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Abstract 

The coordination within supply chains depends on 
appropriate forms of distributed decision making. 

Considering joint decisions as formal contracts, the 

coordination problem may be regarded as a search 

process in a corresponding contract space. Automated 

negotiations, with firms or decision making units 

represented as software agents, can provide an effective 
mechanism to determine mutually beneficial contracts. 

The generic negotiation approach examined in this paper 

is based on a formal specification of contracts that 

represent bilateral collaborations between two firms 

(agents) which aim for the coordination of their 

production sequences. Taking into account asymmetric 
information and opportunistic behavior, a mediator 

supports the negotiation process. This mediator 

repeatedly generates new candidate contracts, which are 

accepted or rejected by the agents according to particular 

strategies. We define an explicit mechanism for 

implementing a cooperative acceptance criterion, 
whereby agents conditionally agree on utility 

deteriorations according to a probabilistic criterion 

similar to that of simulated annealing. The proposed 

design enables the definition of negotiation rules to be 

verified by the mediator, forcing both agents to behave in 
a cooperative manner. The negotiation approach is 

validated for different supply chain sequencing scenarios. 

In spite of the simplicity and generality of the negotiation 

mechanism, the experimental results are very promising. 

Thus automated negotiations may constitute an effective 

means for coordinating decisions within supply chains. 

1. Introduction 

The increasing use of information technology to 

support collaborative planning within supply chains 

affects related coordination problems and the means for 

distributed decision making. In this context, Malone et al. 

conjecture the growing use of market coordination 

mechanisms relative to hierarchies (“electronic market 

hypothesis” [23] [24]). For example, the application of 

multilateral auctions may be reasonable under specific 

assumptions. However, long-term relationships between 

firms collaborating in a supply chain may necessitate 

other forms of coordination. With markets and hierarchies 

as extremes of the coordination spectrum, Clemons et al. 

conjecture the growing use of hybrid forms of 

coordination, with a firm typically having only a small 

number of business partners (“move to the middle 

hypothesis” [4]). But even when assuming long-term 

relationships, selfish actions of independent decision 

making units must be taken into account.
1
 That is, in 

general one cannot take benevolent collaborative planning 

for granted but must design sensible mechanisms that 

contribute to achieving cooperative behavior. To date, 

research has focused mainly on devising incentive 

policies (such as price discounts or penalty costs, which 

are set up in basic agreements) that direct the behavior of 

decision making units in such a way that the performance 

of some hypothetical centralized planning is approached.
2

However, in relation to the amount of supply chain 

management research on strategic questions and 

stochastic models, there is a lack of investigations that 

consider deterministic models of operations management 

[11]. In the context of this observation, we deal with the 

short-term coordination of production schedules between 

two firms within the structure of a two-stage supply 

chain, focusing on the problem of matching the 

production schedules (sequences). This key problem is to 

be solved repeatedly subject to actual data such as 

external demand and capacity constraints. 

1 In spite of this, a large proportion of the research literature on solving 

decision problems within supply chain management is set up under the 
paradigm of centralized planning in a vertically integrated firm (in the 

sense of one decision making unit). Surveys on the integrated analysis 

and planning in supply chains are provided in, e.g., [8] [35] [36] [39]. 

2 For example, there are various articles that consider joint decision 

making and corresponding contracts in two-stage supply chains facing 

static and/or stochastic demand [19] [26]. General surveys on supply 
chain contracting can be found in, e.g., [3] [40]. 
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Taking into account asymmetric information and 

opportunistic behavior of both firms
3
, automated 

negotiations may provide an effective means for 

achieving collaborative planning. We assume that both 

firms have already gained agreement about the set of 

potential collaborations. Achieving such an understanding 

as well as reaching an agreement about the negotiation 

procedure may itself be regarded as a (meta-)negotiation, 

which is not subject of this paper. Yet such requirements 

may make the use of complex automated negotiation 

approaches impractical for ad-hoc collaborations. 

However, long-term relationships promote the design and 

application of specific coordination schemes if those 

provide a fair as well as effective mechanism for 

collaborative planning. Thus appropriate negotiation 

procedures may foster both maintaining and building 

long-term collaborations between self-interested firms. 

The representation of collaborations by formal 

contracts results in a corresponding set of potential 

contracts. This contract space generally constitutes a 

complex search space, which may even be intractable 

when aiming for a single objective optimum in the 

context of centralized planning. If one of the firms 

dominates the collaboration and has the power to enforce 

its decisions, the problem may decompose in two 

successive decision problems. However, typically one can 

envisage win-win opportunities due to collaborative 

planning.
4
 Thus the problem is about determining some 

mutually beneficial contract. Automated negotiations may 

provide an effective coordination mechanism for such 

problem settings. Designing adequate negotiation 

procedures depends on the assumptions and the criteria 

for the quality of resulting contracts. We assume that the 

involved firms opportunistically pursue maximization of 

individual utility. That is, the quality of a contract is 

assessed by each firm on the basis of the deviation from a 

hypothetical individually optimal contract, respectively. 

The utility functions represent private information for 

each party. To ensure the acceptance of the rules of the 

negotiation procedure by both firms involved, some kind 

3 Similar problems may also occur within firms, since different 

organizational sub-units (such as the marketing division vs. the 
manufacturing division) and corresponding decision making units 

pursue different performance criteria and information asymmetry must 

also be taken into account following agency theory [14] [25]. Thus the 
application of negotiation-based mechanisms even for the coordination 

of intra-firm supply chains may be appropriate. This conforms to the 

nexus-of-contract perspective of organization according to the taxonomy 
of coordination in operations of Whang [41]. 

4 Consequently, the crucial question is about “making the pie bigger” 

instead of “fighting to get the largest piece of a pie of fixed size”. The 
latter problem is usually termed as zero-sum single-issue bargaining. 

Going back to fundamental concepts by Nash [29] [30] and Rubinstein 

[33], bargaining constitutes a main part of the game theory literature 
[27] [28] [32]. 

of fairness should be provided. In particular, no firm 

should be able to profit from untruthful utterances. 

Furthermore, the joint gain should be shared out among 

the firms with regard to some sensible normative 

judgment on fairness. Taking into account the 

questionable interpersonal comparison of utility, the 

assessment of the overall quality of the outcome of 

negotiations is a problem in itself. 

As information and communication technology 

enables the automation of formal negotiation procedures, 

automated negotiations have recently received 

considerable attention in information systems research. In 

particular, automation enables devising and implementing 

new negotiation schemes which would cause prohibitive 

costs when executed manually. The bilateral negotiation 

approach that is examined in this paper is based on novel 

ideas of Klein et al. [20]. 

In the following section, we discuss specific supply 

chain sequencing scenarios, which are later used for 

illustration and computational experiments. In Section 3, 

we describe a general mechanism for negotiating about 

complex contracts, which may be applied to any kind of 

collaborative planning on the basis of formal contract 

spaces. Experimental results are presented in Section 4, 

where we aim for prescriptive insights with regard to 

achieving high quality negotiation outcomes. In Section 5, 

we argue about actually obtaining such results, taking into 

account strategic behavior of the decision making units 

from a game theory perspective. Finally, we summarize 

our key findings and pose open research questions. 

2. Problem description 

Supply chain management is about the coordination of 

logistics processes between different facilities within a 

firm as well as encompassing more than one firm. In 

recent years, supply chain management has received 

considerable attention both in practice and in research. In 

this paper, we consider the short-term coordination of 

production decisions in two-stage one-to-one supply 

chains. Obviously, most real-world scenarios involve 

more intricate characteristics such as multilateral 

relationships and contract spaces of arbitrary complexity. 

However, in this paper we aim to study the principal 

potential of the proposed negotiation procedure for a 

straightforward application as a primary step. The 

generalization of resulting insights to more realistic 

scenarios is discussed in the final section. 

We assume that firm 1 manufactures parts that 

constitute input to the production processes of firm 2 in 

the context of a tight coupling of both production 

processes (in the sense of just-in-time (JIT)). We focus on 

the problem of determining a common production 

sequence, while disregarding features such as batch 

deliveries as well as the actual production system within a 

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2



firm which may allow for re-sequencing. The essential 

question is about the common job sequence at the 

coupling point (at delivery); see Figure 1. This operations 

management problem must be solved regularly subject to 

actual data such as external demand and capacity 

constraints. 

Firm 2Firm 1

production sequence 1

1 2 3 JIT

production sequence 2

1 2 3

c o o r d i n a t i o n? ?

1 2 31 2 3

Figure 1. The coordination of production sequences in a 

two-stage supply chain

Given a set of jobs J = {1, …, n}, a production (job) 

sequence is defined by the permutation Π = [π(1), …, 

π(n)>, with π(i) denoting the job that takes the i-th 

position in the schedule. Each firm evaluates production 

sequences by some scalar objective function. The firms 

pursue different goals, which are usually conflicting. 

Considering two different scenarios A and B, we assume 

that firm 1 aspires a cost efficient production schedule, 

while firm 2 is mainly interested in the eventual 

completion time of the jobs (customer focus). 

In scenario A, firm 1 aims for minimizing sequence-

dependent setup costs, assuming that each of the jobs has 

to be processed without interruption on a single machine. 

Given setup cost data τij, 1 ≤ i, j ≤ n, i ≠ j, the objective 

function is defined as 

−

=
+=Π

1

1

)1(),()(
n

i

iif ππτ .

Concerning firm 2, we consider a continuous flow-

shop characteristic of the production system with the 

objective of minimizing the average completion time of 

the jobs [10]. In a flow-shop setting each job has to be 

processed in an identical order on a given number of m

machines. Each machine can process only one job at a 

time. The parameters tij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, denote the 

processing time of job i on machine j. For continuous 

flow-shop scheduling problems the processing of each job 

must be continuous, which means that there must not be 

any waiting times between the processing of any 

consecutive tasks of this job. To allow processing of a job 

without interruption on all machines, the order in which 

the jobs are processed on a machine is the same for all 

machines (assuming non-zero processing times), so that a 

permutation of the n jobs defines the production schedule. 

Continuous processing of a job generally determines an 

inevitable delay dik, 1 ≤ i ≤ n, 1 ≤ k ≤ n, i ≠ k, on the first 

machine between the start of job i and the start of job k

when job k is processed directly after job i. This delay 

may be computed as 
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One should note that, first, the latter term of this objective 

function is constant and thus may be neglected, and, 

second, the scaling factor of 1/n may be dropped. Ideally 

such positive affine transformations, which are somehow 

arbitrary, should not affect the outcome of the 

coordination of the production sequences. 

In scenario B, we still consider that firm 1 aims for 

minimizing sequence-dependent setup costs. On the other 

hand, we suppose that the goal of firm 2 is minimization 

of weighted job tardiness [5] [6]. Assuming that each job i

has to be processed without interruption on a single 

machine, a problem instance is characterized by 

processing times pi, positive weights wi, and due dates  ri.

In dependence on the job sequence Π, the resulting 

completion times Ci and the resulting tardiness Ti = 

max { Ci – ri, 0 } of each job i can be calculated. The 

objective function is defined as 

=

=Π
n

i

iiTwf
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When restricting the consideration to one firm which 

aims for determining an ideal contract for itself, all of the 

introduced problems are NP-hard. Therefore, the problem 

of collaborative planning between two firms (i.e., 

determining a mutually beneficial contract with regard to 

the production sequence), taking into account asymmetric 

information and opportunistic behavior, is complex. In the 

next section, we discuss a general approach that provides 

the necessitated collaborative planning functionality. 

3. Negotiating complex contracts 

Automated negotiations have recently received 

considerable attention in research literature [2] [13] [16] 

[17] [22] [37]. While a literature survey is beyond the 

scope of this paper, our approach may be broadly 

classified as follows. We aim for prescriptive insights into 

the full automation
5
 of bilateral (one-to-one) negotiations 

about complex contracts with multiple interdependent 

                                                
5 This is in contrast to partial automation in the sense of “negotiation 

support tools” or “e-negotiation media”, where the course of the 

negotiation mainly depends on personal decisions that are based on 
supporting information systems. 
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issues. These issues should be assessed concurrently, 

exploiting win-win opportunities in the sense of 

integrative negotiations.  

The proposed negotiation procedure was inspired by 

Klein et al. [20]. It is generic with regard to the kind of 

contract under consideration, but we assume that the set 

of possible contracts can be formally specified. The 

supply chain sequencing scenarios introduced in Section 2 

serve for exemplification and experimental evaluation 

(see Section 4). The contract space of the set of 

permutations of n objects leads to multiple interdependent 

issues in the form of object positions or corresponding 

predecessor-successor relationships. Obviously, such 

issues must be considered simultaneously. 

The negotiation procedure may be conceptualized and 

implemented as a system of interacting autonomous 

software agents [13] [21] [31]. These agents adhere to a 

formal negotiation protocol on the basis of an initial 

conditioning by their principals. 

3.1 Negotiation protocol 

We assume that there are two agents a1 and a2, which 

want to reach agreement about a complex contract that 

determines the collaboration in question. The set of 

possible contracts is defined by a formal contract space C
= {c | c is a possible contract}, over which the agents have 

already gained agreement. The contract space is usually 

defined in an implicit way and, due to its size, does not 

allow for an exhaustive search. The agents assess 

contracts according to their preferences by utility 

functions f1: C → R and f2: C → R, respectively, which 

represent private information. Each agent aims for 

maximizing its utility. 

Taking into account asymmetric information and 

opportunistic behavior of the agents, a mediator m

supports the negotiation process. The actions of the 

mediator are transparent. Besides the contract space, the 

mediator has neither any specific knowledge about utility 

functions nor any special trust relationships with the 

agents. The mediator repeatedly generates new candidate 

contracts which are accepted or rejected by the agents 

according to specific strategies. For this the agents do not 

need an explicit representation of the contract space and 

the utility functions, but are only required to be capable of 

assessing potential contracts compared with each other. 

The mediator accepts a candidate contract (i.e., this 

candidate contract c’ becomes the contract c that the 

agents agree on after the particular round) if and only if 

both agents have signaled acceptance. After some 

termination criterion is met (e.g., with respect to a 

maximum number of rounds or a maximum computation 

time) the contract eventually agreed on constitutes the 

negotiation outcome. The generic negotiation protocol is 

shown in the sequence diagram in Figure 2. This 

negotiation protocol is rather simple, yet its effectiveness 

depends on two essential variation points, namely the 

generation of candidate contracts by the mediator and the 

acceptance criteria of the agents. 

a1 m

initialization ( c, … ) initialization ( c, … )

a2

generate ( c )

c‘

propose ( c‘)

yes / no

proposal ( c‘ )

yes / no

proposal ( c‘ )

yes / no

Repeat until termination
criterion is fulfilled

Figure 2. Negotiation protocol

The crucial difference between the described 

negotiation procedure and multi-criteria optimization is 

due to the asymmetric information concerning the utility 

functions. In particular, the course of the negotiation, 

which may be regarded as a search process, rests on plain 

yes/no responses by the agents having private information 

about the specific criteria. This precludes the application 

of typical multi-criteria combinatorial optimization 

procedures [7] [12]. In Section 4, a major concern is 

whether and to what extent this loss of information (with 

independent decision making units which 

opportunistically pursue their own goals) deteriorates the 

efficiency and social welfare of the negotiation outcome. 

3.2 Generation of candidate contracts 

The generation of candidate contracts is due to the 

mediator, which has no information about the utility 

functions. A simple option is some random generation of 

candidate contracts (e.g., selecting members of the set of 

the permutations of n objects according to a uniform 

probability distribution). Presuming that the negotiation 

process successively produces contracts of higher quality, 

a better option may be to introduce small changes to the 

current contract (e.g., a shift of some object to another 

position in the sequence). Such a progressive 

modification (perturbation) corresponds to the iterative 

selection of random neighbor solutions (in the terms of 

local search) or random mutations (in the terms of 

evolutionary algorithms). 

There are different options for generating candidate 

contracts in a more “intelligent” way. On the one hand, 

one may facilitate some kind of learning by the mediator. 

Namely, the mediator may observe the negotiation 

process trying to infer certain regularities (e.g., of the 

kind that both agents have mostly rejected candidate 
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contracts where some object is shifted to the back part of 

the sequence), which may allow for focusing the 

generation procedure accordingly. The recombination of 

fragments of traversed contracts (like for evolutionary 

algorithms) is also conceivable. On the other hand, one 

may allow that the agents (perhaps alternately) propose 

candidate contracts, which requires an adaptation of the 

negotiation protocol. 

3.3 Acceptance criteria 

The “natural” behavior of a selfish agent is to 

myopically accept a new candidate contract c’ if and only 

if it is not worse than the current contract c. This greedy 

acceptance criterion
g

iA  of an agent ai is defined as 

follows: 

≥
=

otherwiseNo

)()'(ifYes
:)',(

cfcf
ccA

iig

i

However, the mutual application of the greedy 

acceptance criterion by both agents (“hill climbers” [20]) 

may result in a negotiation process that gets stuck rather 

soon. This risk is well known in the context of local 

search methods, which may get stuck in local optima of 

inferior quality. One approach to overcome such local 

optima is to partly accept utility deteriorations. In 

particular, the classical (“Boltzmann”) acceptance 

criterion of simulated annealing [18] may be applied as 

the acceptance criterion of an agent (“annealer” [20]), 

which leads to the following cooperative acceptance 

criterion:

≥
== −

otherwise
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The probability P of acceptance of a candidate contract 

c’ decreases with a larger (negative) utility deterioration. 

This probability is computed using a positive control 

parameter T (temperature), which is gradually reduced 

according to a cooling schedule so that the probability of 

accepting deteriorating moves decreases in the course of 

the process. 

The crucial problem with regard to the application of 

the cooperative acceptance criterion is about sensibly 

determining and adapting the temperature parameter.
6
 An 

adequate mechanism should be generally effective 

concerning a high quality negotiation outcome. Some 

kind of fairness must be provided. Ideally, no agent 

should be able to profit by untruthful utterances or 

corresponding distortions of its utility function. For 

example, the negotiation process should be invariant with 

                                                
6 This point is not elaborated in [20]. Even the majority of the applied 

research literature on simulated annealing seems to neglect this problem, 
restricting the analysis to the application of some simple rules of thumb. 

regard to positive affine transformations of the utility 

functions. To facilitate a fair mechanism, we introduce 

acceptance probabilities that must be fulfilled by both 

agents. In particular, two parameters p1 and p2, p1 > p2,

define the ratio of the number of candidate contracts that 

shall be accepted by an agent for the beginning phase and 

for the final phase of the negotiation process, 

respectively. (Such phases may take, e.g., 10% of the 

whole negotiation process.) Obliging both agents to show 

the same willingness to accept deteriorating candidate 

contracts means that we enforce particular degrees of 

cooperation. This may be regarded as a fair negotiation 

rule. 

For each agent, appropriate temperature values T1 and 

T2 depend on the actual contract space and the utility 

function. Conditionally determining these values may be 

accomplished by the following mechanism: The agents 

simulate the negotiation process separately from each 

other for a number of rounds (“trial run”); in each round 

the acceptance decision of the other agent is randomly 

chosen according to the predefined acceptance 

probability. For the trial run each agent records the utility 

deteriorations that occur, which results in a list of 

negative values [∆1, ∆2, …, ∆k]. This allows the 

conditional computation of the expected value of the 

number of accepted deteriorating candidate contracts, 

which leads to the following equivalence with regard to 

determining suitable temperature parameters: 

2,1for
1

=×=
=

∆
jpke j

k

i

Tji

These equivalence relations have unambiguous solutions, 

which can be calculated by an iterative approximation 

procedure. 

A common technique for adapting the temperature 

parameter throughout the search process is the application 

of a geometric cooling schedule. That is, after each round 

the temperature is multiplied by a parameter α, 0 < α < 1: 

TT ×= α: . This parameter can be calculated in 

dependence on the temperature parameters and the 

number r of rounds of the negotiation process: 

1

1

2: −= r
T

Tα

4. Computational experience 

The assessment of negotiation processes depends on 

the pursued criteria [34]. A basic desirable property is 

Pareto optimality (efficiency) of the final contract. That 

is, there should be no other contract that improves the 

utility of one agent without making the other agent worse 

off. But there are usually a large number of Pareto 

optimal contracts. Under the questionable assumption that 
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an interpersonal comparison of utility values is possible 

(for instance by means of a monetary equivalence that 

relates the utility functions to each other), maximization 

of social welfare may constitute a meaningful criterion for 

the selection among Pareto optimal contracts. However, 

maximization of social welfare may be at odds with some 

perception of fairness. For instance, a socially optimal 

contract might unfairly allocate the joint gain due to the 

collaboration completely to one agent. From a one-sided 

perspective, contracts may be assessed on the basis of the 

deviation from a hypothetical optimal contract for one 

agent.
7
 Further criteria are incentive-compatibility (i.e., an 

agent should not be able to profit from untruthful 

utterances provided that this conforms to the negotiation 

protocol), computational tractability, and low 

requirements for information revelation (in particular with 

respect to the privacy of utility functions). 

Each of the following negotiation experiments is made 

up of 30 collaboration instances for scenario A and 25 

collaboration instances for scenario B. In each case, a 

collaboration instance is constituted by a specific pair of 

problem instances for firm 1 and firm 2. Each negotiation 

process for some collaboration instance is repeated ten 

times with different seed values for the pseudo-random 

value generator, which affects the initial solutions 

(random permutations) and the specific responses from 

the probabilistic acceptance criteria. Aggregate results for 

some negotiation experiment are given as average values 

over 300 or 250 specific results, respectively. We are 

particularly interested in average percentage deviations 

from reference results for each firm (in the sense of lower 

bounds), which are determined assuming that a firm can 

decide about the contract in isolation. Due to the NP-

hardness of the considered problems the computation of 

optimal solutions is considered intractable. We 

approximate these reference results as the best outcome 

from applying different state-of-the-art metaheuristics 

(iterated local search, simulated annealing, and reactive 

tabu search, each for a maximum computation time of 10 

seconds) to the single objective problem. We apply the 

shift of some object to another position in the sequence as 

the procedure to generate candidate contracts. 

Computation times are given on the basis of using a 

Pentium 4 processor with 1.8 GHz. 

4.1 Results for scenario A 

We use problem instances with 100 jobs from the 

benchmark scheduling data sets of Taillard [38]. For 

firm 2, the problem instances ta061–ta090 are treated as 

                                                
7 However, assessing such deviations is problematic due to similar 

reasons as in defining social welfare. In particular, adding a constant 

value to some utility function can arbitrarily distort the interpersonal 
comparison of percentage deviations. 

continuous flow-shop scheduling problems. For firm 1, 

the delay values dik are taken as setup costs. We use 30 

collaboration instances by matching different problem 

instances for firm 1 and firm 2. In particular, we use the 

pairs (i+j, i+((j+2) mod 10)) for i∈{61, 71, 81} and 

j=0,…,9; the tuple values denote the instance numbers 

from the benchmark data set. 

Table 1 provides the results for the case that one firm 

dominates the negotiation process by forcing its decisions 

upon the other firm. To allow for this, we adapt the 

acceptance criterion of the mediator by equating it with 

the outcome of the acceptance criterion of the dominating 

firm (i.e., the dominated firm has no influence at all in the 

negotiation process). The results clearly reflect the power 

of the firm that can enforce its decisions. However, the 

enforcing agent profits from applying the cooperative 

acceptance criterion, which allows overcoming local 

optima. While resulting outcomes may be Pareto optimal, 

the social welfare may be far from optimum as the 

interest of one firm is completely neglected and thus 

opportunities for win-win situations are mostly thrown 

away. 

Table 1. Average results for the case that one firm can 

enforce its decisions (scenario A)

Average deviations

   p1=0.2; p2=0.004 f1 f2 f1 f2

Firm / agent 1 greedy 5.0% 68.0% 4.9% 68.1%
 holds power cooperative 3.4% 67.7% 2.2% 67.8%

Firm / agent 2 greedy 64.3% 5.0% 64.2% 5.0%

 holds power cooperative 64.0% 3.0% 64.0% 2.0%

100,000 rounds 1,000,000 rounds

Table 2 and Table 3 show the results of combining 

agents that employ different acceptance criteria. The 

parameter values of p1=0.2 und p2=0.04 have been set on 

the basis of preliminary experiments for a similar 

application [9]. Agents that follow a cooperative strategy 

perform trial runs with 10% of the rounds of the actual 

negotiation process. Computation times are about one 

second for a negotiation process of 100,000 rounds. 

Table 2. Average negotiation results for scenario A 

(100,000 rounds)

Average deviations

    100,000 rounds
   p1=0.2; p2=0.04 f1 f2 f1 f2

Firm / agent 1 greedy 23.0% 23.9% 11.3% 36.4%

 (setup costs) cooperative 38.9% 10.0% 19.7% 15.1%

Firm / agent 2 (flowtime)

greedy cooperative

Table 3. Average negotiation results for scenario A 

(1,000,000 rounds)

Average deviations

    1,000,000 rounds
   p1=0.2; p2=0.04 f1 f2 f1 f2

Firm / agent 1 greedy 23.0% 23.9% 7.4% 42.9%

 (setup costs) cooperative 48.4% 6.2% 18.5% 11.6%

Firm / agent 2 (flowtime)

greedy cooperative
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With respect to the depicted deviations, all 

combinations but pairing two greedy agents are Pareto 

optimal. A greedy agent that is combined with a 

cooperative agent obtains high quality results at the cost 

of the cooperative agent. Combining two cooperative 

agents leads to an outcome that dominates the outcome 

obtained by two greedy agents. When using the average 

deviation for both agents as a measure of social welfare, 

the combination of two cooperative agents leads to the 

best overall results. With regard to comparing these 

results with a hypothetical integrated optimization model, 

we applied state-of-the-art metaheuristics (see above) to 

an aggregate objective function which represents the 

corresponding average percentage deviation. The 

outcome of the negotiation process deviates by only 

approximately 1.5% from the results of an integrated 

optimization model (which is not discussed further in this 

paper). Taking the restricted information revelation into 

account, this outcome is rather surprising. 

Comparing the results of Table 2 and Table 3 (100,000 

vs. 1,000,000 rounds) confirms the expectation that the 

negotiation process usually gets stuck rather soon when 

combining two greedy agents. With a longer negotiation 

process, a greedy agent that is combined with a 

cooperative agent obtains even better results at the cost of 

the cooperative agent, since the cooperative agent 

operates longer with large acceptance probabilities which 

is exploited by the greedy agent. Figure 3 depicts the 

typical course of the negotiation process (concerning the 

average deviation) for different strategy combinations. 

Clearly most of the benefit is realized and assigned in the 

first part of the negotiation process. 
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Figure 3. Typical course of the negotiation process for 

different strategy combinations (CC: both agents apply the 
cooperative acceptance criterion; GC: agent 1 applies the 

greedy acceptance criterion, agent 2 applies the 
cooperative acceptance criterion)

4.2 Results for scenario B 

For firm 1, we use the traveling salesman problem 

generator described by Johnson and McGeoch [15].
8
 We 

interpret Euclidian distance values of geometric instances 

in two dimensions as setup costs. In particular, we 

generated five different problem instances with 100 

objects each with clustering (ten clusters), which features 

some regularity (roughly in the sense of ten different 

product families). For firm 2, we used weighted tardiness 

problem instances with 100 jobs from [6]. We selected 

five instances (number 86 up to 90) which are 

characterized by a fairly balanced distribution of the due 

dates. 

We follow the experimental setup from the previous 

section. On first glance, the characteristics of the problem 

instances for scenario B lead to quite different results in 

comparison to the deviations for scenario A. Table 4 

depicts the results for the case that one firm dominates the 

negotiation process. The outcome clearly reflects the 

power of the firm that can enforce its decisions, while the 

dominated firm must bear huge deviations. This effect is 

mainly due to the “gradiental topology” of the contract 

space regarding the utility functions. Namely, for firm 1 

the geometric characteristics of the instances result in 

large variations of the costs of predecessor-successor 

pairs in the sequence. As a result some arbitrary sequence 

may be a lot worse than a high quality sequence. In effect 

we have a collaboration scenario where both firms must 

give in more in comparison to scenario A. 

Table 4. Average results for the case that one firm can 

enforce its decisions (scenario B)

Average deviations

   p1=0.2; p2=0.004 f1 f2 f1 f2

Firm / agent 1 greedy 35.2% 777.5% 34.6% 776.6%
holds power cooperative 9.9% 763.6% 6.3% 774.6%

Firm / agent 2 greedy 711.0% 2.4% 710.7% 2.3%

holds power cooperative 714.2% 1.9% 708.4% 2.3%

100,000 rounds 1,000,000 rounds

The results that are depicted in Table 5 and Table 6 

also show larger deviations than for scenario A. However, 

the basic structure of the outcome is the same. That is, 

overall best results are obtained when combining two 

cooperative agents. The average outcome dominates the 

combination of two greedy agents. When combining two 

agents with different strategies the greedy agent profits at 

the cost of the cooperative agent. 

                                                
8 This generator is available for download at the website of the “8th 

DIMACS Implementation Challenge: The Traveling Salesman Problem” 
(http://www.research.att.com/~dsj/chtsp/). 
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Table 5. Average negotiation results for scenario B 

(100,000 rounds)

Average deviations

    100,000 rounds
    p1=0.2; p2=0.04 f1 f2 f1 f2

Firm / agent 1 greedy 188.6% 100.4% 109.4% 174.5%

  (setup costs) cooperative 336.5% 12.2% 157.8% 44.4%

Firm / agent 2 (tardiness)

greedy cooperative

Table 6. Average negotiation results for scenario B 

(1,000,000 rounds)

Average deviations

    1,000,000 rounds
    p1=0.2; p2=0.04 f1 f2 f1 f2

Firm / agent 1 greedy 188.4% 100.2% 84.4% 216.0%

  (setup costs) cooperative 462.0% 4.0% 164.3% 34.3%

Firm / agent 2 (tardiness)

greedy cooperative

Considering the unbalanced deviations of firm 1 and 

firm 2, it seems that firm 2 is better off. But in general 

one cannot directly compare these values because of the 

problem of interpersonally relating utility functions. Only 

after defining some aggregate utility function (social 

welfare) further efforts to counterbalance the deviations 

might make sense. In general, savings realized by 

coordinated decision making (as by the applied 

negotiation scheme) may vary widely depending upon 

individual objectives and restrictions. 

Since both cooperative agents, by design, roughly 

accept the same number of candidate contracts, the 

outcome of the negotiation may be regarded as fair (in 

spite of one firm acquiring production sequences with 

much smaller deviations from an ideal contract than the 

other firm). Whether this outcome is adequate or not 

depends on normative decisions with regard to the 

understanding of fairness and the interpersonal transfer of 

utility. From a practical point of view, the introduction of 

monetary side payments into the contract space may 

provide a means of handling utility transfer within the 

considered negotiation framework. 

5. Game-theoretic analysis 

In Section 4, we experimentally examined the outcome 

of negotiation processes without contemplating about the 

strategic behavior of the agents. Considering the mutual 

choice of the acceptance criteria as a strategic decision 

situation in the sense of non-cooperative game theory, the 

results shown in Tables 2, 3, 5, and 6 define 

corresponding payoff tables (with smaller deviations 

representing larger utility values). Under the assumption 

of common knowledge about the ordinal relations in the 

payoff table (notwithstanding information asymmetry 

concerning the utility functions), the application of the 

dominance criterion from game theory results in both 

agents behaving greedily and thus obtaining the worst 

outcome. Namely, if an agent considers every choice of 

the other agent in turn, and selects a best “answer” for 

each choice in order to maximize its own utility value, it 

leads to the selection of the greedy acceptance criterion as 

the dominant individual strategy in every case. Therefore, 

the combination of two greedy agents represents an 

unambiguous Nash equilibrium, which unfortunately 

corresponds to a socially dominated outcome. This 

situation resembles the classic prisoner’s dilemma [1], as 

has already been observed in [20]. 

Thus the problem arises how to resolve this 

unfortunate strategic decision situation. Considering the 

negotiation process as an iterative game, with each round 

representing a separate game, may pose as an option since 

the prisoner’s dilemma may be overcome in iterative 

games [1]. However, it may take many rounds to reliably 

detect defective behavior, during which most of the 

benefit might have already been realized and assigned to a 

greedy agent; see Figure 3. Klein et al. [20] propose to 

adapt the negotiation protocol by moving the actual 

acceptance criterion to the mediator (i.e., applying an 

“annealing mediator”). However, this comes at the cost of 

complicating the negotiation protocol and requires that 

the agents reveal more information to enable the mediator 

to roughly assess the quality of a candidate contract.
9

Our approach to overcome the prisoner’s dilemma is as 

follows. The mediator basically defines mandatory 

acceptance rates for the agents in the course of the 

negotiation process. The procedure as described in 

Section 3.3 may be applied without change. Thus both 

agents are enabled to determine suitable temperature 

values and cooling schedules to attain the defined 

acceptance probabilities throughout the negotiation 

process. The mediator can easily verify that both agents 

conform to the requirements for cooperative behavior, 

which is quite fair (as both agents must give in equally 

often) and eventually leads to the high quality negotiation 

outcome due to two cooperative agents. The 

conscientious application of the cooperative acceptance 

criterion (as described in Section 3.3) may actually 

represent incentive compatible behavior (concerning the 

honest revelation of private information); since otherwise 

an agent would have to partly accept worse contracts with 

a higher probability. However, a formal proof of such a 

conjecture might be beyond reach, as this would require 

demonstrating that the Boltzmann criterion is the quasi 

best probabilistic acceptance criterion that one may think 

about. 

                                                
9 Klein et al. [20] propose that the agents classify responses as strong or 

weak. Yet it is not quite clear how the agents should achieve a suitable 
classification and whether this scheme is generally robust and effective. 
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6. Conclusions

We examined the coordination of production 

sequences between two independent decision making 

units within two-stage supply chains. Because of the 

intractability of such collaboration scenarios and 

corresponding contract spaces with multiple 

interdependent issues, simple bargaining concepts or 

auction-based mechanisms are not suitable. However, 

automated negotiation procedures may provide an 

effective building-block mechanism to support supply 

chain coordination. 

The main contributions of this paper are, first, the 

extension of the negotiation procedure of Klein et al. [20] 

concerning a specific design of a general and fair 

cooperative acceptance criterion, and, second, the 

application and validation of the approach for different 

collaboration scenarios. The design of the cooperative 

acceptance criterion allows the definition of negotiation 

rules that can be verified to force both agents to 

collaborate in a cooperative manner (which solves the 

prisoner’s dilemma). Moreover, the proposed concept 

implicitly prescribes the division of the benefits from 

collaboration among the parties. 

The applied negotiation mechanism is quite simple and 

general: no exploitation of domain-specific knowledge, 

only plain yes/no responses by the agents which assess 

pairs of contracts in relation to each other (in particular, 

neither cardinal utterances nor some argumentation for, or 

critique on, specific contract features are available, which 

prevents a more focused generation of contract 

candidates), minor information revelation, and strategic 

behavior of selfish agents. Nevertheless, the experimental 

results are very promising. This is in contrast to the 

common expectation that simple negotiation processes 

which are only based on a random generation of potential 

contracts and minor information revelation might be 

inefficient.
10

Evidently, the high-quality outcome may be the result 

of the rather simple application scenarios. Thus the 

considered approach must be validated for realistic 

coordination problems with contract spaces of higher 

complexity. Respective research might provide more 

insights regarding the generality of the key findings. In 

particular, it has to be examined for which kind of 

scenarios the ordinal relations in the payoff table are the 

same as observed in this paper. In general, if the 

                                                
10 „If agents can only accept or reject others’ proposals, then negotiation 

(and especially negotiation over objects that are multi-dimensional) can 
be very time consuming and inefficient since the proposer has no means 

of ascertaining why the proposal is unacceptable, nor whether the agents 

are close to an agreement, nor in which dimension/direction of the 
agreement space it should move next.” ([13], p. 203) 

combination of two cooperative agents does not always 

lead to the best outcome, the problem arises how to 

properly devise strategies in new collaboration scenarios. 

There are various other opportunities for further 

research work. The mentioned options for extending the 

negotiation process might be followed (e.g., enhancing 

the role of the mediator with regard to a more intelligent 

generation of candidate contracts), which probably comes 

at the cost of stronger requirements for information 

revelation. The negotiation protocol might be extended 

for multilateral negotiations. The application within 

market matching scenarios is also conceivable through 

computation of affinity measures of all potential partners 

on a marketplace by provisional negotiation experiments; 

these assessments may then be used to determine 

effective assignments. 
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