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Abstract—In sparse wireless sensor networks, data collection is 

carried out through specialized mobile nodes that visit sensor 

nodes, gather data, and transport them to the sink node. Since 

visit times are typically unpredictable, one of the main 

challenges to be faced in this kind of networks is the energy-

efficient discovery of mobile collector nodes by sensor nodes. In 

this paper, we propose an adaptive discovery algorithm that 

combines a learning-based approach with a hierarchical 

scheme. Thanks to its hybrid nature, the proposed algorithm is 

very flexible, as it can adapt to very different mobility patterns 

of the mobile collector node(s), ranging from deterministic to 

completely random mobility. We have investigated the 

performance of the proposed approach, through simulation, 

and we have compared it with existing adaptive algorithms that 

only leverage either a learning-based or a hierarchical 

approach. Our results show that the proposed hybrid algorithm 

outperforms the considered adaptive approaches in all the 

analyzed scenarios.  

Keywords: Wireless Sensor Networks, Sparse Sensor 

Networks, Mobile Node Discovery, Energy Efficiency. 

I. INTRODUCTION 

A Wireless Sensor Network (WSN) typically consists of 
a large number of sensor nodes, densely deployed over a 
geographical area. Sensor nodes are tiny devices that can 
acquire data from the surrounding environment, process 
them locally, and/or transfer them to a collection point (sink 

node) using multi-hop communication [1]. However, many 
real-life applications do not require a fine-grain sensing that 
necessitates such a dense deployment. Hence, a sparse 
topology can be used where sensor nodes are located at 
some strategic locations and the distance between 
neighboring nodes is typically much larger than their 
transmission range. In a sparse sensor network multi-hop 
communication is unfeasible, and data collection is carried 
out through Mobile Elements (MEs), i.e., special mobile 
nodes that visit sensor nodes regularly, gather data, and 
transport them to the sink node

1
 [2, 3]. MEs can also be used 

in dense sensor networks to allow a more uniform 
distribution of energy consumption among sensor nodes, 
thus increasing the network lifetime [4]. Depending on the 
application scenario, MEs can be either part of the external 
environment (e.g., persons, cars, buses), or part of the 
system infrastructure (e.g., mobile robots). Also, they can 

                                                                 
1  As a special case, the sink node itself can be mobile and play the role of 

mobile data collector. 

have very different mobility patterns, ranging from 
deterministic  [5] to random mobility [6].  

In WSNs with MEs (hereafter, WSN-MEs for shortness), 
the communication between sensor nodes and MEs is 
opportunistic, i.e., they can exchange data only when they 
are in the communication range of each other. In principle, a 
sensor node could be always in sleep mode and wake up 
only for communication. In practice, unless the ME’s motion 
is deterministic, the sensor node cannot know in advance 
when the ME will enter its communication range. Hence, a 
discovery protocol is used for detecting the presence of the 
ME [3]. Discovery algorithms commonly used in WSN-MEs 
are based on periodic listening. In detail, the ME emits 
periodic beacons to announce its presence in the area, while 
sensor nodes wake up periodically (and for a short time) to 
listen for possible beacons. The period between two 
consecutive activations (wakeup period)  of the sensor node 
should be as long as possible to minimize the energy 
consumed during the discovery phase. On the other side, 
using a too long activation period could compromise the 
effectiveness of the discovery process, i.e., contacts could be 
missed or detected very late (thus, leaving a short time 
available for data communication).  

Typically, discovery protocols use fixed parameters (i.e., 
constant wakeup period and/or beacon emission rate [2, 
4,6]). Better performance, in terms of energy efficiency, can 
be achieved through adaptive schemes based on learning 
techniques (for predicting the arrival time of the ME) [7,8], 
or relying on a hierarchical approach [9,10,11]. Learning-
based algorithms are very well-suited when the ME’s motion 
has some regularity that can be learned and exploited to 
predict the next arrival time with a certain accuracy. 
However, they are unsuitable when the ME moves without 
any regular pattern. Hierarchical discovery protocols 
typically  requires two different radios (namely, a wake-up 
radio and a data radio), which are not available in most of 
the existing sensor platforms. In addition, they are not able 
to learn and exploit information about the specific mobility 
pattern of the ME.  

In this paper, we propose a hybrid discovery protocol 
(hereafter referred to as Hybrid) that combines both a 
learning-based approach and a hierarchical scheme. The 
proposed protocol is thus very flexible and can adapt to very  
different mobility scenarios. Unlike other hierarchical 
approaches, it does not require two different radios and, 
hence, it can be implemented in any sensor platform. We 
have evaluated the proposed protocol, by simulation, and 
compared it with other adaptive discovery schemes. The 
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obtained results show that our hybrid approach outperforms 
existing adaptive schemes that only leverage either a 
learning-based approach or a hierarchical scheme.  

The rest of the paper is organized as follows. Section II 
presents the Hybrid protocol. Section III describes the 
simulation environment used for our analysis. Section IV 
compares the proposed protocol with other adaptive 
protocols.  Finally, Section V concludes the paper. 

II. HYBRID DISCOVERY PROTOCOL   

As mentioned before, the proposed discovery protocol 
combines a learning-based approach with a hierarchical 
scheme. Specifically, it tries to learn the mobility pattern of 
the ME and predict the next arrival time, on the basis of the 
past history, using Q-Learning [12], i.e., a form of 
reinforcement learning that does not require a model of the 
environment. The duty cycle of the sensor node is then 
adjusted according to this prediction. Hence, the sensor node 
is in sleep mode for most of the time, and activates only 
when the ME is about to arrive. Since the prediction may not 
be accurate, the Hybrid algorithm exploits an additional 
hierarchical scheme to increase its energy efficiency. The 
sensor node initially activates with a low duty cycle and 
switches to a higher duty cycle only when the ME is actually 
nearby. Information about the physical location of the ME is 
made available to the sensor node by the ME itself by using 
two different Beacon messages, namely Short Range 

Beacons (SRBs) and Long Range Beacons (LRBs). LRBs 
and SRBs are transmitted in an interleaved way, both with 

the same period (i.e., BIT⋅2 , so that the overall beaconing 

period is BIT ), but with different transmission power, and 

convey different information. SRBs are transmitted with the 
same transmission-power level used during the 
communication phase for data exchange. They experience a 
transmission range r – hereafter referred to as 
communication range – and are aimed at notifying the 
sensor node that the ME is within its transmission range and 
data exchange can, thus, take place. Instead, LRBs are sent 
with a higher transmission power. Therefore, they have a 
transmission range R larger than the communication range r 
– throughout R will be referred to as the discovery range – 
and are used to inform the sensor node that the ME is 
approaching and a contact could potentially occur shortly. 

As mentioned before, the prediction algorithm is based 
on Q-Learning. Specifically, like RADA [8], it follows the 
Distributed Independent Reinforcement Learning (DIRL) 
approach [13], and relies on the following elements: (i) a 
state representation consisting of both system and 
application variables, (ii) a set of tasks (i.e. duty cycles) that 

can be executed by the sensor node, (iii) a reward function 

ρ associated with each task, and (iv) a utility function Q. 

The objective of the system is to maximize the long-term 
utility that can be achieved by executing the different tasks. 
In our system, the state s corresponds to the inter-contact 

time, as observed by the sensor node, i.e., the time elapsed 
from the beginning of a certain contact to the beginning of 

the subsequent one. The reward function ρ provides the 

immediate reward achieved by executing a task. It is 
positive if a success has been obtained, and negative 
otherwise. Instead, the utility function gives the long-term 

utility of performing a task. Q is an utility look-up table 
whose generic element Q(s, τ) provides the utility of 
performing task τ in state s. It is defined as the expected 
value of the sum of the immediate reward ρ  and the 

discounted utility of state s′ resulting from execution of task 
τ, i.e., 

( ) ( )[ ]τγρτ ,, sseEsQ ′⋅+=    (1) 

where e(s′) = maxτ Q(s′, τ). The expected value in equation 
(1) is conditioned to state s and task τ. Since Q-learning is 
done online, equation (1) cannot be applied directly, as the 
stored utility values may not have converged yet to their 
final values. In practice, Q-learning is used with incremental 
updates as given by the following equation: 

 ( ) ( ) ( ) ( )[ ]sesQsQ ′⋅+⋅+⋅−= γρατατ ,1,    (2) 

In equation (2), α is a learning-rate parameter between 0 
and 1, that controls the rate at which a sensor node tries to 
learn by giving more (α close to 1) or less (α close to 0) 
weight to the previously learned utility value. Furthermore, γ 
is a discount-factor, also between 0 to 1; the higher the 
value, the greater the sensor node relies on future reward 
rather than on immediate reward. Time is divided into time 

domains (of fixed duration DT ), and the utility function is 

updated periodically, at the end of each time domain. Then, 
based on the learned utility, the task that maximizes the 
long-term utility is selected for execution in the next future. 

As any other learning algorithm, Hybrid includes both an 
exploitation and an exploration phase. During the 
exploitation phase, the next task is selected according to the 
learned utility (as described above), while in the exploration 
phase it is picked up randomly from the set of available 
tasks. The exploration phase is accessed, at the end of a time 

domain, with a probability ε evolving dynamically as  

( ) ( )










 −⋅−

+=
max

maxminmax
min ,0max

c

ccεε
εε  (3) 

where minε ( maxε ) is the minimum (maximum) exploration 

probability, while c and 
max

c denote the number of contacts 

detected by the sensor node when equation (3) is evaluated, 
and the maximum number of detected contacts to be 

considered for calculating ε. Finally, there is a third phase 
(namely activation phase), triggered by the reception of a 
LRB from the ME, during which the next task to execute is 
chosen deterministically (see below). Although the 
definition of tasks is strictly related to the specific 
application, in Hybrid we defined the following tasks (i.e., 
duty cycles).  

• Sleep (SLP). The sensor node keeps the radio in sleep 
mode. This task is selected whenever the ME is not 
expected to arrive, based on the learned utility.  

• Low Duty Cycle (LDC). The sensor node operates with a 
low duty cycle Lδ . This task is selected when the ME is 
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expected to arrive in the next time domain, based on the 
learned utility.  

• High Duty-Cycle (HDC). The sensor node operates with 
a high duty cycle Hδ . Unlike the other tasks, HDC is not 

selected on the basis of the learned utilities. It is chosen 
whenever a LRB is received from the ME (thus, starting 
the activation phase). 

Algorithm 1: Hybrid algorithm 

 init 

      ;0=s 0)τ,0( =Q  for all τ; 

      Λ = { SLP, LDC, HDC}; 

      LRB-rcvd =False; SRB-rcvd=False; 

      ( ) ;vrRTout +=  

      Select an initial task τ from Λ randomly; 

 end init 

 loop  

       execute τ; 

       wait (event); 

       switch (event) { 

       case (LRB reception): 

              LRB-rcvd = True;  

              τ = HDC; start timer( outT ); 

       case (timeout): 

              LRB-rcvd = False; 

              τ = LDC; 

       case (SRB reception): 

              SRB-rcvd=True: stop timer; 

              Start communication phase; 

       case (end of communication): 

              SRB-rcvd = False; 

              LRB-rcvd = False; 

               τ = LDC; 

       case (end of time domain): 

              if SRB-rcvd =False { 

                  if (LRB-rcvd =True) τ = HDC; 

                  else { 

                    Calculate new state s′ ; 

                    if s ′′∃ : ss ′′≈′  then ss ′′=′              

                           else add s′ to the list of known states; 

                    Calculate reward for task  τ in state s; 

                    Update )τ,(sQ ; 

                    choose a new task τ to execute 

      // through exploration (with prob. ε ) or exploitation 

                  } 

              } // end if 

       } // end switch 

 end loop 
 

Algorithm 1 shows the actions performed by the sensor 
node. Initially, the algorithm initializes the look-up table Q 

and the set Λ  of tasks that can be selected during the 
exploration phase (i.e., SLP, LDC, HDC). Boolean variables 
LRB-rcvd and SRB-rcvd are initialized to False. LRB-rcvd 
(SRB-rcvd) will be set when a LRB (SRB) is received, thus 
starting the activation (communication) phase. A node that 
has received a LRB may experience either a contact (if it 

then receives a SRB) or a false activation (if it fails to 
receive a subsequent SRB). To avoid energy wastes due to 
false activations a timer is used. The timeout value outT is set 

according to the worst case, i.e., when the distance between 
the sensor node and the ME is zero. Finally, an initial task is 
randomly selected from set Λ . 

TABLE 1. REWARD FUNCTION’S PARAMETERS. 

LRB SRB 
cn  mp  

pe  

NO NO 0 -1 100 

NO YES 1 1 100 

YES YES 1 2 100 

YES NO 0 -2 100 

 
At each step, the algorithm executes the previously selected 
task, until one of the following events occurs: (i) LRB 

reception; (ii) SRB reception; (iii) timeout expiration; (iv) 
end of the communication phase, and (v) end of current time 

domain. Upon receiving a LRB (case i) the sensor node sets 
the LRB-rcvd flag and selects the HDC task; finally, the false 
activation timer is started. If the latter timer expires without 
receiving any SRB (case ii), the sensor node selects the LDC 
as the next task and resets the LRB-rcvd variable. Instead, if 
a SRB is received before the timeout expiration (case iii), 
the sensor node sets the SRB-rcvd flag, stops the false 
activation timer, and enters the communication phase. At the 

end of the communication phase (case iv), both the LRB-

rcvd and SRB-rcvd variables are reset. Finally, at the end of 

a time domain (case iv), if the communication phase is in 
progress (i.e., a SRB has been received), no action is 
performed. If  a LRB has been received (i.e., the sensor node 
is inside the activation phase), HDC is maintained as the 
next task. Otherwise, the new resulting state s' (i.e., inter-

contact time) is measured. If s′ is similar to a state 

s ′′ previously stored in the Q structure (i.e., the Hamming 

distance between s′ and s ′′  is less than a pre-defined 

threshold [13]), s′ is assimilated to s ′′ , otherwise s′ is added 

to the list of known states. Finally, the reward for task τ 

corresponding to state s is calculated, and )τ,(sQ  is updated 

accordingly. Specifically, the reward for any task is 
calculated as ( ) spmc eepn ⋅−⋅⋅= 1ρ , where cn , mp and 

pe denote the number of contacts detected in the last time 

domain (i.e., 0 or 1), the price multiplier for the executed 
task, and the expected price, respectively. The negative part 
of the reward represents the cost for executing the task. This 
cost depends on to the time during which the sensor node 
was active during the last time domain (for instance, for the 
LDC task ( ) SLDLRXDLs PTPTe ⋅⋅−+⋅⋅= δδ 1 , where 

RXP and SLP  denote the power consumption in receive mode 

and sleep mode, respectively). The reason behind using a 
price multiplier and an expected price is to allow a 
symmetric evaluation of the reward function. Thus, for each 
task, the reward is positive if the ME is successfully 
detected. If the ME is not detected, the reward is negative 

(equal to minus se ). The price multiplier mp for task τ is 
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calculated as shown in Table I. 

III. SIMULATION ENVIRONMENT 

To evaluate the performance of the proposed Hybrid 
protocol, we used the OMNeT++ simulation tool [14]. 
Without losing in generality, we considered a single ME 
moving with a constant speed v along a straight line at a 
fixed distance D from the sensor node. We focused on a 
sparse scenario, i.e., we assumed that the distance  between 
neighboring sensor nodes is very large (i.e., larger than the 
discovery range R), so that we can concentrate on a single 
sensor node (the evaluation in a dense scenario can be found 
in [15]). In our analysis we measured the following 
performance indices.  

• Discovery Ratio, defined as the ratio between the number 
of contacts successfully detected by the sensor node and 
the total number of potential contacts.  

• Activity Ratio, defined as the ratio between the total 
active time  (i.e. when the radio is on) and the overall 
time spent during the discovery phase.  

• Energy per Contact, defined as the average energy 
consumed by sensor nodes in the discovery phase per 
detected contact.  

The Discovery Ratio provides a measure of the 
effectiveness of a discovery scheme. Ideally, this index 
should be (close to) 100%. The activity ratio and the energy 
per contact measure the energy efficiency of the discovery 
scheme.  Ideally, these indices should be as low as possible. 
To better evaluate the performance of Hybrid, we compared 
it with the following adaptive solutions that exploit either a 
learning-based or a hierarchical approach.  

• RADA [8]. This protocol relies on the same prediction 
algorithm used in Hybrid, however, it does not exploit 
the hierarchical mechanism based on LRBs and SRBs. 
Sensor nodes are typically in sleep mode and activate 
only when the ME is expected to arrive.  

• 2BD [11]. This protocol uses a hierarchical approach 
based on LRBs and SRBs, but it is not able to predict the 
ME’s arrival time. Sensor nodes are always in LDC and 
switch to HDC upon receiving a LRB. 

For completeness, we also considered a fixed scheme 
(hereafter referred to as Fixed) where the duty cycle is 
constant over time and equal to HDC. Table 2 shows the 
duty cycle values used by the different protocols. To make 
the comparison fair, we considered the same values of HDC 
and LDC for the various algorithms. Also, we used the same 
set of duty cycles for Hybrid and RADA (i.e., HDC, LDC, 
SLP). 

TABLE 2. DUTY CYCLE VALUES 

Algorithm HDC LDC SLP 

HYBRID 3% 0.5% 0% 

RADA 3% 0.5% 0% 

2BD 3% 0.5% - 

Fixed 3% - - 
 

In all the experiments, we performed 15 independent 

replications, each consisting of 1000 visits of the ME to the 

sensor node, and derived confidence intervals with a 90% 

confidence level. Since we are mainly interested in the 

discovery process, the channel quality was modeled using 

the disk model, i.e., packet loss is assumed to be 0% when 

the distance between sensor node and ME is lower than the 

communication range r, and 100% otherwise. Unless stated 

otherwise, all the other simulation parameters are as shown 

in Table 1. The learning parameters are set as in [8], while 

the power consumption values are derived from the 

datasheet of the Chipcon CC2420 radio transceiver [16]. 

TABLE 3. SIMULATION PARAMETERS. 

Parameter Value 

LRB/SRB period (2TBI, Hybrid and 2BD )  200 ms 

Beacon period (TBI, RADA and Fixed) 100 ms 

Beacon duration (TBD, all) 1 ms 

ME Speed (v) 40 Km/h 

Distance from the sensor node (D) 15 m 

Communication range (r)  50 m 

Nominal contact time 8.6 s 

Discovery range (R, Hybrid and 2BD) 200m 

Power Consumption in Receive Mode (PRX) 56.4 mW 

Power Consumption in Sleep Mode (PSL) 60 µW 

Time Domain (TD) 100 s 

α (Hybrid and RADA) 0.5 

γ (Hybrid and RADA) 0.5 

maxε , minε  (Hybrid and RADA) 0.5, 0.05 

max
c  (Hybrid and RADA) 100 

IV. SIMULATION RESULTS 

A.  Impact of the ME mobility pattern 

In our analysis we assumed that the ME visits the sensor 
node at regular times, on average every TTOUR (inter-arrival 

time). We considered four different ME mobility patters 
resulting in a corresponding number of scenarios with 
increasing randomness in the inter-arrival time.  

• Deterministic: ME arrivals are periodic. The inter-arrival 
time is fixed and equal to 30 min (1800s).  

• Gaussian-1: The inter-arrival time is a random variable, 
distributed according to a normal distribution, with mean 
equal to 30 min and standard deviation equal to 1 min. 

• Gaussian-10: As above, but with standard deviation 
equal 10 min. 

• Uniform: The inter-arrival time is uniformly distributed 
in [0, 30] min. 

Figures 1-3 show the impact of the ME's mobility pattern 
on the different discovery schemes, in terms of discovery 
ratio, activity ratio, and energy consumed per detected 
contact, respectively. When the mobility pattern is 
deterministic, all schemes exhibit a discovery ratio close to 
100%. However, the activity ratio of Hybrid is significantly 
lower than that of the other schemes, resulting in a lower 
energy spent per detected contact. 
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Figure 1. Impact of the mobility pattern in terms of discovery ratio. 

 

Figure 2. Impact of the mobility pattern in terms of activity ratio. 

 

Figure 3. Impact of the mobility pattern in terms of energy per contact. 

When the randomness of the inter-arrival time increases, the 
activity ratio of all the adaptive schemes is approximately 
the same (i.e., around 0.5%), meaning that the sensor node is 
in LDC for most of the time. However, Hybrid outperforms 
both 2BD and RADA in terms of percentage of detected 
contacts. Hence, it experiences a lower energy per contact. 
Specifically, Hybrid provides a discovery ratio very close to 
that of Fixed in all the considered mobility scenarios with an 
activity ratio of about 1/6 (in the worst case), thus achiving a 
huge reduction in energy consumption.  
For the sake of space, hereafter we will consider only the 
Gaussian-1 scenario. 
 

 

Figure 4. Impact of inter-arrival time terms of energy per contact. 

TABLE 4. ENERGY SAVINGS PROVIDED BY HYBRID. 

Inter-arrival 

Time (s) 

2BD 

 

RADA 

300 27.9% 81.5% 

600 59.2% 85.2% 

1800 79.1% 91.0% 

2400 82.6% 92.1% 

B. Impact of the inter-arrival time 

In Figure 3 the energy per contact has been calculated 
assuming an inter-arrival time of 1800s (i.e., 30 minutes). 
Obviously, the energy consumption is strongly influenced by 
this value. To investigate the impact of the inter-arrival time 
on the average energy consumed per detected contact, we 
considered different values for this parameter (while leaving 
all the other parameters unchanged). The obtained results, in 
terms of energy per detected contact, are summarized in 
Figure 4. As expected, the difference in the energy 
consumption of the Hybrid scheme, with respect to the other 
schemes, increases with the inter-arrival time. This is 
because the higher the inter-arrival time, the longer the time 
the sensor node spends in the discovery phase. Table 4, 
which shows the energy savings provided by Hybrid, with 
respect to 2BD and RADA, better emphasizes the benefits of 
using the proposed approach. 

C. Impact of the Discovery Range  

Both 2BD and Hybrid use a hierarchical mechanism 
based on LRBs and SRBs; LRBs are transmitted with a 
transmission range R, larger than the transmission range 
used for SRBs. It is thus extremely important to evaluate the 
impact of the R parameter on their perfomance. To this end, 
we considered three differerent values for R (i.e., 150m, 
200m, 250m). The obtained results are shown in Figures 5-
7. Fixed and RADA are not influenced by this parameter as 
they use a single beacon type. They have been included in 
the plots just for comparison. From our results it clearly 
emerges that increasing R increases the probability of 
detecting a pontential contact. However, after a given values 
(200m in the considered scenario), a further increase in the 
R value does not produce any significant advantage in terms 
of discovery ratio, while it increases the energy 
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consumption. This behavior is better emphasized by the 
activity ratio, which tends to increase with R. This is because 

the sensor node remains in HDC for a time proportional to 
R. Finally, we can observe that Hybrid slightly outperforms 
2BD for all the considered R values, in terms of activity 
ratio. This is because Hybrid can also exploit the prediction 
algorithm which puts the radio in sleep mode (selecting the 
SLP task) when there is a low probabity to receive a LRB, 
based on the learning utility. 

 

 

Figure 5. Impact of the Discovery Range on the discovery ratio. 

 

Figure 6. Impact of the Discovery Range on the activity ratio. 

 

Figure 7. Impact of the Discovery Range on the energy per contact. 

V. CONCLUSIONS 

In this paper, we have proposed an adaptive discovery 
algorithm for WSNs with MEs, which combines a learning-

based approach with a hierarchical scheme. We have 
investigated the performance of the proposed algorithm, 
through simulation, in a sparse scenario. Our results show 
that, it can adapt to very different mobility patterns of the 
ME and, in comparison with other adaptive discovery 
algorithms, it allows a very large energy saving, especially 
when sensor nodes spend a long time in the discovery phase. 
For the sake of space, we only focused on a sparse scenario. 
The analysis in a dense scenario can be found in [16]. 

REFERENCES 

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, 

“Wireless Sensor Networks: a Survey”, Computer Networks, Vol.38, 

N. 4, March 2002. 

[2] S. Jain, R. Shah, W. Brunette, G. Borriello, S. Roy, “Exploiting 

Mobility for Energy Efficient Data Collection in Wireless Sensor 

Networks”, Mobile Networks and Applications, Vol. 11, No. 3, 

2006. 

[3] M. Di Francesco, S. Das, G. Anastasi, “Data Collection in Wireless 
Sensor Networks with Mobile Elements: A Survey”, ACM 

Transactions on Sensor Networks, Vol. 8, N.1, August 2011. 

[4] A. Somasundara, A. Kansal, D. Jea, D. Estrin, M. Srivastava, 

“Controllably Mobile Infrastructure for Low Energy Embedded 

Networks”, IEEE Trans. on Mobile Computing, Vol. 5, N. 8, 2006. 

[5] A. Chakrabarti, A. Sabharwal, B. Aazhang, “Using Predictable 
Observer Mobility for Power Efficient Design of Sensor Networks. 
Proc. International Workshop on Information Processing in Sensor 

Networks (IPSN 2003). 

[6] R. Mathew, M. Younis, S. Elsharkawy “Energy-Efficient 
Bootstrapping Protocol for Wireless Sensor Network”, Innovations 

in Systems and Software Engineering, Vol. 1, No 2, Sept. 2005. 

[7] V. Dyo, C. Mascolo, “Efficient Node Discovery in Mobile Wireless 
Sensor Networks”, Lecture Notes in Computer Science. Proc. 

DCOSS 2008 (LNCS 5067). Springer, Heidelberg (2008). 

[8] K. Shah, M. Di Francesco, G. Anastasi, M. Kumar, “A Framework 
for Resource Aware Data Accumulation in Sparse Wireless Sensor 
Networks”, Computer Communications, Vol. 34, N. 17, Nov. 2011. 

[9] J. Brown, J. Finney, C. Efstratiou, B. Green,N. Davies, M. Lowton, 
G. Kortuem, “Network Interrupts: Supporting Delay Sensitive 
Applications in Low Power Wireless Control Networks”, Proc. 

ACM  Workshop on Challenged Networks (CHANTS 2007), 
Montreal, Canada, 2007. 

[10] H. Jun, M. Ammar, M. Corner, E. Zegura, “Hierarchical Power 
Management in Disruption Tolerant Networks Unsing Traffic-aware 
Optimization”, Computer Communications, Vol. 32, N. 16, 2009. 

[11]    K. Kondepu, G. Anastasi, M. Conti, “Dual-Beacon Mobile-Node 
Discovery in Sparse Wireless Sensor Networks”, Proc. IEEE 

Symposium on Computers and Communications (ISCC 2011), 

Corfu, Greece, June 28 – July 1, 2011. 

[12] R. Sutton, “Temporal Credit Assignment in Reinforcement 
Learning”, Dept. of Computer Science, Univ. of Massachusetts, 
Amherst, USA, COINS Technical Report 84-2 (1984). 

[13] K. Shah, M. Kumar, “Distributed Independent Reinforcement 

Learning (DIRL) Approach to Resource Management in Wireless 

Sensor Networks”, Proc. IEEE  Conference on Mobile Ad hoc and 

Sensor Systems (MASS 2007), Pisa, Italy, 2007. 

[14] The OMNeT++ Network Simulator. http://www.omnetpp.org. 

[15] K. Kondepu, F. Restuccia, G. Anastasi, M. Conti, “A Hybrid 

Discovery Algorithm for WSNs with Mobile Elements (Extended 

Version), Technical Report DII-2012-4, Univ. of Pisa, April 2012. 

http:www.iet.unipi.it/~anastasi/papers/tr-2012-4.pdf 

[16] Chipcon, 2.4 GHz IEEE 802.15.4/ZigBee-Ready RF Transceiver, 
Chipcon Products from Texas Instruments, 2004, CC2420 Data 
Sheet. 

978-1-4673-2713-8/12/$31.00 ©2012 IEEE 000300


