
EFFECTS OF LARGE ARRAYS ON MACHINE ORGANIZATION
AND HARDWARE/SOFTWARE TRADEOFFS

L. C. Hobbs

Hobbs Associates, Inc.
Corona del Mar, California

INTRODUCTION

From the early days of electronic computers until
the present, a period of over 20 years, electronic
and magnetic hardware for mechanizing logical
functions and storage in the central processor por­
tion of a computer system have been extremely ex­
pensive. Although these costs have been dropping
steadily in terms of the cost per component, in­
creases in the complexity and capacity of central
processors have tended to keep pace with decreases
in hardware costs. Hence, reductions in hardware
costs to date have been reflected primarily in in­
creased performance and capability rather than re­
duced cost. However, developments presently under­
way in batch-fabricated technologies will provide
such significantly lower hardware costs in the central
processor that it will not be possible to maintain a
system balance from the standpoint of cost and re­
liability. If properly used, large-scale integrated-cir­
cuit arrays in particular will provide digital logic and
control functions at such sharply reduced costs and
increased reliability that the central processor will
tend to become an almost negligible part of the sys­
tem from the standpoint of both cost and reliability.
The dominant factors in systems cost will be soft­
ware and electromechanical mass storage and in­
put/ output devices.

89

As a result of these technological advances in
batch-fabricated hardware, the three major problems
facing designers of future computer systems will be:

1. The necessity of developing machine
organization techniques that will per­
mit the efficient utilization of large
arrays to achieve their true potential in
terms of cost, reliability, and maintain­
ability.

2. An urgent need to minimize the num­
ber of electromechanical mass storage
and input/output devices required in
a system in order to reduce systems
cost and increase systems reliability
and an accompanying need for devel­
oping new and improved types of such
peripheral equipments.

3. An equally urgent need for minimizing
the cost of providing software, includ­
ing both operating systems and user
programs, even if this requires signifi­
cant increases in the logical and stor­
age hardware in the central processor.

MACHINE ORGANIZATION IMPLICATIONS

In considering the advantages of large arrays it
seems apparent that the larger the array that can be

From the collection of the Computer History Museum (www.computerhistory.org)

90 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

effectively utilized the better the economics and re­
liability up to the limit that can be achieved techni­
cally in terms of the number of components per
chip.l The use of very large arrays will reduce the
initial fabrication costs and improve reliability and
maintainability, but they will also present a serious
problem. As the module becomes larger it becomes
increasingly difficult to use it for more than one
function within a single computer. Each packaged
unit tends to become unique with only a single one
of each type used in a given computer. Dr. R. N.
Noyce called attention to this last year and indicated
the anticipated progress in array size when he stat­
ed:

However, from a point on the complexity scale
now where 50 components is the cheapest level
for an integrated circuit, I expect to move to 1000
by 1970 At the same time there will be new
problems where it takes only 10 chips to make a
computer and almost every circuit made will be
different. 2

This decreased "commonality" increases fabrication
costs because of the low production volume of each
type of module. It also increases the cost of the
spares inventory, but the cost of spares usage will
decrease as a result of significant(y higher reliability.
In fact, the low rate of usage of spares coupled with
the difficulty of repairing large arrays should lead to
adoption of a "throw-away" maintenance concept
where major portions of the computer are replaced
but not repaired in event of failure. This will have
significant effects on maintenance procedures and
costs-particularly in military systems.

The lack of flexibility in large arrays which tends
to make each array within a system unique and the
possible need for eliminating bad or substandard cir­
cuits from the array to achieve a reasonable yield
are two of the major problems in utilizing large ar­
rays in computers. At least three different ap­
proaches to fabricating large interconnected arrays
to overcome these obstacles to their utilization are
under consideration. The first is cellular logic in
which large arrays of identical circuits are fabricated
with a standard interconnection pattern (e.g., con­
necting each circuit only to its four adjacent neigh­
bors) with the ability to modify the function of the
circuit by changing something in the circuit subse­
quent to fabrication. 3 For example, one approach of
this type uses a circuit with four cut-points which
can be cut in different combinations to alter the
function of the circuit.

In the second approach, a large array of circuits

is fabricated and each circuit is individually tested.
The test results are put in a computer which is also
storing logical equations of the function to be imple­
mented. The computer then generates the proper
interconnection pattern to interconnect available
good elements (skipping the bad ones) to perform
the required logical function. 4 In this approach, a
separate mask must be prepared for each array
fabricated; hence, this is an expensive operation
unless cheap methods can be developed for pro­
ducing interconnection masks under computer con­
trol. On the other hand this approach offers a major
advantage in that it is easy to vary the function
performed by the array by changing the logical
equations supplied to the computer that is controlling
the interconnections. If each interconnection mask
for each array is generated individually, there is little
incentive for rigidly standardized functions.

The third approach is advocated by those who
believe that in the future it will be technically feasi­
ble to achieve high yields of large integrated circuit
arrays in which all circuits are good. This would
permit a standardized interconnect pattern to be
used for each specific logical function. This has the
advantage that only one mask need be made for a
particular function. This mask can then be used to
interconnect the circuits in many arrays of that type.
On the other hand, it is more difficult to change the
function to be performed by the interconnected cir­
cuit array since this requires making a different
mask.

In the future both of the last two fabrication tech­
niques discussed above will probably be used. Pro­
grammed control of the interconnection pattern will
likely be used for small production volumes and
unique or infrequently used functional modules.
However, there is strong evidence that the semicon­
ductor industry will produce large arrays with yields
sufficiently high to permit the use of standardized
interconnection patterns for functional modules that
are used in large quantities.

As semiconductor and batch-fabrication tech­
nologies advance, the major physical limitation on
the size of the functional unit will be the number of
external leads that can be provided on a package.
Although packages with larger numbers of leads· (in
the order of 100) are being developed, additional
research in machine organization is urgently needed
to develop functional organizational concepts that
will maximize the interconnections within a replace­
able package and minimize the interconnections be-

From the collection of the Computer History Museum (www.computerhistory.org)

EFFECTS OF LARGE ARRAYS 91

tween packages. The way in which the computer is
divided into functional modules can greatly increase
or decrease the number of connections needed be­
tween such modules. fi

It will be necessary to use different criteria for
design efficiency in batch-fabricated systems. in the
past, minimizing the number of logical elements has
been a major goal of most logical design efforts. In
future systems, logical elements should be used
inefficiently in order to minimize the number of in­
terconnections needed between functional modules.
For example, frequently in present computers a
given gate or flip-flop supplies inputs to a number of
logical elements in different parts of the machine;
but in future systems the logical gate or flip-flop
may be duplicated many times in different parts of
the system to minimize the signals transferred from
one module to another. Emphasis must be placed on
reducing the number of packages and the number of
interconnections between packages-even at the ex­
pense of increasing the logical complexity of each
package significantly. Perhaps an even more difficult
problem will be motivating logical designers and sys­
tems planners to use standard or predetermined
functional modules. It is hoped that Dr. E. A. Sack's
optimism was justified when he stated: "It is the
author's opinion that the drastic reduction in cost
per gate available in multi-gate arrays will overcome
the system designer'S natural reluctance to employ
prefabricated digital functions." 6

In order to achieve the cost and maintenance ad­
vantages offered by the use of large batch-fabricated
arrays, it is necessary to develop machine organiza­
tion and system design techniques that permit repet­
itive use of packages containing very large arrays of
circuits. One approach is to change the internal or­
ganization and logical design of the large computer
so that large functional arrays can be used repeti­
tively even if this means that each array is relatively
inefficient in terms of the utilization of circuits with­
in the array.7

Another approach is to use very small standard
modular computers designed to be used either indi­
vidually or in multicomputer systems. In this case,
the uniqueness of large functional arrays within a
given computer is accepted. Such a small standard
modular computer can be fabricated with a very
limited number of circuit arrays each of which is
used only once within that computer. For example,
the complete program control unit and all of its in­
ternal interconnections may be fabricated in a single

package, the complete arithmetic unit in a second
package, the complete input/output control and
buffering section in a third package, and storage mod­
ules in additional packages containing 2000 words
each. Economies in fabrication and spares inventory
would be achieved as a result of the volume usage
of each type of module made possible by the use of
a large number of these standardized computers
rather than by the use of a large number of identical
packages within a single computer. When additional
computing speed and capability is required the
standardized computer would be used in a multi­
computer configuration.

A third approach is to develop parallel processing
systems conceptually similar to those that have been
discussed extensively in the literature.8 ,9 In this ap­
proach, large arrays are used effectively by organiz­
ing the machine on the basis of a relatively large
number of identical processing modules.

INPUT/OUTPUT IMBALANCE

There are three major approaches to the
input/ output problem:

1. Improvements in the performance of
present types of input/output equip­
ment.

2. Development of new types of input/
output equipment that are not in wide­
spread use at present.

3. System organization approaches that
minimize the need for conventional
input/ output equipment.

Each of these approaches will play a part in provid­
ing better balance in future systems. However, un­
less much greater effort is placed upon the develop­
ment of nonmechanical input; output equipment, the
best hope for future systems probably lies in devel­
oping system techniques that minimize the need for
input; output equipment. Although a problem of
major importance, these have been discussed pre­
viously and will not be considered further here. IO

HARDWARE/SOFTWARE TRADEOFFS

The memory capacity of early computers was so
limited that programming costs were not a
significant part of the total cost-of-ownership of a
computer system. However, reductions in hardware
costs have been accompanied by greatly increased
memory capacities which have permitted the storage

From the collection of the Computer History Museum (www.computerhistory.org)

92 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

and operation of larger and more complex pro­
grams. The cost of hardware and the cost of engi­
neering design required to efficiently use expensive
logical components have exerted a strong pressure in
the direction of very general-purpose computers
which can be adapted to a large number of different
operations so that design and production costs can
be amortized over a relatively larger number of
units. It has been recognized that a special-purpose
computer can perform a particular task more
efficiently than a general-purpose computer in terms
of the amount of hardware required, but the cost of
small volume production and specialized design have
favored general-purpose computers.

Under these circumstances, the tasks of specializ­
ing the capabilities of a general-purpose computer to
a specific job and adapting it to the control of a
large number of different types of input/output and
peripheral devices have been left to the programmer.
However, the increased performance and capability
of computers that have accompanied the reductions
in basic hardware costs in recent years have placed
greater and greater requirements on the program­
ming necessary to adapt more sophisticated general­
purpose machines to more complex operations in
specific kinds of problems.

While hardware costs have been decreasing, pro­
gramming costs have been increasing significantly to
the point that they now represent at least 50% of
the initial cost of a new computer system and per­
haps as much as 80% of the total systems opera­
tional cost over a 10-year period. This problem is
now magnified by new batch-fabrication tech­
nologies, such as large-scale integrated circuits and
plated-wire or thin film memories, which are expect­
ed to reduce the cost of logic circuits and storage
elements by one to two orders of magnitude. How­
ever, the effect of these hardware cost reductions on
the cost-of-ownership (initial procurement cost and
systems operational cost over the lifetime of the sys­
tem) is limited by the overwhelming software costs
which will not be affected by these advances in
hardware technology unless machine organization
and system design concepts are changed.

Fortunately, the significant reductions that are be­
ing achieved in the cost of logic and storage offer an
opportunity to also reduce the mounting cost of
software by trading low-cost hardware for expensive
software. Many of the functions relegated to pro­
gramming in the past because of high hardware
costs can be performed in the future by low-cost

batch-fabricated hardware with a consequent reduc­
tion in programming complexity and costs. Tech­
nological changes now make it necessary to reverse
the past practice of using additional software to
minimize hardware requirements. In the future, ad­
ditional hardware will be used to reduce program­
ming requirements. This can only be achieved by
reevaluating the criteria used for making hardware/
software tradeofIs in the past.

At least three different approaches to altering pre­
viously accepted hardware/software tradeoffs can be
considered:

1. Special-purpose computers and proces­
sors.

2. Different types of machine language
and machine organization.

3. Additional hardware functions in ma­
chines with conventional languages and
organizations.

Special-Purpose Computers and Processors

The question of special-purpose versus general­
purpose computers has been argued in one way or
another since the dawn of the computer era. The
major arguments against special-purpose computers
have been design costs and lack of flexibility. Spe­
cial-purpose computers have been frequently fa­
vored for applications where a relatively large
number of machines have been required to do a cer­
tain set of fixed tasks, but in most such cases some
limited form of program control (e.g., paper tape,
plug board, etc.) has been added to provide some
flexibility. With the advent of computer-aided design
and computer-controlled preparation of masks for
large-scale integrated circuits much of the design
cost obstacle is removed. In essence the question
then becomes one of trading logical design in a spe­
cial-purpose machine for programming in a general­
purpose machine. In this case, the logical design will
probably win out in terms of the number of man­
hours required since the logical designer can address
himself to the task at hand with few predesign
boundary conditions while the programmer does not
have a completely free hand because of the charac­
teristics of the general-purpose machine he is adapt­
ing to a specific problem.

The problem of flexibility remains, but this may
be partially overcome by a compromise in a multi­
computer or multiprocessor system. A discussion of
the many advantages of multicomputer and multi-

From the collection of the Computer History Museum (www.computerhistory.org)

EFFECTS OF LARGE ARRAYS 93

processor systems is outside the scope of this paper,
but in many cases it is not necessary that all of the
processors or computers in such a system be identi­
cal nor that they all be general-purpose. A multi­
computer or multiprocessor system is feasible in
which some of the computers or processors are gen­
eral purpose while others are special purpose, 'de­
signed to perform specific tasks that are relatively
common. For example, in a multicomputer scientific
computation system one or more of the computers
could be DDA's. As another example, in a multi­
processor system one of the processors could be a
logical processor, another an arithmetic processor,
etc. It seems fairly obvious that such use of special­
purpose computers or processors will reduce the
programming requirements (as well as probably in­
creasing processing speeds) and will be economi­
cally feasible when the low-cost potentials of large­
scale integration are realized.

Different Types of Machine Language
and Organization

Present machine languages and machine organiza­
tion concepts have been heavily influenced by the
cost and capabilities of specific types of hardware in
the past. The storage hierarchy is one example of
this. The sequential one-address machine language is
another. If word size were not limited by the cost of
larger registers and storage, three-address machines
would undoubtedly be more prevalent, particularly
in data processing type applications.

Machine languages have been designed to permit
efficient implementation of the processor itself rather
than to facilitate programming. Users on the other
hand have developed pseudo-languages that facilitate
programming from a human standpoint but that re­
quire compiling operations that do not always utilize
the true capabilities of the computer. On the surface
there seems to be an advantage in using some higher
order languages (e.g., FORTRAN or ALGOL) as
machine languages, if hardware costs are sufficiently
low. It will probably not be feasible to go this far,
nor is it necessarily desirable. However, it is feasible
and, desirable to design machine languages that will
facilitate compiling operations and to implement
certain parts of problem oriented languages in hard­
ware. The need for better problem oriented lan­
guages has been cited frequently.ll Hence, a joint
effort by programmers and engineers to first design
better problem-oriented languages and then to
implement portions of them (e.g., mathematical

operations) with hardware wherever possible should
pay handsome dividends.

The Burroughs B5000 with its Polish notation
and push-down-list store represented an early step
toward development of machine languages and or­
ganizations that will facilitate compiling operations.12

Other work in this direction includes an Air Force­
sponsored study at the University of Pennsylvania
using associative memory and list processing tech­
niques. 13 With very low-cost large-scale integrated­
circuit arrays just over the horizon, it should be eco­
nomically feasible to implement machine languages
that will eliminate many of the steps in present com­
piling operations.

Additional Hardware Functions in
Conventional Machines

It is not necessary to go as far as special-purpose
computers or new machine languages and organiza­
tion to achieve significant economies in software by
greater, and perhaps "inefficient," use of low-cost
hardware. Significant economies can be achieved
within the framework of conventional machine lan­
guages and organizations by:

e Hardware implementation of special
purpose functions and logical and
mathematical operations.

• Implementation of hardware features
that minimize "red tape" and "house­
keeping" programming requirements.

• Hardware implementation of some of
the machine functions presently handled
by operating systems software.

Many functions presently handled by pro­
grammed subroutines can be implemented easily by
special-purpose logic in a straightforward manner.
Such functions include:

Binary-to-decimal and decimal-to-binary
conversions

Code conversions
Coordinate conversions
Format control
Table look-up operations
Scaling
Mathematical operations (e.g., square root,

trigonometric functions, matrix opera­
tions, etc.)

In the past such functions have been handled by
programmed subroutines using the machine's basic

From the collection of the Computer History Museum (www.computerhistory.org)

94 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

operations (e.g., add, multiply, shift, etc.) because
of the cost of the hardware required to mechanize
the functions in relation to the frequency of their
use and because of the flexibility offered by the abil­
ity to modify the routine either as it is stored or by
index registers at the time of execution. From the
cost standpoint, large-scale integration will make it
feasible to mechanize such functions even when they
are used relatively infrequently. The necessary flexi­
bility can be retained by hardware mechanizations
that permit program control of variable operations
in such functions and still significantly reduce the
software required. Hardware mechanization of func­
tions of this type will not only reduce the program­
ming effort and the storage space required for the
program, but will also offer speed improvements
since logical implementation of such functions is in­
variably faster than the execution of the equivalent
sequence of program steps.

A large portion of most programs consist of "red
tape" or "housekeeping" instructions that either are
not conceptually necessary to the solution of the
problem or that can be implicit to the operation per­
formed rather than stated explicitly. These include
operations such as:

Register-to-memory or memory-to-register
transfers

Certain transfer-of-control operations
Some operations on the contents of index

registers
Certain types of timing functions

Additional hardware can greatly mInImIZe the
number of operations of this type required in a pro­
gram. For example, a set of general registers or a
small high-speed control memory . can be used to
represent multiple accumulators, index registers, and
control registers. The availability of such multiple
registers will sharply reduce the number of register­
to-memory and memory-to-register transfers, the
number of index modification operations, and the
number of transfer-of-control operations required.
There are, of course, many other examples of this
type. A somewhat complementary concept is the use
of large-capacity low-cost storage coupled with
higher-speed machine operation to permit the effec­
tive utilization of inefficient programs. This increases
the size of the program in terms of the number of
instructions involved but reduces the man hours re­
quired to write a given program by removing the
need for polishing and streamlining the program to

make it run faster and fit into less storage
space.ll

The operating systems software provided with
most computers handles three major functions:

Input/ output control and editing
Scheduling and storage allocation
Interrupts and priorities

The operating systems usually represent the most
difficult and expensive area of systems program­
ming. It has been estimated that one major com­
puter manufacturer is spending $60 million this year
for programming PLl, FORTRAN, COBOL, and
the operating systems for a family of new computer
systems. The operating systems probably represent
at least one half of this cost.

Many of the functions included in operating sys­
tems software can be implemented by additional
hardware. For example, special-purpose control log­
ic and storage hardware can be provided with each
type of input; output equipment to provide a com­
pletely standard interface with the computer so that
the programmer and the software system need not
be concerned with the nature or characteristics of
the particular input/output device. Special-purpose
hardware and buffer storage can accommodate the
differences in characteristics of tape units, disc files,
card readers, keyboards, etc. Small associative mem­
ories can be used to facilitate the cataloging and
indexing of data files and the allocation of storage.
Hardware can significantly reduce programming re­
quirements in the servicing of interrupts and han­
dling of priorities. Computer and I/O channel usage
accounting can be facilitated by additional hard­
ware.

Most present computer systems use a multilevel
storage hierarchy which usually requires program
consideration of the particular level of storage being
used and to some extent the differences in the char­
acteristics of devices used for different levels. Addi­
tional low-cost logic and special storage techniques
can be used to cause this multilevel storage hier­
archy to appear as a single homogeneous storage to
the programmer, thus minimizing the need for pro­
gramming attention to the capabilities and charac­
teristics of the different types of storage. Many of
the storage allocation, page turning, and memory
protection schemes used for time-sharing, multipro­
gramming, multiprocessor, and multicomputer sys­
tems can be implemented by low-costhardware also.

From the collection of the Computer History Museum (www.computerhistory.org)

EFFECTS OF LARGE ARRAYS 95

FUTURE PROGRESS

Special-purpose computers or processors may
evolve naturally as multicomputer and multiproces­
sor systems are developed and used on an increasing
scale. Hardware features to minimize housekeeping
will also tend to evolve as designers find lower and
lower cost elements and functions available to them.
The hardware implementation of special-pur­
pose functions is straightforward, but a catalog of
present subroutines can give a clue to the functions
to be considered for implementation.

Present compilers and higher-order languages are a
good starting point for considering machine lan­
guages and organizations that will simplify program­
ming; but, even with low-cost hardware, further re­
search in programming languages is needed to
determine a language closely related to users' prob­
lem oriented languages that is still economically and
conceptually feasible to implement as machine lan­
guage.

Much of the conceptual work necessary to imple­
ment operating systems functions has already been
done. The large and complex software operating
systems that have been developed during the past 8
to 10 years represent many man-years of effort in
formalizing the necessary procedures and algo­
rithms. Hence, the starting point should be a study of
these operating systems to determine areas that meet
three criteria-(1) difficult or unsolved problems,
(2) significant numbers of instructions, and (3)
procedures and algorithms that are more feasible for
mechanization by large-scale integrated circuits or
other batch-fabricated hardware. Software functions
meeting any of these criteria represent a promising
area for development. Functions meeting all three
will literally represent a gold mine of software Cust
savings.

J oint hardware, software, and systems design
efforts are needed in choosing new hardware/soft­
ware tradeoffs to properly utilize both the results of
past work and the capabilities of new technology. In
the past, hardware has been traded for software in
order to improve speed and performance with the
decisions made primarily on a cost/performance ba­
sis. In the future, hardware will be traded for soft­
ware to reduce the cost of programming with deci­
sions made on the basis of total systems cost rather
than only equipment costs.

When transistors were first introduced there was a
strong tendency to use them in the same way vacu-

urn tubes had been used previously. Unfortunately
in the computer field a similar trend is in process
now with integrated circuits being used in the same
way that discrete semiconductors have been used in
the past. Systems designers must consider large-scale
integrated-circuit arrays as a new type of device that
necessitates major revisions in systems design con­
cepts, machine organization, and hardware/software
tradeoffs.

ACKNOWLEDGMENTS

The author would like to express his appreciation
and acknowledge the assistance of several people
with whom the subject of this paper was discussed
-particularly D. R. Ream, R. Rice, T. B. Steel, Jf.,
R. G. Tuttle, and D. F. Weinberg. Many of the ideas
covered in this paper are an outgrowth of material
developed during a study of "Technology Applica­
tions for Tactical Data Systems," sponsored by the
Naval Analysis Group of the Office of Naval Re­
search under N ONT-4910(00).

REFERENCES

1. E. A. Sack, R. C. Lyman and G. Y. Chang,
"Evolution of the Concept of a Computer ona
Slice," Proceedings of the IEEE, vol. 52, no. 12,
pp. 1713-20 (Dec. 1964).

2. R. N. Noyce, San Diego Council of WEMA.
3. R. C. Minnick, "Application of Cellular Logic

to the Design of Monolithic Digital Systems," Mi­
croelectronics and Large Systems, Spartan Books,
Washington, D.C., 1965, pp. 225-47.

4. J. S. Kilby, "Device Fabrication," Proceedings
of the 1966 International Solid-State Circuits Con­
ference, p. 30.

5. R. Rice, "Systematic Procedures for Digital
System Realization from Logic Design to Produc­
tion," Proceedings of the IEEE, vol. 52, no. 12, pp.
1691-1702 (Dec. 1964).

6. E. A. Sack, "Complex Digital Integrated Cir­
cuits: An Opportunity for the Logic Designer," Mi­
croelectronics and Large Systems, Spartan Books,
Washington, D.C., 1965, pp. 141-54.

7. R. Rice, "Integrateds-The Predictable Effects
on Engineering," Proceedings of the National Sym­
posium on the Impact of Batch Fabrication on Fu­
ture Computers, pp. 237-53.

8. J. H. Holland, "Iterative Circuit Computers:
Characterization and Resume of Advantages and

From the collection of the Computer History Museum (www.computerhistory.org)

96 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

Disadvantages," Microelectronics and Large Sys­
tems, Spartan Books, Washington, D.C., 1965, pp.
171-78.

9. G. A. Crane, "Economics of the DDLM, A
Batch-Fabricatable Parallel Processor," Proceedings
of the National Symposium on the Impact of Batch
Fabrication on Future Computers, pp. 144-49.

10. L. C. Hobbs, "The Impact of Hardware in
the 1970's," Datamation, vol. 12, no. 3, (March
1966) pp. 36-44.

11. T. B. Steel, Jr., "Promising Avenues of Re­
search and Development---,--Programming Research,"
panel discussion at 1965 FJCC.

12. "The Descriptor, A Definition of the B5000
Information Processing System," Burroughs Cor­
poration, Detroit, Mich., 1961.

13. H. J. Gray et aI, "Interactions of Computer
Language and Machine Design," Technical Report
No. RADC-TR-64-511 (AD617-616), University
of Pennsylvania (May 1965).

From the collection of the Computer History Museum (www.computerhistory.org)

