupled with a unique capability for wide
bandwidth (over 3000 megabits/sec for a 4-array
STARAN) input-output data transfers to mass data
stores. The associative programming language, APPLE,

STARAN 241

provides a flexible and convenient assembler for pro
gramming array arithmetic and search algorithms
without the complex and costly indexing, nested loop
and data manipulation constructions required in
conventional computer programming.

The associative processor may be viewed as a soft
ware-programmable super-peripheral, or special pur
pose subsidiary processor, for attachment to any
general purpose conventional computer system via
standard channel attachment. In this role the super
peripheral is assigned parallel oriented problem seg- .
ments and data bases which would otherwise, through
excess operating system software overhead, tend to
choke the conventional machine.

Although first applications of the associative pro
cessor are of the real time, dedicated, command and
control type, the extension to large scale data base
management, on-line management information systems
with immediate response to complex multiple-key
queries, and large scale matrix computations await
only user decision and ingenuity to accomplish now
that production hardware and software has become
available at the 370/145 price level.

The cost effectiveness of associative processing has
yet to be proven in operational systems, but test
results from initial users should accumulate rapidly
now that associative processing is no longer only· an
interesting concept in the literature.

REFERENCES

1 A E SLADE H 0 McMAHON
The cryotron catalog memory system
Proc 1957 FJCC Vol 10 pp 115-120

2 L C FULMER W C MEILANDER
A modular plated wire associative processor
Proc IEEE Computer Group Conference June 1970

3 J A RUDOLPH L C FULMER
W C MEILANDER
The coming of age of the associative processor
Electronics February 15 1971 pp 91-96

4 J MINKER
A bibliography of associative or content-addressable memory
system: 1956-1971
Auerbach Corporation 121 N Broad Street Philadelphia Pa
19107 June 15 1971

5 N J STILLMAN
Associative processing and computer graphics-A feasibility
study
USAF Report RADC-TR-72-57 April 1972

6 C G BELL R CHEN S REGE
Effect of technology on near term computer structures
Computer March-April 1972 pp 29-38

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

