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INTRODUCTION 

From the early days of electronic computers until 
the present, a period of over 20 years, electronic 
and magnetic hardware for mechanizing logical 
functions and storage in the central processor por­
tion of a computer system have been extremely ex­
pensive. Although these costs have been dropping 
steadily in terms of the cost per component, in­
creases in the complexity and capacity of central 
processors have tended to keep pace with decreases 
in hardware costs. Hence, reductions in hardware 
costs to date have been reflected primarily in in­
creased performance and capability rather than re­
duced cost. However, developments presently under­
way in batch-fabricated technologies will provide 
such significantly lower hardware costs in the central 
processor that it will not be possible to maintain a 
system balance from the standpoint of cost and re­
liability. If properly used, large-scale integrated-cir­
cuit arrays in particular will provide digital logic and 
control functions at such sharply reduced costs and 
increased reliability that the central processor will 
tend to become an almost negligible part of the sys­
tem from the standpoint of both cost and reliability. 
The dominant factors in systems cost will be soft­
ware and electromechanical mass storage and in­
put/ output devices. 
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As a result of these technological advances in 
batch-fabricated hardware, the three major problems 
facing designers of future computer systems will be: 

1. The necessity of developing machine 
organization techniques that will per­
mit the efficient utilization of large 
arrays to achieve their true potential in 
terms of cost, reliability, and maintain­
ability. 

2. An urgent need to minimize the num­
ber of electromechanical mass storage 
and input/output devices required in 
a system in order to reduce systems 
cost and increase systems reliability 
and an accompanying need for devel­
oping new and improved types of such 
peripheral equipments. 

3. An equally urgent need for minimizing 
the cost of providing software, includ­
ing both operating systems and user 
programs, even if this requires signifi­
cant increases in the logical and stor­
age hardware in the central processor. 

MACHINE ORGANIZATION IMPLICATIONS 

In considering the advantages of large arrays it 
seems apparent that the larger the array that can be 
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effectively utilized the better the economics and re­
liability up to the limit that can be achieved techni­
cally in terms of the number of components per 
chip.l The use of very large arrays will reduce the 
initial fabrication costs and improve reliability and 
maintainability, but they will also present a serious 
problem. As the module becomes larger it becomes 
increasingly difficult to use it for more than one 
function within a single computer. Each packaged 
unit tends to become unique with only a single one 
of each type used in a given computer. Dr. R. N. 
Noyce called attention to this last year and indicated 
the anticipated progress in array size when he stat­
ed: 

However, from a point on the complexity scale 
now where 50 components is the cheapest level 
for an integrated circuit, I expect to move to 1000 
by 1970 .... At the same time there will be new 
problems where it takes only 10 chips to make a 
computer and almost every circuit made will be 
different. 2 

This decreased "commonality" increases fabrication 
costs because of the low production volume of each 
type of module. It also increases the cost of the 
spares inventory, but the cost of spares usage will 
decrease as a result of significant(y higher reliability. 
In fact, the low rate of usage of spares coupled with 
the difficulty of repairing large arrays should lead to 
adoption of a "throw-away" maintenance concept 
where major portions of the computer are replaced 
but not repaired in event of failure. This will have 
significant effects on maintenance procedures and 
costs-particularly in military systems. 

The lack of flexibility in large arrays which tends 
to make each array within a system unique and the 
possible need for eliminating bad or substandard cir­
cuits from the array to achieve a reasonable yield 
are two of the major problems in utilizing large ar­
rays in computers. At least three different ap­
proaches to fabricating large interconnected arrays 
to overcome these obstacles to their utilization are 
under consideration. The first is cellular logic in 
which large arrays of identical circuits are fabricated 
with a standard interconnection pattern (e.g., con­
necting each circuit only to its four adjacent neigh­
bors) with the ability to modify the function of the 
circuit by changing something in the circuit subse­
quent to fabrication. 3 For example, one approach of 
this type uses a circuit with four cut-points which 
can be cut in different combinations to alter the 
function of the circuit. 

In the second approach, a large array of circuits 

is fabricated and each circuit is individually tested. 
The test results are put in a computer which is also 
storing logical equations of the function to be imple­
mented. The computer then generates the proper 
interconnection pattern to interconnect available 
good elements (skipping the bad ones) to perform 
the required logical function. 4 In this approach, a 
separate mask must be prepared for each array 
fabricated; hence, this is an expensive operation 
unless cheap methods can be developed for pro­
ducing interconnection masks under computer con­
trol. On the other hand this approach offers a major 
advantage in that it is easy to vary the function 
performed by the array by changing the logical 
equations supplied to the computer that is controlling 
the interconnections. If each interconnection mask 
for each array is generated individually, there is little 
incentive for rigidly standardized functions. 

The third approach is advocated by those who 
believe that in the future it will be technically feasi­
ble to achieve high yields of large integrated circuit 
arrays in which all circuits are good. This would 
permit a standardized interconnect pattern to be 
used for each specific logical function. This has the 
advantage that only one mask need be made for a 
particular function. This mask can then be used to 
interconnect the circuits in many arrays of that type. 
On the other hand, it is more difficult to change the 
function to be performed by the interconnected cir­
cuit array since this requires making a different 
mask. 

In the future both of the last two fabrication tech­
niques discussed above will probably be used. Pro­
grammed control of the interconnection pattern will 
likely be used for small production volumes and 
unique or infrequently used functional modules. 
However, there is strong evidence that the semicon­
ductor industry will produce large arrays with yields 
sufficiently high to permit the use of standardized 
interconnection patterns for functional modules that 
are used in large quantities. 

As semiconductor and batch-fabrication tech­
nologies advance, the major physical limitation on 
the size of the functional unit will be the number of 
external leads that can be provided on a package. 
Although packages with larger numbers of leads· (in 
the order of 100) are being developed, additional 
research in machine organization is urgently needed 
to develop functional organizational concepts that 
will maximize the interconnections within a replace­
able package and minimize the interconnections be-
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tween packages. The way in which the computer is 
divided into functional modules can greatly increase 
or decrease the number of connections needed be­
tween such modules. fi 

It will be necessary to use different criteria for 
design efficiency in batch-fabricated systems. in the 
past, minimizing the number of logical elements has 
been a major goal of most logical design efforts. In 
future systems, logical elements should be used 
inefficiently in order to minimize the number of in­
terconnections needed between functional modules. 
For example, frequently in present computers a 
given gate or flip-flop supplies inputs to a number of 
logical elements in different parts of the machine; 
but in future systems the logical gate or flip-flop 
may be duplicated many times in different parts of 
the system to minimize the signals transferred from 
one module to another. Emphasis must be placed on 
reducing the number of packages and the number of 
interconnections between packages-even at the ex­
pense of increasing the logical complexity of each 
package significantly. Perhaps an even more difficult 
problem will be motivating logical designers and sys­
tems planners to use standard or predetermined 
functional modules. It is hoped that Dr. E. A. Sack's 
optimism was justified when he stated: "It is the 
author's opinion that the drastic reduction in cost 
per gate available in multi-gate arrays will overcome 
the system designer'S natural reluctance to employ 
prefabricated digital functions." 6 

In order to achieve the cost and maintenance ad­
vantages offered by the use of large batch-fabricated 
arrays, it is necessary to develop machine organiza­
tion and system design techniques that permit repet­
itive use of packages containing very large arrays of 
circuits. One approach is to change the internal or­
ganization and logical design of the large computer 
so that large functional arrays can be used repeti­
tively even if this means that each array is relatively 
inefficient in terms of the utilization of circuits with­
in the array.7 

Another approach is to use very small standard 
modular computers designed to be used either indi­
vidually or in multicomputer systems. In this case, 
the uniqueness of large functional arrays within a 
given computer is accepted. Such a small standard 
modular computer can be fabricated with a very 
limited number of circuit arrays each of which is 
used only once within that computer. For example, 
the complete program control unit and all of its in­
ternal interconnections may be fabricated in a single 

package, the complete arithmetic unit in a second 
package, the complete input/output control and 
buffering section in a third package, and storage mod­
ules in additional packages containing 2000 words 
each. Economies in fabrication and spares inventory 
would be achieved as a result of the volume usage 
of each type of module made possible by the use of 
a large number of these standardized computers 
rather than by the use of a large number of identical 
packages within a single computer. When additional 
computing speed and capability is required the 
standardized computer would be used in a multi­
computer configuration. 

A third approach is to develop parallel processing 
systems conceptually similar to those that have been 
discussed extensively in the literature.8 ,9 In this ap­
proach, large arrays are used effectively by organiz­
ing the machine on the basis of a relatively large 
number of identical processing modules. 

INPUT/OUTPUT IMBALANCE 

There are three major approaches to the 
input/ output problem: 

1. Improvements in the performance of 
present types of input/output equip­
ment. 

2. Development of new types of input/ 
output equipment that are not in wide­
spread use at present. 

3. System organization approaches that 
minimize the need for conventional 
input/ output equipment. 

Each of these approaches will play a part in provid­
ing better balance in future systems. However, un­
less much greater effort is placed upon the develop­
ment of nonmechanical input; output equipment, the 
best hope for future systems probably lies in devel­
oping system techniques that minimize the need for 
input; output equipment. Although a problem of 
major importance, these have been discussed pre­
viously and will not be considered further here. IO 

HARDWARE/SOFTWARE TRADEOFFS 

The memory capacity of early computers was so 
limited that programming costs were not a 
significant part of the total cost-of-ownership of a 
computer system. However, reductions in hardware 
costs have been accompanied by greatly increased 
memory capacities which have permitted the storage 
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and operation of larger and more complex pro­
grams. The cost of hardware and the cost of engi­
neering design required to efficiently use expensive 
logical components have exerted a strong pressure in 
the direction of very general-purpose computers 
which can be adapted to a large number of different 
operations so that design and production costs can 
be amortized over a relatively larger number of 
units. It has been recognized that a special-purpose 
computer can perform a particular task more 
efficiently than a general-purpose computer in terms 
of the amount of hardware required, but the cost of 
small volume production and specialized design have 
favored general-purpose computers. 

Under these circumstances, the tasks of specializ­
ing the capabilities of a general-purpose computer to 
a specific job and adapting it to the control of a 
large number of different types of input/output and 
peripheral devices have been left to the programmer. 
However, the increased performance and capability 
of computers that have accompanied the reductions 
in basic hardware costs in recent years have placed 
greater and greater requirements on the program­
ming necessary to adapt more sophisticated general­
purpose machines to more complex operations in 
specific kinds of problems. 

While hardware costs have been decreasing, pro­
gramming costs have been increasing significantly to 
the point that they now represent at least 50% of 
the initial cost of a new computer system and per­
haps as much as 80% of the total systems opera­
tional cost over a 10-year period. This problem is 
now magnified by new batch-fabrication tech­
nologies, such as large-scale integrated circuits and 
plated-wire or thin film memories, which are expect­
ed to reduce the cost of logic circuits and storage 
elements by one to two orders of magnitude. How­
ever, the effect of these hardware cost reductions on 
the cost-of-ownership (initial procurement cost and 
systems operational cost over the lifetime of the sys­
tem) is limited by the overwhelming software costs 
which will not be affected by these advances in 
hardware technology unless machine organization 
and system design concepts are changed. 

Fortunately, the significant reductions that are be­
ing achieved in the cost of logic and storage offer an 
opportunity to also reduce the mounting cost of 
software by trading low-cost hardware for expensive 
software. Many of the functions relegated to pro­
gramming in the past because of high hardware 
costs can be performed in the future by low-cost 

batch-fabricated hardware with a consequent reduc­
tion in programming complexity and costs. Tech­
nological changes now make it necessary to reverse 
the past practice of using additional software to 
minimize hardware requirements. In the future, ad­
ditional hardware will be used to reduce program­
ming requirements. This can only be achieved by 
reevaluating the criteria used for making hardware/ 
software tradeofIs in the past. 

At least three different approaches to altering pre­
viously accepted hardware/software tradeoffs can be 
considered: 

1. Special-purpose computers and proces­
sors. 

2. Different types of machine language 
and machine organization. 

3. Additional hardware functions in ma­
chines with conventional languages and 
organizations. 

Special-Purpose Computers and Processors 

The question of special-purpose versus general­
purpose computers has been argued in one way or 
another since the dawn of the computer era. The 
major arguments against special-purpose computers 
have been design costs and lack of flexibility. Spe­
cial-purpose computers have been frequently fa­
vored for applications where a relatively large 
number of machines have been required to do a cer­
tain set of fixed tasks, but in most such cases some 
limited form of program control (e.g., paper tape, 
plug board, etc.) has been added to provide some 
flexibility. With the advent of computer-aided design 
and computer-controlled preparation of masks for 
large-scale integrated circuits much of the design 
cost obstacle is removed. In essence the question 
then becomes one of trading logical design in a spe­
cial-purpose machine for programming in a general­
purpose machine. In this case, the logical design will 
probably win out in terms of the number of man­
hours required since the logical designer can address 
himself to the task at hand with few predesign 
boundary conditions while the programmer does not 
have a completely free hand because of the charac­
teristics of the general-purpose machine he is adapt­
ing to a specific problem. 

The problem of flexibility remains, but this may 
be partially overcome by a compromise in a multi­
computer or multiprocessor system. A discussion of 
the many advantages of multicomputer and multi-
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processor systems is outside the scope of this paper, 
but in many cases it is not necessary that all of the 
processors or computers in such a system be identi­
cal nor that they all be general-purpose. A multi­
computer or multiprocessor system is feasible in 
which some of the computers or processors are gen­
eral purpose while others are special purpose, 'de­
signed to perform specific tasks that are relatively 
common. For example, in a multicomputer scientific 
computation system one or more of the computers 
could be DDA's. As another example, in a multi­
processor system one of the processors could be a 
logical processor, another an arithmetic processor, 
etc. It seems fairly obvious that such use of special­
purpose computers or processors will reduce the 
programming requirements (as well as probably in­
creasing processing speeds) and will be economi­
cally feasible when the low-cost potentials of large­
scale integration are realized. 

Different Types of Machine Language 
and Organization 

Present machine languages and machine organiza­
tion concepts have been heavily influenced by the 
cost and capabilities of specific types of hardware in 
the past. The storage hierarchy is one example of 
this. The sequential one-address machine language is 
another. If word size were not limited by the cost of 
larger registers and storage, three-address machines 
would undoubtedly be more prevalent, particularly 
in data processing type applications. 

Machine languages have been designed to permit 
efficient implementation of the processor itself rather 
than to facilitate programming. Users on the other 
hand have developed pseudo-languages that facilitate 
programming from a human standpoint but that re­
quire compiling operations that do not always utilize 
the true capabilities of the computer. On the surface 
there seems to be an advantage in using some higher 
order languages (e.g., FORTRAN or ALGOL) as 
machine languages, if hardware costs are sufficiently 
low. It will probably not be feasible to go this far, 
nor is it necessarily desirable. However, it is feasible 
and, desirable to design machine languages that will 
facilitate compiling operations and to implement 
certain parts of problem oriented languages in hard­
ware. The need for better problem oriented lan­
guages has been cited frequently.ll Hence, a joint 
effort by programmers and engineers to first design 
better problem-oriented languages and then to 
implement portions of them (e.g., mathematical 

operations) with hardware wherever possible should 
pay handsome dividends. 

The Burroughs B5000 with its Polish notation 
and push-down-list store represented an early step 
toward development of machine languages and or­
ganizations that will facilitate compiling operations.12 

Other work in this direction includes an Air Force­
sponsored study at the University of Pennsylvania 
using associative memory and list processing tech­
niques. 13 With very low-cost large-scale integrated­
circuit arrays just over the horizon, it should be eco­
nomically feasible to implement machine languages 
that will eliminate many of the steps in present com­
piling operations. 

Additional Hardware Functions in 
Conventional Machines 

It is not necessary to go as far as special-purpose 
computers or new machine languages and organiza­
tion to achieve significant economies in software by 
greater, and perhaps "inefficient," use of low-cost 
hardware. Significant economies can be achieved 
within the framework of conventional machine lan­
guages and organizations by: 

e Hardware implementation of special 
purpose functions and logical and 
mathematical operations. 

• Implementation of hardware features 
that minimize "red tape" and "house­
keeping" programming requirements. 

• Hardware implementation of some of 
the machine functions presently handled 
by operating systems software. 

Many functions presently handled by pro­
grammed subroutines can be implemented easily by 
special-purpose logic in a straightforward manner. 
Such functions include: 

Binary-to-decimal and decimal-to-binary 
conversions 

Code conversions 
Coordinate conversions 
Format control 
Table look-up operations 
Scaling 
Mathematical operations (e.g., square root, 

trigonometric functions, matrix opera­
tions, etc.) 

In the past such functions have been handled by 
programmed subroutines using the machine's basic 

From the collection of the Computer History Museum (www.computerhistory.org)



94 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966 

operations (e.g., add, multiply, shift, etc.) because 
of the cost of the hardware required to mechanize 
the functions in relation to the frequency of their 
use and because of the flexibility offered by the abil­
ity to modify the routine either as it is stored or by 
index registers at the time of execution. From the 
cost standpoint, large-scale integration will make it 
feasible to mechanize such functions even when they 
are used relatively infrequently. The necessary flexi­
bility can be retained by hardware mechanizations 
that permit program control of variable operations 
in such functions and still significantly reduce the 
software required. Hardware mechanization of func­
tions of this type will not only reduce the program­
ming effort and the storage space required for the 
program, but will also offer speed improvements 
since logical implementation of such functions is in­
variably faster than the execution of the equivalent 
sequence of program steps. 

A large portion of most programs consist of "red 
tape" or "housekeeping" instructions that either are 
not conceptually necessary to the solution of the 
problem or that can be implicit to the operation per­
formed rather than stated explicitly. These include 
operations such as: 

Register-to-memory or memory-to-register 
transfers 

Certain transfer-of-control operations 
Some operations on the contents of index 

registers 
Certain types of timing functions 

Additional hardware can greatly mInImIZe the 
number of operations of this type required in a pro­
gram. For example, a set of general registers or a 
small high-speed control memory . can be used to 
represent multiple accumulators, index registers, and 
control registers. The availability of such multiple 
registers will sharply reduce the number of register­
to-memory and memory-to-register transfers, the 
number of index modification operations, and the 
number of transfer-of-control operations required. 
There are, of course, many other examples of this 
type. A somewhat complementary concept is the use 
of large-capacity low-cost storage coupled with 
higher-speed machine operation to permit the effec­
tive utilization of inefficient programs. This increases 
the size of the program in terms of the number of 
instructions involved but reduces the man hours re­
quired to write a given program by removing the 
need for polishing and streamlining the program to 

make it run faster and fit into less storage 
space.ll 

The operating systems software provided with 
most computers handles three major functions: 

Input/ output control and editing 
Scheduling and storage allocation 
Interrupts and priorities 

The operating systems usually represent the most 
difficult and expensive area of systems program­
ming. It has been estimated that one major com­
puter manufacturer is spending $60 million this year 
for programming PLl, FORTRAN, COBOL, and 
the operating systems for a family of new computer 
systems. The operating systems probably represent 
at least one half of this cost. 

Many of the functions included in operating sys­
tems software can be implemented by additional 
hardware. For example, special-purpose control log­
ic and storage hardware can be provided with each 
type of input; output equipment to provide a com­
pletely standard interface with the computer so that 
the programmer and the software system need not 
be concerned with the nature or characteristics of 
the particular input/output device. Special-purpose 
hardware and buffer storage can accommodate the 
differences in characteristics of tape units, disc files, 
card readers, keyboards, etc. Small associative mem­
ories can be used to facilitate the cataloging and 
indexing of data files and the allocation of storage. 
Hardware can significantly reduce programming re­
quirements in the servicing of interrupts and han­
dling of priorities. Computer and I/O channel usage 
accounting can be facilitated by additional hard­
ware. 

Most present computer systems use a multilevel 
storage hierarchy which usually requires program 
consideration of the particular level of storage being 
used and to some extent the differences in the char­
acteristics of devices used for different levels. Addi­
tional low-cost logic and special storage techniques 
can be used to cause this multilevel storage hier­
archy to appear as a single homogeneous storage to 
the programmer, thus minimizing the need for pro­
gramming attention to the capabilities and charac­
teristics of the different types of storage. Many of 
the storage allocation, page turning, and memory 
protection schemes used for time-sharing, multipro­
gramming, multiprocessor, and multicomputer sys­
tems can be implemented by low-costhardware also. 
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FUTURE PROGRESS 

Special-purpose computers or processors may 
evolve naturally as multicomputer and multiproces­
sor systems are developed and used on an increasing 
scale. Hardware features to minimize housekeeping 
will also tend to evolve as designers find lower and 
lower cost elements and functions available to them. 
The hardware implementation of special-pur­
pose functions is straightforward, but a catalog of 
present subroutines can give a clue to the functions 
to be considered for implementation. 

Present compilers and higher-order languages are a 
good starting point for considering machine lan­
guages and organizations that will simplify program­
ming; but, even with low-cost hardware, further re­
search in programming languages is needed to 
determine a language closely related to users' prob­
lem oriented languages that is still economically and 
conceptually feasible to implement as machine lan­
guage. 

Much of the conceptual work necessary to imple­
ment operating systems functions has already been 
done. The large and complex software operating 
systems that have been developed during the past 8 
to 10 years represent many man-years of effort in 
formalizing the necessary procedures and algo­
rithms. Hence, the starting point should be a study of 
these operating systems to determine areas that meet 
three criteria-( 1) difficult or unsolved problems, 
(2) significant numbers of instructions, and (3 ) 
procedures and algorithms that are more feasible for 
mechanization by large-scale integrated circuits or 
other batch-fabricated hardware. Software functions 
meeting any of these criteria represent a promising 
area for development. Functions meeting all three 
will literally represent a gold mine of software Cust 
savings. 

J oint hardware, software, and systems design 
efforts are needed in choosing new hardware/soft­
ware tradeoffs to properly utilize both the results of 
past work and the capabilities of new technology. In 
the past, hardware has been traded for software in 
order to improve speed and performance with the 
decisions made primarily on a cost/performance ba­
sis. In the future, hardware will be traded for soft­
ware to reduce the cost of programming with deci­
sions made on the basis of total systems cost rather 
than only equipment costs. 

When transistors were first introduced there was a 
strong tendency to use them in the same way vacu-

urn tubes had been used previously. Unfortunately 
in the computer field a similar trend is in process 
now with integrated circuits being used in the same 
way that discrete semiconductors have been used in 
the past. Systems designers must consider large-scale 
integrated-circuit arrays as a new type of device that 
necessitates major revisions in systems design con­
cepts, machine organization, and hardware/software 
tradeoffs. 
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