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Statistical Reference Criteria for Adaptive
Signal Processing in Digital Communications

Josep Sala-Alvareaiember, IEEE,and Gregori \Azquez-GrauMember, IEEE

Abstract—A general criterion for the design of adaptive systems terms of the density functions of the processes
in digital communications called the statistical reference criterion )
is proposed. The criterion is based on imposition of the prob- _ px(z
ability density function of the signal of interest at the output DXY) = /C px(z) In py(z) dz. @)
of the adaptive system, with its application to the scenario of ) ] )
highly powerful interferers being the main focus of this paper. Although we will be able to provide cost functions that
The knowledge of the pdf of the wanted signal is used as aimplement this criterion, due to their extremely nonlinear

discriminator between signals so that interferers with differing  nature, it is difficult to prove convergence most of the time.
distributions are rejected by the algorithm. Its performance is We do not aim to provide this theoretical study here. Rather,

studied over a range of scenarios. Equations for gradient-based h b lidated th h simulati f
coefficient updates are derived, and the relationship with other convergence has been validated through simulation for a

existing algorithms like the minimum variance and the Wiener Wide range of conditions. It is important to remark, though,
criterion are examined. that these cost functions are, in general, multimodal. Two

cost functions will be presented, which we have called the
first and second cost function, respectively. The expression
|. INTRODUCTION of the two cost functions will be derived, justified, and

DAPTIVE algorithms are usually applied in the Con_validated py simule_ltion. The range of applicapility of bot.h
Atext of signal recovery whose characteristics have be&fst functions is different. The first cost function (FCF) is

modified in passing through an unknown system. Traini oven tp work in nqt Very complgx scengrio; (small alphabet
sequences may be applied in a MMSE criterion (Wien oc_iu_latlons and high SII_\IR ratio) and is Ilnke_d to a_soft
solution) to configure the system coefficients. It is intende%e(_:'s'pn or Bussg_ang phI|OS(.)phy,_ and henc_e, it inherits its
in blind adaptation that the optimum system configuration Blénltatlons_. Departln_g from this prior formulatlon, a second
achieved in the absence of a reference. The design of a suité?%%t function (SCF) is proposed that truly implements the KLD
i
t!

cost function then becomes the primary goal, which constitu% osophy. It ]LS |mportgnt to remark thc?t the FCFIV‘{)'” Serve q
the main point of this paper. We assume throughout that!"® PUrpose of a stepping stone toward a more elaborate an

priori knowledge of the intended signal statistics is availablEPPust Cme”ﬁn :_mpergonate;j Ey the SCF& The SCF mstzad
That is, this cost function will be based on availability of &Vercomehs t ed,'m'ta“ﬁns of t elFCFdag‘ hC_O”VergelS un "}r
statistical reference rather than on a temporal (realizationf"Y t0ud c(;)fn |t:jon? that_are ?V"?‘ uate ?t dl'n C%’“P eX|tyho
or spatial (structural) reference. Previous work by the authdfs target pdf and of the interfering signals distribution. The
may be found in [1]-[3]. The main goal will be thereforeoc,’pu'at'on of local minima is greatly reduced as compared
to impose a given probability density at the output of th_\é.\"thfthe FCF, hencrt]a, Soh""”g th(la ?a_lpture problem when
adaptive system. The driving purpose behind this paper is HLETferers stronger than the signal of interest are present. A
establishment of a framework for blind signal recovery that Fgeoretlcal study is also carried out to establish the relationship
robust in the presence of interference from strong unwantgtj ?Oth co;t fgncnons (\j/wth thg V\|/||ener and' the m|rlumum
signals, as is the case, for example, in array signal processifigiance criteria [6] and [8]. Finally, extensive results are
Therefore. some measure of the “distance” between two d esented for applications that are common in communications
sity functions should be used in the formulation of the adaptividnal processing, and conclusions are drawn.
algorithm: The Kullback—Leibler Distance (KLD) [4] between
two density functions provides the starting point from which Il. STATEMENT: FIRST COST FUNCTION
this criterio_n can be realize_d. Other possible measures such_ a@/e propose in this section a cost function based on the
ltakura—Saito might be of interest but are not considered éfatistical reference philosophy we have already introduced.
this paper. The KLD is given by the following expression inn a real environment, the priori knowledge of the channel
behavior and of the noise statistics is practically null. In order
to guarantee a minimum robustness of the algorithms, we
Manuscript received December 1, 1995; revised August 21, 1996. intend for the adaptive system to be capable of capturing the
The authors are with the Department of Signal Theory and Communicatiogggng| of interest from side information of the source statistics.
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a drawback if it leads to simpler, although not so robust) an array processing conte®l, andh would be the steering
algorithms. We will show how this is related to soft decisiomatrix and the steering vector, respectively.

algorithms via the formulation of the first cost function, and

how, from this definition, another one is proposed, where usu@l FCF Derivation

convergence problems associated with soft decision schemesfhis cost function has been already utilized in [5] for the

are solved. equalization of BPSK signals. See also [12] and references
thereof for the utilization of the KLD concept. We will show

A. Notation here how it relates to the Kullback-Leibler distance measure.
By convention, uppercase letters will be used to refer to% new formulation wil b_e denveq to express it n t_erms of

random variable (RV) and lower-case to the values it tak n error measure for blind algorithms. The derivation starts

In addition, it will be necessary in this paper to distinguis om the KLD. We will investigate an alternative formulation

between expectations taken over different RV’s. Therefore, Wpterms of the conditioned probability density functions, and

will denote with the subscrip¥; that a multivariate nonlinear wle wlltllhseevr\;ow !Itl can also kt)ﬁ relat?(?c td&:npo[)al referencef
function is averaged with respect algorithm. We will express the cost function by means of a

nonlinear averaging of the error norm between the RV at the
output of the adaptive systetd (the actual RV) and the RV
Bz Wz, oy 20) = /C pz:(2)¥(z1; -+ z)dzi (2) e would like to haved, (the target RV). Later, in Section
[I-C1, we will examine a gradient algorithm and see how the
We will assume all along that we are dealing with complexoncept of aegeneratiorfunction can be derived from it. This
random variables. Therefore, the integration support in the I3l lead us to the definition of a generalized error as a process
equation is the complex plan€. Expectation over two (or that controls the coefficient updates of the adaptive filter. The
more) RV's Z and Z' is denoted byE, . We will also at matching of probability density functions is posed in general
some points consider the expectation with respect to aZRVterms, independent from the continuous or discrete nature of
that is a function of other RV'X = [X, X5, .-+, Xy]: Z = the density function. For illustrative purposes, in Section II-C1,
Z(X), where, as an exampl& might be the output of an e provide an algorithm for the recovery of QPSK signals for
adaptive filter, an& is its input at the taps: = 2(x) = w''x. g discrete pdf, as well as a constant modulus algorithm for a
We will understand, therefore, that continuous pdf. Let us now examine the expression of the KLD
in (1) and pose in the following equation the KLD between the
Ez¥(z) = Ex¥[z(x)]. (3) output RV Z and some RVB to be defined later on. We can
. I . see that the first term is minus the entropy of the actualRvV
In some forthcoming derivations and for ease of notation, We ieh at this st . i ible t juate. The D
will sometimes use the termg&; and E'x interchangeably, which at this Stage 1S not possib’e fo evaluate. 'he G) .
is defined as the second term of the KLD in (6). Information

which are equivalent if: = w"x (for fixed w). We have a is doubtlessly left out in the process of keeping a single term
useful property for deriving some theoretical conclusions: Trbe y P ping g '

. . L . ut we will show how we can recover from this in the SCF.
expectation over a RA + B of a nonlinearity is examined S . .
in Proposition 1. We prove that the second term is important in the sense that if

it is taken alone (expectation of the log-likelihood as in [5]), it

leads to soft decision schemes (they do not have information of

B. Signal Model the differential entropy of the random process). The first term,
In this section, we will introduce the signal model that wilP" the entropy, is also important as it keeps information on the

be assumed in the rest of the paper. Two possible cases WHe actual random variable distribution, and thus, it is used

be considered: that of a single source and that of multigf@Plicitly in the SCF. Therefore, we define the FOKw) as

sources. The distinction between both models will prove usef

in the theoretical analyses that will be carried out furthe (Z]B) = /C pz(2) In pz(z) dz — /c pz(2) In pp(2) dz

on. A general analysis of the behavior of the cost function =Ez Inpy(2) — Ez In pp(2)

is not possible as it greatly depends on the statistics of the def

input signals. Nonetheless, we will be able to show implicit J(W)=—Ez In pp(z) =

relationships independent of the statistics of the input signal®(Z||B) = -H(Z) + J(w) (6)
Let us define the data vectss, in the general multiple source

where the dependence of the cost function on the coefficient
vectorw is implicit in the expectation operator over. B is
@) @ random variable that we take as the addition of two other
RV'’s: that of the (noiseless) target distributigry plus a term
where the subscript is the time indexH is the matrix that Of Gaussian noiseV; : B = A, + N,. The variance of the
transforms the information conveyed by each user from vecfe@ssing noise term, which we catl, models the noise at
ay, to vectorxy,, p|us a noise termy,. In the Sing|e source Case,the output of the adaptive filter and is set to a fixed tentative
we have the simpler expression value. We will refer to it henceforth as the tentative variance
parameter. Given that it will not be possible to make the joint
Xy, = aph 4 ny. (5) power of residual ISI and noise go to zero, we pose instead the

case as

x; = Hay + ny
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KLD between the actual random variable and a noisy versigimeir conjugates as set out next in (12), but first, let us note that
of the target variable, using the tentative variance for the latter. 1 L

It has been proven in the simulations that the performance of ~ VnJ =-VyuEy In By — ¢~l7al/70

the adaptive algorithm does not depend critically on the choice oy

of this parameter. For the FCF, it regulates the “softness” of the =—VeuEx In B4 % oW x—al?/o}
decision. A formulation of (6) that has been further elaborated oy
upon will provide further insight into the nature of the cost = —ExVyu ln By —— o lwx—al*/o}
function. A fundamental condition is that the terms that make v o}

[ ' 1 .
up B, A,, andN; be independent RV'’s. The pdf & can then =BV ln By — o—lz—al?/a? (11)

be expressed as follows, where * is the convolution operator: TO;

where the expectation operator is now taken with respect to

) =Dy (z) =
PB(2) =Pao+n.(2) the input RV’s and not the output RV’s to justify the inter-

pB(2) =pa,(2) P, (2) changeability of the expectation and the gradient. This was,
= / pa,(@)pn, (z — a) da in principle, not clear as the expectation operator implicitly
c contains dependence on vecter Elaborating on the gradient,
=E4,pN (2= ao). (7)  we have

Resorting to the expression of the pdf of a complex Gassing V,»J = —Ex K g \I/) Vwrz + < 8* \I/) VWH;:*},
random variable, we can finally express the FCF in the more 9z 9z

insightful way: U=y By omlmal/o? (12)
7rat2
1 .
J(w)=—EzIn E,4, o elemadl®/ed (8) but the output does not depend en but on w* for this
¢ architecture. Therefore, the gradient is expressed in the shorter

where the cost function is expressed as a function of tHym
difference between the two random variabl&s and A,. b}

Equations (6) and (8) as they stand are applicable when a VynlJ = _EX<3 ‘I/)Xk' (13)
temporal reference is not available. Let us examine Hois

modified when we take into consideration that the symboldie derivative of the nonlinearity has an important significance
transmitted by a given user are known (temporal referenc#).the interpretation of the algorithm

We are constrained in this case to using the output pdf

<

—|z—al* o’tz _ *
conditioned on thea priori known referenced,, or RV D. 9 W :_% Eale”lmel/ ,(2/’5 ZG) ]
The modified cost function is now expressed as 9z b Eyemlzmad /oy
1
=—— Eaq(z, a)(z —a)* (14)
J(w)=—Ez In pgp(2) 9) o7

whereD = {d,} constitute the sequence of known values Jyhereby we define the quality functiongz, a)

the random variablet,. Therefore, the cost function becomes

v c—lalt/a?

L q(z; a)= Eyolal/at (15)
J(w)=—Ez In — e~lre—del /o
oy Intuitively, these functions quantify how likely it is that the
—E, % 2 — djp|2 +In 702 (10) samplez has bgen_ produced by the sy_mbol Let us now
0% denote the derivative of the cost function as a generalized

o ) o error. The gradient finally takes the form
which is coherent as we arrive at the MMSE criterion. Never-

thele_ss, when the temporal referenﬁes unknown, the cost _ Voud = _i? ExEaq(z d)(z - d')x. (16)
function can be expressed as in (8). Let us now go on to derive o3
the generalized error function for the FCF to be used in t
adaptation of the coefficients.

1) Expression of the Error:All along, we will perform the Eaq(z, d) =1. (17)
coefficient updates with the gradient rule. Let us now consider
the gradient of the cost function with respect to the Hermitichherefore, elaborating on (16), the gradient is straightfor-
of the coefficient vectorw!. It is important to remember wardly expressed as an error as follows:
that we are working in the complex domain and that when

hl%e g functions have the following property:

taking derivatives, the involved functions are not necessarily Ve :_i? Ex[z — Eard'q(z, a')]* x4
analytical (note that although so far we have referred tas %t
J(w), it is actually J(w, w*)). Therefore, derivatives must :_% Exelxy, (18)

always be taken with respect to the considered variables and 0%
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Fig. 1. Depiction of regeneration functions (vertical axis) in the complex plane (horizontal plane) for (a) a QPSK signal and (b) constant amplitude
signals. Note how in (a) the complex plane is divided into four sectors whose “centers” are the four phases. All values at the frontiers are regenerated
as zeros, yielding high values of the generalized error.

where there appears a nonlinear operator on the datthmat [ll. PROPERTIES
plays the role of a regeneration of the data (soft decision)|, the |ast section, we identified the basic concept of a

when a reference is not available. statistical reference algorithm based on the FCF. The objective
&kdéfEA,a’q(z, ). (19) of this section is to present theoretical results at a more

) fundamental level. We will center ourselves on different ways
We can see that we are led to a Bussgang-type algorithm [§].express the coefficient vector that minimizes the criterion.

where the data is regenerated by a memoryless nonlinearjgyill be useful to use the following proposition.

We W|" see |ate|’ on When we introduce the SCF funCtion that Proposition 1: Given two independent random Variab'ﬂs
the corresponding equivalent regeneration function is indegdq B, it holds that

a memory nonlinearity (its operation is slightly different,

however). We will also see that only memory nonlinearities Ez=11BY(2) = EA(¥ x p_p)(a). (22)
can retain information on the true pdf at the system output. We
now have an example for the case of a discrete distribution:
the regeneration function for an M-PSK signal of equiprobable _

phases, which is immediate Ez=avp¥(z) = /C Patn(2)¥(z)dz

Proof: Let us expand the left-hand side of Proposition 1:

M—1 :/C/CpA(a)pB(z—a)da\I/(z)dz

pala) :% Z §(a — ™My o
=0 :/CpA(a)/C\I/(z)pB(z—a)dzda

_ j2mi /M
M-—1 6_|Z_€']2 / |2/Ut2

A j2mi/M
ay = e’ (20)
; ML _|Z_€j27ri’/M|2/02 = / pA(a) / \I/(Z)p_B(CL - Z) dzda
Z e t C C
=0
o — [ pal@)(@ s p_n)(a) da
and is depicted in Fig. 1(a) for the case of QPSK. The c
regeneration function for a constant amplitude signal would, =Es(V xp_p)(a). (23)
in turn, be given by ¢
pala) = 8(la] — A) = In this first (_jerlvanon, we will try to relate_ t_he minima of
2rA the FCF algorithm to the Wiener and the minimum varignce
I 2;4 B solutions. In an array signal processing context, the former is
P o} z 1) related to temporal reference and the latter to spatial reference.
=t 24
Iy 24 |z| |Z| 1For the single source model defined in (5), the Wiener and minimum
Ut2 variance solutions [8] are given by the following equations:
with A the amplitude of the wanted distribution afdz) the wwiNer =R7h,
modified Bessel function of the first kind and ordeSee the wyv =R h(h” R h)~"

Appendlx_ ar?d [1_3] for a derivation. This regeneration funCtlolgor the multiple source case, just substithtewith H, taking into account
appears in in Fig. 1(b). thatw is then a matrix.
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In particular, we will show how the optimum coefficient vectoiThe particularization of each summand in terms of the coef-
for the FCF can be expressed in terms of the data correlatitgient vectorw yields
matrix. We will proceed first with the single source case.

Proposition 2: All local minima of the cost function are Vwrnd =—E4 /C V(')

proportional to the minimum variance solution in the single
source case . { 8781 o, (1) akh} dz'
o ne=aywih—z’
w = aR - h. (24) *
_Ey / w()
Proof: We will assume for this proposition that the cost c
function is of the following form: g ,
. ?ﬂ PN, (710) RnnW dz
J(w) = —Ez¥(z) (25) ° no=apwHh—z’

(30)
where the log-likelihood nonlinearity is substituted by a morg e now, the optimunw is obtained after equation to the
general nonlinearity. This will simplify notation and provide ,..q vectoro of the last expression
more general results. Whenever necessary, particularization to
the log-likelihood will be resumed. Let us now elaborate on a EA/ \P(zl){ 9 o, (10) ak} A

C o ’ no=arwHh—z’

different formulation of the cost function using Proposition 1, on

splitting the expectation operatd into its signal and noise W =~ P
terms EA,N EA/ \I/(z/) —QPNO(TLO) dz’
C 80'0 no=apywoh—z’
JI—EZ\I/(Z) _R—lh
=—FE4 nVU[w (arh + ny)] —aR-'h (31)
_ H nn
=—EaEn¥(axw h +no, 1) Finally, we prove that the optimum coefficient vector is
=—EA(V 5 p_n,)|apwon (26) proportional to the minimum variance solution. It is interesting

to remark that the scaling term of this solutiardoes coincide

where n,,; is the output noise at timé. Note now that with that of the minimum variance solutiotyh’ R,;*h and

dependence on the coefficient vectar is explicit in the is dependent on the sianal-to-noise ratio N
argument of the nonlinearity * p_x_ and in the pdf of the P 9 )

. . . Note that the last derivation has been carried out for
output noisep_ . This noise pdf can, therefore, be expressed : . S
as ° a general nonlinearityl’. It appears that the minimizing

coefficient vector will always be proportional to the minimum
o, (o) = % o= Inol? /o oW H R, 27 vgriance. soluf[ion, regardless of the shapelofNonetheless,
noS ° this nonlinearity must be properly chosen to guarantee a good
. . i f the adaptive algorithm.
The gradient can now be easily expressed after some al ebrg%awor o e : :
g yexp g roposition 3: All local minima of the FCF in the multiple
Vurd ==EsV (¥ % p_N)|a,whh source case are generated by the following equation, which is
analogous to Proposition 2,

w=R_'Hb (32)

=—EsVyn / U p_n, (apwh — ') d7
c

=—E4 / V(2 )Voupy, (axwih — 2/)d (28) for some vectorb. _ _ N
c Proof: We proceed in the same way as in Proposition

where we have taken into account that the distribution of t@ where now, the decomposition of the cost function is as

noise is an even function. When taking the gradient of the p lows:
of the output noise, we must remember that its variance is also J=—FEas n¥(z)
dependent on the coefficient vector. Therefore, the application = —EAEnU(wTHay, + 1o, 1)
of the chain rule leads to ’
:_EA(\I/ >kp—No)|wHHak (33)
Vwrd =—E4 / U(z') and finally, we obtain
8C w=-R;'H
H !
. PN, (1 Vwearw h b dz 9
% 7o no=wHHay —z'
_E, / w() : 5
C EA/ \I/(Z/) WPNO(TLO) dz'
C 2P ne=wHHay,—z

VWHUg } dZ/.

D
o7 P10 (1 —R;1Hb 4

(29) ¢

ne=apwih—z’
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the algorithm. That is, the regeneration function does not
work properly. Some problems that arise in the presence
of interference are, for example, that the peaks of a BPSK
€2(2) interferer may fall on those of the target distribution of a
QPSK signal. Then, the cost function is fooled and captures
the interferer. Therefore, this cost function should only be used
in scenarios that are not very hostile in terms of signal-to-
interference ratios and for simple target distributions. Some
results will be presented later in the simulations. The trouble is
o2 Evaluation of th e or the SCE. Th | that for the moment, as the cost function has been formulated,
. e docve i i i informaiion on how frequent each peak of the actual paf
function and its generalized error. Correlation with the data veetix then IS Can be obtained from the data. This is a problem associated
used to update the coefficients . with all soft-decision type algorithms and, in this case, is
caused by dropping the entropy term in (6). True sensitivity of

We can see that the coefficient vector in the multiple souré@e actual pdf can be obtained in the formulation of the SCF.
case is such that all present sources contribute to the filter
output. It does not happen that a given source is exactly filtered IV. STATEMENT: SECOND COST FUNCTION

out. This effect is known in temporal reference algorithms as\ye have seen the drawbacks of the first cost function when
power inversion. The Wiener criterion is such that it minimizeg js ysed for elaborate distributions of the intended signal and
the joint power of interference and noise. Self interference algpthe presence of interference. This motivated the study of a
appears, as the scaling of the signal of interest is smaller the@F which truly preserves the essence of the KLD as a foil
that of the reference. The error then contains residual sighghhe FCE. Its complexity is also higher than for the FCF, but
terms. its multimodal character is much improved, which has been
Proposition 4: The optimum coefficient vector can be eXendorsed by direct experience.
pressed in terms of the regeneration function in the following e carry out only a minor modification consisting of an
way, which is gnalogous to the Wiener solution in a temporgterchange of expectations. This is not a shot in the dark but
reference setting: an educated guess instilled by some prior intuition we had of
w = R Exalxy. (35) the structure a new cost fu_nction that is pdf-sensitive should
have. We will justify this a little further on when we speak of
Proof: Let us reproduce again the expression for thge estimation of pdf's. We set out next the two expressions
gradient in (15). We have at the minimizing that for the FCF and the SCF:

ExEA/q(Z, a/)(z - a’)*xk =0. (36) J(W) =—F;In EAO LQ 6—|z—ao|2/ot2 o
mao.
Let us now split this equality, and let us be reminded that '

1 e 2, 2
z = whx,, Jo(w) =—E4, In Ey F‘_tg ¢~ lemacl /e (39)
! I !
ExEyq(z a)x2" = ExEya”q(z, a)xx = where in the SCF, the outer expectation operator is on the
ExEaq(z, d)xpxiw = Exa*xy. (37) target RV, and the inner expectation operator is on the actual
RV. We can see in this formulation that the argument of the

Finally, we have that natural logarithm can be considered to be an estimation of

Eyq(z,d)=1= the pdf of the actual R\Z, where the Gassing window plays
w =R:lExitx, (38) the role of an indicator function (a measure of the average
closeness betweenanda,, whose expectation can be used to
whereR ... is the covariance matrix of vectot;. 4 estimate the probability of occurrence ofn a neighborhood

The interpretation of this last result is very insightful asf ¢,). We can introduce, therefore, the pdf estimatef Z in
it establishes an analogy with the Wiener criterion. Nowhe following way (we will also see its relationship with the
w is expressed as the cross-correlation of the regeneragetual pdf ofZ) in Proposition 5:

referencea with the data vectorx;, premultiplied by the 1 b

inverse covariance matrix of the data. We want to impose pz(ao) = Ez — emlFmael /o, (40)
the regeneration function that contains the information on the T

target distribution at the output of the adaptive system. Proposition 5: The pdf estimate o¥ is related to the true

Let us now give a qualitative explanation of how thdf of Z by
first cost function works. It tries to make the peaks of the
actual pdf coincide with the troughs of the nonlinearity (the 1 L
log-likelihood we want) to achieve minimization. Therefore, PN, (ng) = — eIl /o (41)
although Proposition 2 has been proven for a general non- oy
linearity, if the troughs of the target pdf do not coincidevhere N, is a zero-mean Gassing RV of variangg that is
with those of ¥, excessive noise may be introduced bindependent of the R\Z.

pz(2) =pz+n,(2),
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Fig. 3. Target and actual pdf's are 4-ASK and 4-ASK, respectively, with alphabpt3, —1, 1, 3]. (a) Amplitude function. (b) Regeneration function.
(c) Generalized error nonlinearities.

Proof: To prove this assertion, we resort to the followingstatistical reference criterion. Its relationship with the KLD is
alternative relationship for the pdf of the addition of twaestablished.

independent RV'sA and B: Proposition 6: The SCF can be expressed in terms of the
KLD between the pdf's ofd and Z + N, as
/ Z) = - z = d
pa+B(2) /c pa(m)ps( T)dr Jo = DIA||(Z + N,)] + H(A) (43)

=F. —
app(z = a) with H(A) the differential entropy of the R and D(X||Y)

=Eppalz =) (42)  the KLD between random variable§ and Y.
Hence, notice in (40) that the Gaussian nonlinearity working  Proof: The proof is very simple. We only have to operate
as an indicator function is precisely the pdf of a random var@s follows:
able whose variance controls the aperture of this nonlinearity.

J :—E, 1 7
Hence, Proposition 5 is proven. ¢ 2 alnpzini(a)

In this sense, we can estimate a pdf with some uncertainty =FEsIn pA—w) —FE Inpa(a) (44)
related to the aperturgl/o2) of the indicator function that pz+n.(a)
we are using. In the end, what we have is a blurred versiahich completes the proof as the second summand is precisely
of the original pdf. the entropyH (A).

The following property provides a mathematical justification We will also prove some important result relating to the
of the validity of the second cost function for implementing theninimum variance solution as in Proposition 3. We will see



SALA-ALVAREZ AND V AZQUEZ-GRAU: STATISTICAL REFERENCE CRITERIA FOR ADAPTIVE SIGNAL PROCESSING 21

amplitude function regeneration function
18 T T T T T T T 10 T T T T T

16

©

Fig. 4. Target and actual pdf's are 4-ASK and 5-ASK, respectively, with alphabefs-3, —1, 1, 3] and [-2, —1, 0, 1, 2]. (@) Amplitude function,
(b) regeneration function, and (c) generalized error.

that results already arrived at for the FCF also apply to tlwan eliminate the expectation ovd through modification of
SCF. the nonlinearity
Proposition 7: The minimizing w for the SCF has the T —Eu W E
following structure for the multiple source case: 2= 1A' L A
72 2
{—2 el /7 wp_, (w)}

w =R, !Hb (45) wOy vmwiHay
1
for some vectorb. PN, (no) = g elnel*/o; (47)
Proof: This proof is rather more elaborate. We can ° Te=wHR. W
express the SCF as However, the convolution above is equivalent to the pdf of the
1 o o addition of two Gaussian RV’s. Therefore, we can conclude
Jo=—FE4 4 In By g e~lFmal /o that the SCF equals
t
1 H H 72 2 ]-
——FE. = o lwHa+w ni—a/|?/oy Jo=—F s ln EA ————
=—F4 In FA N > e k k (46) 2 A A7r(0t2+0§)
. _ o e~ le=d' /(e +a?)
where A’ is the target random variable. Expressiigin e=wHTa,
terms of the RV'sA and N, where A includes all signals ol=w"Rn,w

of interest,N is the noise vector RV. Using Proposition 1, we =—FEuq In Eapn,4n,(z —a’) (48)
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Fig. 5. Target and actual pdf's are 5-ASK and 4-ASK, respectively, with alphabéts4, —2, 0, 2, 4] and[—4, —4/3, 4/3, 4]. (a) Amplitude function.
(b) Regeneration function. (c) Generalized error.

where the Gaussian nonlinearity has been expressed in teithsrefore

of a pdf. Let the log-likelihood nonlinearity be expressed in 9
the following terms: Vwado =—FEy4 { <@ \If) Vit 02
U =1In EApNt-i—No(x - CL/) _EA[C(x - a/)vax]} a;:wHHak ’
=1In Eal'(z — d/; o? + 03) (49) r ol=wRunw
e(z — ) (x—d)* (51)

: o o . 2Ny
whereI'(¢; 02) is a Gaussian irt of the specified variance.

The gradient is then evaluated as and solving forw, we obtain
Eq Eglage(z —d')]

z=wHay,
2

o2=wH R, w. which completes the proof. ¢

P ) w=R'H 5
Vo :_EA,{<@ W)VWHO'O EA,@
. _ Iy - _ -1
LBall (@ =)V, x]} (50) =R;'Hb. (52)

EAT
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Fig. 6. Comparison of the same nonlinearities for several values of the input signal to noise power ratio. Target and actual pdf's are 4-ASK and 4-ASK,
respectively, with alphabet [—3, —1, 1, 3]. (@) Amplitude function. (b) Regeneration function. (c) Generalized error nonlinearities.

An expression for the gradient analogous to that of the F@Ritput and helps avoid many local minima present in the FCF.
can also be found, as well as an analogous set of qualye can decompose the generalized error in the following way:
functions. The significance of these and of the equivalent

. . . . :E ’ < / ad /
regeneration function is rather different for the SCF, as we 2 a (2, @)z = d)

will see shortly. First, let us note that the gradient of the SCF =((2)z — o,
can be expressed as U E gz, o),
~ def
VwnJy =ExEqq(z, d)(z —a') %, 2= Eqd'qa(2, af) (54)
pdet el P/ where we have introduced the amplitude functign) and the
@2, a') = E e l-—a/ /o7 (53) regeneration function for the SGE. Note that the amplitude

function did not appear in the FCF. This is due to the fact
where now, the expression for thefunctions differs in the that the regeneration function in this case provides us with
denominator, where now, the expectation is taken with respectlistorted reference whose degree of distortion depends on
to the actual distributiot¥ in lieu of the target distributioni/. the power of input additive noise. The role of the amplitude
The consequence of this is very important as it introducéanction is then to distort the outpuf accordingly to yield a
memory in the generalized error function. This makes theensible generalized error. We will see the working of these
generalized error truly sensitive to the actual pdf of the filtaronlinearities in the examples of Figs. 2 to 6.
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Fig. 7. (a) Time evolution of the cost function over 10 realizations. Note that the time to convergence may display important variations depémaling on t
generated data. The initial rise is due to the time needed for the cost function to fill its memory with reliable probability estimates. (b) Time evoluti

of the estimated probabilities for a particular realization. The target probability density of the symbols has been represented as a straighiteline ce

at 1/16. The estimated probabilities are smaller than 1/16 due to the aperture of the Gaussian window used for estimation, which is controlled with the
oy parameter. (c) constellation obtained in convergence.

Proposition 8: The minimizing w for the SCF can be ExEyq(z, d)xpxilw = Exahxy
alternatively expressed as [ExC(2)xxTw = Exaix,
w =R, Exabxy, which concludes the proof. ¢
f{md:efExC(z)xkxf (55) It is important to note that in the last proposition, the

pseudo-covariance, in a way, compensates for the amplitude
where a pseudo-covariance matrix of the dafa R,, has distortion incurred by the regeneration function of the SCF

been defined in terms of the amplitude functign via the amplitude function present in the denominator. It also
Proof: This can be proven in the same way as Propodiears some resemblance to the Wiener solution, although in a
tion 4. Let us equate the gradient to zero, more indirect way as it happened for the FCF.
ExEqa(z d')(z — d)"x) = 0. A. Regeneration and Amplitude Functions
Splitting this equality and using = w'x;, leads to We will compare in this section the behavior of the regenera-

tion function for the SCF with that of the FCF. We will see that
ExEaqz, d)xpz* = ExEarqa(z, d)xpa* there exist some major differences. The regeneration function
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Fig. 8. (a) Time evolution of the cost function over 10 realizations. (b) Time evolution of the estimated probabilities. (c) Constellation oltameztgence.

for the SCF is truly sensitive to the pdf of the actual RV. Thare always found to be above 1. This amplitude distortion
contrary happened for the FCF. It was dependent only on twél be compensated for by the regeneration function (observe
pdf of the target RV. In addition, some amplitude distortion ithat for those values coinciding with the alphalet}, the
introduced by the second regeneration function (SRF). THegeneration function is also largdfiz(c;)| > |c;[). We can
role of the amplitude function is then to compensate fdow see in the generalized error that its zeros with positive
this distortion in the expression of the error. We will se&lope also coincide with the values of the target alphabet. On
in the expressions for the minimizing that this amplitude the contrary, the features that we have enumerated here do
function explicitly appears. In this section, we will show somB0t hold when the target and actual pdf's differ, as shown in
illustrative examples of the working of the SRF and of thée Fig. 4. . L
amplitude function. We will also see how this is expressed in N this new set, we have provided the nonlinearities for 4-
terms of the generalized error. We will consider three cas@SK and 5-ASK as target and actual pdf's. Note that now,

involving M-ASK signals in terms of the actual and target R\prge distortions can be obéerved in _aII figures due to the
as they appear in the following figures: difference between both pdf's. In particular, note that those

o i values that are common to both distributions, that-i, and
* The target pdf and the actual pdf coincide (Fig. 3). 1 4o not show a large distortion. On the contrary, those that
* The target pdf and the actual pdf do not coincide (Figs. 4e not common have undergone a huge amplitude distortion.
and 5). o A situation like this could easily have resulted in a local
* The target pdf and the actual pdf do coincide and sevegd|nimum for a Bussgang-type algorithm. This is not the case
values of input SNR are considered (Fig. 6). for the second cost function as when noncoinciding values
Note that in the last set of figures, the maxima of the anaf the actual distribution occur at the output of the adaptive
plitude function when the target and the actual pdf's coincidg/stem; the present setting of the coefficients will change as
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Fig. 9. Constellations obtained in convergence when the input signal is
QPSK for (upper left) Benveniste—Goursat, (upper right) Sato, (lower left)
FCF, and (lower right) SCF.

5

the gradient of the SCF is sensitive to this situation. Note g
that for noncoinciding values, the generalized error shows a
negative slope that makes unstable that particular setting of
the coefficient vectow. °
We have shown in Fig. 5 the reverse of what was happening

in Fig. 4. The same conclusions can be obtained.
ig. 10. Time evolution of the in-phase channel when the input signal is

ID Fig. 6, we show t_he Inﬂuer_lce OT _the input additive nois -QAM for: (a) Benveniste—Goursat. (b) Sato. (c) FCF. (d) SCF. Time is in
variance on the algorithm nonlinearities when the target aggits of 10000.
actual pdf's coincide. It is worthwhile to note that as this
variance goes to zero, the induced distortion of the amplitugestem Let us consider two different kinds of cost functions
and regeneration functions disappears. See Fig. 6(a), whI fhe following terms:
the maxima of the amplitude function goes toward one, and '
Fig. 6(b), wherei,(c;) goes toe; accordingly. S1(W) =EzQ[Es V(2 — d')]

%Q(W) IEA/(I)[EZ\I/(Z bt a’)]. (56)

(d)

B. Extended Cost Function

Some remarks concerning the second cost function areVg readily see that the FCF falls under the first category and is
order. The second cost function has been shown to recovéfgrefore soft-decision related (it leads to some kind of signal
signal of the wanted statistics. Nevertheless, we can imaghfgeneration), whereas the SCF is of the latter type and, there-
a scenario (i.e., an array) where more than one signal of fig€, truly pdf sensitive. The functioris and¥’ are monotone
same statistics is being received. There is no way of discernfigcreasing and indicator functions, respectively. The single
between the two unless some extra information is provided §8f€rence is whether the outer and inner expectation operators
the algorithm. There is one way, however. A suitable extensi@f€ referred to the actual or the target distribution. To really
of the cost function is defined to impose at the output of ttforce a pdf and fully implement the statistical reference
adaptive system the joint pdf of several random variables. §fterion, we should always place it outside the expectation
this way, we can impose that a vector signal whose margifierator on the target pdf. Otherwise, our algonthm may be
distributions are equal can be recovered. Due to extensifPne to some capture problems. In this wéyis evaluated

constraints, this is the subject of a forthcoming paper. on quantities that are attributable to estimated probabilities
' (hence, the pdf sensitivity), and the nonlinear operatio of
C. Comparison between the FCF and the SCF helps in identifying those false solutions where the target and

We have seen that the first cost function leads to SOﬂgztual pdf's are far from coinciding. It appears then that if we

decision strategies in terms of the regeneration function. Tlﬂyvays want to apply statistical reference, we must resort to

regeneration is more robust than hard decision and achiefe1€mMory nonlinearity.
better performance, as has already been proved in other papers.
The second cost functions instead differ in nature from the
first, although their mathematical expression is very similar. In this section, we will validate the theoretical conclusions
The regeneration function is indeed fully sensitive to that which we have arrived in the previous sections. We will
actual probability density function at the output of the adaptivansider two possible applications of the statistical reference

V. RESULTS
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criterion, viz., blind equalization and beamforming. We wilto the true minimum or to a false minimum. On average,
show also that the SCF is very robust in terms of intendede simulations that we have carried out show that in the
signal to inference powers beause it is able to excise jammalzsence of interfering signals, Benveniste and Sato appear to
much more powerful than the signal itself. The coefficierie faster than statistical reference algorithms (the reason for

update equations are provided for each case. this is that statistical reference algorithms need some time to
estimate the probabilities of the actual distribution evaluated
A. SCF Implementation at the constellation symbols, and this depends on the number

Up until now, both cost functions have been formulated ugjc symbols of the target constellation).

ing the statistical expectation operator E. In a real setting, som 'e\t/ertGheIess,twhgnsmtterf?nngthagn?lgl ?re presentt,hthe 'Benl-
approximation has to be introduced as an infinite data recorg | oro>oursat and Sato aigorithms fail 1o recover the signa
interest. On the contrary, statistical reference algorithms

will not be available. From the expression of the gradient ! A .
the SCF in (54), we propose the following approximation tBucceed in delivering the true signal at the output, as shown

; : . the beamforming simulations.
the gradient-based update equations for the coefficients: ™ Y . o
g P a Simulation 1: We now focus on the equalization of a 16-

S ondy = Ey di(a’) QAM constellation over 30000 symbols using the second
w (o) cost function. The shaping pulse used for modulation is the
di(a’) =(1 — pp)dp_1(a’) square-root raised cosine of roll-off 0.4 and truncated to three
o o symbols. The channel signal-to-noise ratio is 10 dB. The

—l—upe_lz’“_a' foe (2 — a')*ap, channel has been modeled as a filter of coefficiehts=

(@) = (1 = pip)ne_1(a) [-0.1274, 0.5542, —1.0973, —0.7313, 1.4047_7 —0.6202, 0.2
P 371, —1.5868, —0.4015, —0.7707]. A fractionally spaced
+ upe—ln—a’lz/of equalizer at four samples per symbol and 40 coefficients in
(57) length has been used. The step size for the coefficient updates
is 0.004, and the data are normalized to unity power. The step
where the statistical expectation present in (54) in both tléze for the estimated probability updates has been chosen as
numerator and the denominator are estimated with a step-giz@1th of the symbol probability: 1/1600. The parameitér?
pp. The estimates are callet},(a’) and vy (a’), respectively. has been chosen to be 1.2.
Note that the term in the denominator is related precisely Simulation 2: This simulation focusses on equalization of
to the estimated actual probability of the valaeunder the a duobinary signal over 12000 symbols using the second
output distribution. If the value of,, is small enough, we can cost function (see Figs. 7 and 8). The shaping pulse used
reasonably surmise that the evolution of the output distributidor modulation is the square-root raised cosine of roll-off
is more or less stationary within a time interval in the orded.4 and truncated to three symbols. The channel signal-to-
of 1/up. It remains only to choose a step size such that ti@ise ratio is 10 dB. The channel has been modeled as
estimated probabilities are a reasonable approximation to thefilter of coefficients:th = [0.5,0, 0,0, 1, 0, 0, 0, 1]. A
actual ones. That is, if the output distribution is made up dfactionally spaced equalizer at four samples per symbol and
say,M centroids, each of probability/AZ, a proper value for 40 coefficients in length has been used. The step size for
pp could be0.01/M such that on average each centroid occutie coefficient updates is 0.004, and the data are normalized
100 times within an interval of length/;.,,, and the estimated to unity power. The step size for the estimated probability
probability is close to the true one. The update equations f@pdates has been chosen as 0.003. The paramgigrhas
the gradient are then been chosen to be 1.2.
Simulation 3: This simulation is a comparison of

Wk =Wk-1 = pVwn /2 Benveniste—Goursat, Sato, FCF, and SCF with an equalization

/ . . . .
=Wi_1 + pEa dk(“/) (58) of a QPSK signal (Fig. 9) and Qf a 9-QAM signal (Fig. 10_)
vi(a'). over 20000 symbols. The shaping pulse used for modulation
o is the square-root raised cosine of roll-off 0.4 and truncated
B. Equalization to three symbols. The channel signal-to-noise ratio is 20 dB.

The performance of the first and second cost functiofifie channel has been modeled as a filter of coefficidnts:
has been compared with the Benveniste—Goursat and S@td274, 0.5542, 1.0973, 0.7313, 1.4047, —0.6202, —0.2371,
algorithms. The comparison between both sets of algorithmd.5868, —0.4015, 0.7707]. A fractionally spaced equalizer
depends on five factors: type of constellation, parameteas four samples per symbol and 30 coefficients in length
of the adaptive algorithm (step-size and other parametersys been used. The step size for the coefficient updates is
channel models, signal-to-noise ratio, and presence/absenc@.0009, and the data are normalized to unity power. The
interfering signals. Many examples may be found where tistep size for the estimated probability updates has been
behavior of the four algorithms (Benveniste—Goursat, Satthosen as 0.0025 for the QPSK case and 0.0011 for the
FCF, and SCF) differ. For example, for a given chann@QAM case. The parametet/s? has been chosen to
and the same input signal, a change in the step size of e 1.1 (see Figs. 11 and 12).
coefficients may mean that Benveniste—Goursat as compareBoth Benveniste—Goursat and Sato converge to a false
with SCF is relatively slower or faster or that it convergeminimum for the QPSK case in Fig. 9. The FCF and the SCF
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converge instead to the true minimum. In the second case, oabefficients in length and a seven-coefficient beamformer have
the modulation and the step size for the estimated probabiligen chosen. The signal-to-noise ratio is 10 dB.

updates have been changed. Benveniste—Goursat and the SAme CMA algorithm has been applied to the same scenario
converge, whereas Sato and the FCF do not. Note also timaSimulation 2 because the BPSK signal has constant am-
the SCF takes longer as it needs more time to estimate fiigude. For the same settings of the step sizes and a wide
probabilities. For the FCF, the coefficient vecterconverges range about those values, it has failed to converge due to the
to zero as it interprets the output to be the symibel;j0 of the very tough conditions in terms of the power of the interferers.
9-QAM constellation. For those modulations that contain th&n alternative CMA algorithm, where the amplitude error
0+ 50 symbol, it is always better to use the SCF. Simulatioris normalized byl + |y|?> to guarantee better convergence
with interfering signals are shown next in the beamforminigehavior, has also failed to recover the BPSK signal in this
section. scenario.

C. Beamforming VI. CONCLUSION

The structure that has been considered in the beamformin this paper, we have introduced a new criterion in the
ing simulations is that of an equalizer in cascade with @ntext of adaptive filtering—the statistical reference crite-
beamformer. This has a masking effect in the acquisitigfon—that provides a baseline for designing blind algorithms.
regime, with the consequence that until the equalizer does mdle universality of this criterion has been proved in suc-
“see” a sufficiently well focused signal, convergence does neéssfully dealing with a number of important applications
start. To this moment, no other algorithms based on statistieg) equalization and beamforming. Robust behavior has been
reference are known to us. For the sake of comparison, wgown in the simulations where, for the beamforming problem,
have chosen the CMA algorithm that, in a way, enforcesthe algorithm can lock on the signal of the intended distribution
constant amplitude distribution at the system output, althoughvery unfavorable SINR ratios. The algorithm is sensitive to
not in the same way that we are considering here. For examples pdf of the actual distribution and is thus more robust in
the CMA algorithm would not be able to distinguish betweethe presence of interference than are blind algorithms of the
a QPSK and a BPSK signal, both of the same amplitudBussgang-type, although the cost function is still not convex.
whereas our algorithm is able to do so. Several scenarios have
been modeled in the experiments, with interferers that are more
powerful than the signal of interest. APPENDIX

The correlation between the beamforming coefficients and CONSTANT MODULUS ALGORITHM (FCF)

the normalized steering vector of the interferers is used 0/ this Appendix, we will derive the regeneration function
represent the time evolution of the beam pattevts;/s{’si, for 4 constant modulus algorithm based on the FCF. The

with w, the beamforming coefficients ane} the steering o, ression of the pdf of a constant-amplitude RV appears
vector of theith interfering source. For the source of 'nteresbepicted in (21). In the following, we will usel to denote

this_correl_ation ter!ds _to 1. . ) the target amplitude and, to denote the constant-amplitude
Simulation 1: This simulation focusses on combined beamz, 4o \ariable of pdba_ (a0) = (1/27A)6(|ay| — A). The

forming and eqL_Jallza'uon of a 9-QAM signal &f in _the argument of the logarithm of the FCF, which appears at the
presence of two interferers: a 16-QAM at®sind a duobinary jonominator of the regeneration function, is expressed now as
signal at—40°. Their power relative to the signal of interest

is 1.05 and-5.70 dB, respectively. A Gaussian point source

has also been placed at®29'he number of symbols is 40 000. Eac
The parametet /o7 has been chosen to be 1.1. The step size =0 (AN By, (59)
for the adaptation of the estimated probabilities is 0.0015, and

that for the adaptation of the coefficients of the equalizer apdy now on, we will use the variable = 24|z|/0? =

beamformer has a exponential variation to guarantee fas}gfp/ag with a, = Ae’® andz = pei™ expressed in polar
convergences(n) = 0.0004+0.0008¢~"/10 %00 An equalizer coordinates B(z) can then be expressed as
30 coefficients in length and a seven-coefficient beamformer
have been chosen. The signal-to-noise ratio is 10 dB. 90=2 Re {~"ao}
Simulation 2: This simulation focusses on combined beam-B(z) =Ea e ‘
forming and equalization of a BPSK signal at th the . /°° /J”T L(S(T—A)GQU:ZPT cos (6-0),. gy 9
0 -7 2rA
1 +

—le=aolf /ot — gt HAN | 200 R ao}

presence of two interferers: a 16-QAM at°58nd a duobinary

signal at 40. Their power relative to the signal of interest is

8.32 and 7.53 dB, respectively. A Gaussian point source has e” (=) g

also been placed at 25The number of symbols is 40 000. 2n _:77

The parametet /o7 has been chosen to be 1.4. The step size -1 e® s @ g

for the adaptation of the estimated probabilities is 0.005, and 2r )

that for the adaptation of the coefficients of the equalizer and _ 1 B'(z) (60)
beamformer has been chosen to be 0.004. An equalizer 30 27 '
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(© (d)

Fig. 11. (a) Constellation obtained in convergence. (b) Time evolution of the cost function. (c) Decorrelation obtained between the coeféiciehthect
beamformer and the steering vectors of the signal of interest and of the interferers. In this way, we represent the time evolution of a few icharacterist
samples of the beam response. Observe that for the signal of interest the curve converges to some value close to 0 dB. (d) Time evolution of the
estimated probabilities; we can see how they converge to 1/9.

Differentiating with respect ta:, the first and second deriva-Therefore, B’ (x) fulfills the following differential equation:
tives may be expressed as

. . +7T
B'(z)+ <1>B’(a:) = / e® < 9(sin? 6 + cos? 6) db
. +7 € -7
B'(z) = / ¢® % cos 6 df, =B'(z). (63)
. e 92 If we compare this equation with the modified Bessel equation,
B'(z) = /_ e cos® Adf (61) e get
2oy — (22 +02)y=0—
carrying out the integral in the first derivative by parts, we have y=ciln(x) + e K (z)  (64)
. st « pian b o wherel,, and K, (x) are the Bessel modified functions of the
B(z)=e sin 0|17 + / e sin” 6 df first and second kind of ordet, respectively. The modified
g - Bessel equation can be matched to (63) by setting= 0
=z / e® <5 % qin2 9d6. (62) and dividing by x2 on both sides. The constants of the
- linear combination must be such thBt(0) = 27 (which is
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(a) Constellation obtained in convergence. (b) Time evolution of the cost function. (c) Decorrelation obtained between the coefficieft vect
the beamformer and the steering vectors of the signal of interest and of the interferers. Observe that for the signal of interest, the curvecceoreges t

value close to 0 dB. (d) Time evolution of the estimated probabilities; we can see how they converge to 1/9.

immediate from the expression d@’(x)). As Ko(0) tends Expressing the expectation ovdy, in terms of an integral in
to infinity and I,(0) = 1, we must have that; = 27 and polar coordinates, we have

cs = 0. Therefore,

B'(z) =2nl(z)

24
—27(.[0( ) |7|>

The regeneration function is expressed now as
e—lz—aol?/o?

EALG—Iz—a’OIZ/Ut2

o207  Re{z"a,}

¢ B(z)

ar = E4, 0,

C(z) defE La,c? T Re{z"a0}

(65) / / J(ag)a, 2o Re(="ack . g g (67)
substitution of the expressions of a,, and the pdf of4, in
the above equation leads to

_5 — Ared?
9= [ [T gt
. CQUt p1 cos (a— 0)7, dr db
A RICH —2
(66) :2_ / 6106263 Ap cos (a—8) de. (68)
a -7
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Letting o« — 8 = 3, we have [10] Y. Sato, “Two extensional applications of the zero-forcing equalization

method,”|EEE Trans. Communyol. COM-23, pp. 684-687, 1975.

A . +7 ) s [11] A. Benveniste and M. Goursat, “Blind equalizer$£EE Trans. Com-
C(z) = — @ / eTIBg2oApcos B g mun.,vol. COM-32, pp. 871-883, 1984.
27 —r [12] T. Adali and M. K. \nmez, “Channel equalization with perceptrons:
A . 4 Y An information-theoretic approach,” iRroc. ICASSP'94yol. 3, pp.
== o e20: " Apcos B g gdp 297—300.“ _ o _
2 e [13] J. Sala, “A cost function for the equalization of constant amplitude
A signals based on a statistical reference,Pimc. EUSIPCQO’96,Sept.
_ o e]aB’(2at_2Ap) (69) 1996, to be published.
7
with C(z) expressed in terms aB’. We have seen thab’
is 2nly, and we also know thal; is the derivative ofly; Josep Sala-Alvarez (M'95) was born in Calls,
therefore, the regeneration function is finally expressed as Spain, in 1967. He received the M.Sc. and Ph.D.

degrees in telecommunications engineering from

-2 - the Polytechnic University of Catalonia (UPC),
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