
Architecture-Based Autonomous Repair Management:
Application to J2EE Clusters

S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, N. de Palma, V. Quema, J.-B. Stefani
INRIA Rhône-Alpes, 655 Avenue de l’Europe, Montbonnot, 38334 St Ismier, Cedex France

Abstract

This paper presents a component-based architecture for
autonomous repair management in distributed systems and
its application to J2EE server clusters, called JADE. The
architecture features three major elements: (1) a dynami-
cally configurable, component-based structure that exploits
the reflective features of the FRACTAL component model;
(2) an explicit and configurable feedback control loop struc-
ture, that manifests the relationship between managed sys-
tem and repair management functions; (3) an original repli-
cation structure for the management subsystem itself, which
makes it fault-tolerant and self-healing.

1 Introduction

Autonomic computing [5], which aims at the construc-
tion of self-managing and self-adapting computer systems,
has emerged as an important research agenda in the face
of the ever-increasing complexity and pervasiveness of net-
worked computer systems. Following [6], an important part
of this agenda lies in the elicitation of architectural prin-
ciples and design patterns, as well as software engineering
techniques for the construction of autonomic systems. As
a contribution to this goal, we present in this paper the de-
sign of a self-healing failure repair management system, and
the application of this design to the construction of an au-
tonomous repair management system for J2EE clusters.

We call repair management an instance of failure recov-
ery management, whose main goal is to restore a managed
system, after the occurrence of a failure, to an active state
satisfying a given level of availability, according to a given
policy. For instance, a simple repair policy can be to bring
back the failed system to a known configuration which ex-
isted prior to failure. Typically, repair management can
be used in complement of classical fault-tolerance mech-
anisms to ensure a managed system satisfies an agreed level
of availability.

We have applied our repair management design to build
a prototype repair management system for J2EE application

server clusters, called JADE. Our J2EE repair management
system demonstrates that our architecture can be applied
to non-trivial legacy systems, and improves on the state of
the art in J2EE cluster management by demonstrating how
availability management can be made entirely automatic,
even in presence of failures in the management sub-system
itself.

2 Component basis

Our repair management system is built using the FRAC-
TAL reflective component model [2]. The FRACTAL com-
ponent model is a reflective component, intended to ease
the development of dynamically reconfigurable systems. A
FRACTAL component is a run-time entity that is encapsu-
lated, and that has a distinct identity, one or more inter-
faces (access points) that can be either client interfaces or
server interfaces. A system architecture in FRACTAL de-
sccribes two kinds of relationships between components:
containment relationships, which describe how components
are composed out of other components, and binding rela-
tionships, which describe how components communicate.
Bindings, or communication paths betwen components, are
reified as FRACTAL components.

The originality of the FRACTAL model lies in its reflec-
tive structure, that allows to attach different controllers to
a component. A controller provides access to a component
internals, allowing the internal structure and execution of a
component to be externally monitored and controlled. Ex-
ample controllers in FRACTAL include: interceptors, that al-
low to intercept incoming and outgoing method invocations
at interfaces of a component; attribute controllers that sup-
port getter and setter methods for a component’s attributes;
life-cycle controllers, that allow to manage the execution
of a component and the main states it passes through; con-
tent controllers that allow to inspect and modify the sub-
components of a composite component.

The FRACTAL component model in used in three main
ways: for obtaining a dynamically reconfigurable structure,
for instrumenting the managed system, and for building a
causally connected system representation.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE



3 Repair management architecture

Our repair management architecture is a FRACTAL soft-
ware architecture that comprises a managed system, and an
explicit feedback control loop built out of: probes and ac-
tuators; a manager subsystem; and a transport subsystem,
which transfers notifications from sensors to the manager
subsystem, and commands from the manager subsystem to
actuators.

The managed system is defined by a set of components,
called nodes, together with their subcomponents. Nodes are
abstractions of physical computers. Subcomponents of a
node typically correspond to software components execut-
ing on a node. A node component provides basic operations
for deploying and configuring its subcomponents. For in-
stance, in the JADE system, subcomponents of a node com-
prise middleware components involved in the different tiers
in J2EE server, and J2EE application components.

Sensors provide basic monitoring facilities such as node
failures or resource usage. Actuators provide basic actions
or commands, necessary to control the execution of man-
aged components. Sensors are actuators are implemented as
FRACTAL controllers of managed components. The trans-
port subsystem binds sensors, actuators, and the manager
subsystem. Notifications (e.g. of node or software compo-
nent failures) follow an asynchronous operation semantics.
Commands issued by the manager subsystem obey a syn-
chronous, at most once operation semantics.

The manager subsystem is built as a composite compo-
nent that contains: policy components, including a configu-
ration manager, a repair manager and an administrator con-
sole, responsible for implementing the analysis and deci-
sion stage of the repair management control loop; and a
system representation component (or SR). The SR main-
tains an abstract view of the system for the benefit of policy
components. This abstract view corresponds to a software
architecture description of all the components in the sys-
tem, including control loop components and the manager
subcomponents themselves. The consistency between the
actual state of the running system and the system represen-
tation is maintained by policy components, which update
the system representation upon receipt of notifications from
sensors, or upon the completion of commands on actuators.

To make the whole system self-healing, the manager
component, together with its self-describing SR subcom-
ponent, is in fact replicated. A failure that impacts the man-
ager subsystem can be tolerated, and it can be repaired just
as any failure impacting the managed system, following the
same or a different policy, as required. The active replica-
tion scheme used for the manager relies on a new uniform
atomic broadcast protocol, which has been optimized for
scalability, throughput and latency in high-performance PC
clusters.

4 Implementation

The JADE prototype implements the repair management
architecture described above. It targets mainly clusters of
multi-tier J2EE application servers, but it can be applied
in other areas. The implementation relies on the wrap-
ping of legacy components, implementing attribute, bind-
ing and life-cycle controllers for components wrapping e.g.
the Apache HTTP server, the Tomcat servlet container, the
JoNAS EJB server, and the MySQL database server. The
system representation is built automatically from the FRAC-
TAL ADL description of the managed system configuration,
and provides a run-time view of the system state, as required
by the repair management policy components. In particular,
interconnections between J2EE middleware tiers, are mani-
fested as FRACTAL bindings.

5 Conclusion

Our work draws on, and its related to a wide range of
work in cluster systems management such as BioOpera [1],
in distributed configuration management, such as [4], or
J2EE availability management [3]. It is original in its two-
level reflective structure (at component-level and system-
wide level), and its systematic component basis. This inte-
grated design has three main benefits: a highly flexible and
dynamically reconfigurable structure; the automation of a
large part of configuration management activities, making
them less error-prone and time-consuming, and the enabling
of a self-healing structure.

References

[1] W. Bausch, C. Pautasso, R Schaeppi, and G. Alonso. Bio-
Opera: Cluster-Aware Computing. In Proc. IEEE Interna-
tional Conference on Cluster Computing (CLUSTER 2002).
IEEE Computer Society, 2002.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B.
Stefani. An Open Component Model and its Support in Java.
In Proceedings CBSE ‘04, LNCS 3054. Springer, 2004.

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
A Microrebootable System - Design, Implementation, and
Evaluation. In Proceedings OSDI ‘04, 2004.

[4] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self-healing systems. In Proceedings of the
1st Workshop on Self-Healing Systems, WOSS 2002. ACM,
2002.

[5] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. IEEE Computer 36(1), 2003.

[6] S. White, J. Hanon, I. Whalley, D. Chess, and J. Kephart. An
Architectural Approach to Autonomic Computing. In Pro-
ceedings ICAC ‘04, 2004.

2

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE


