
On the Power of Quantum Computation *

Daniel R. Simon t

Abstract

The quantum model of computation is a probabilistic
model, similar to the probabilistic Turing Machine, in
which the laws of chance are those obeyed by parti-
cles on a quantum mechanical scale, rather than the
rules familiar to us from the macroscopic world. We
present here a problem of distinguishing between two
fairly natural classes of function, which can provably
be solved exponentially faster in the quantum model
than in the classical probabilistic one, when the func-
tion is given as an oracle drawn equiprobably from
the uniform distribution on either class. We thus of-
fer compelling evidence that the quantum model may
have significantly more complexity theoretic power
than the probabilistic Turing Machine. In fact, draw-
ing on this work, Shor has recently developed remark-
able new quantum polynomial-time algorithms for the
discrete logarithm and integer factoring problems.

1 Introduction

tified some reasons why the task appears difficult,
and pointed out that a “quantum computer’’ might
be imagined that could perform such simulations ef-
ficiently. His ideas were elaborated on by Deutsch
([Deul]), who proposed that such machines, using
quantum mechanical processes, might be able to per-
form computations that “classical” computing devices
(those that do not exploit quantum mechanical effects)
can only perform very inefficiently. To that end, he de-
veloped a(n at least theoretically) physically realizable
model for the “quantum computer”, that he conjec-
tured might be more efficient than a classical Turing
Machine for certain types of computations.

Since the construction of such a computer is be-
yond the realm of present technology, and would re-
quire overcoming a number of daunting practical bar-
riers, it is worth asking first whether the proposed
model even theoretically offers any substantial com-
putational benefits over the classical Turing Machine
model. The first hint of such a possibility was given
by Deutsch and Jozsa ([DJ]), who presented a sim-
ple “promise problem” that can be solved efficiently
without error on Deutsch’s quantum computer, but
that requires exhaustive search to solve deterministi-

you have l o d o but puanlum the-
ory, and people will lake your voice for the voice of
science, and believe anything.

cally without error in a classical setting. Brassard and
Berthiaume ([BBl]) recast this problem in complex-
ity theoretic terms, constructing an oracle relative to
which the quantum computer is exponentially more ef-
ficient than the classical (zero-error) probabilistic Tur-
ing Machine. In [BB2], they exhibited a similar sep-
aration for non-deterministic (zero-error) Turing Ma-
chines. (See also [BB3].)

- Bernard Shaw, Geneva (1938)

The suggestion that the computational power of
quantum mechanical processes might be beyond that
of traditional computation models was first raised by
Feynman ([Fey]). Benioff ([Beni]) had already deter-
mined that such processes were at least as powerful
a s Turing Machines; Feynman asked in turn whether
such quantum processes could in general be efficiently
simulated on a traditional computer. He also iden-

‘This work was done while the author was at 1’Universitk
de Montnhl, and was supported by Gilles Brassard’s NSERC
research grant.

tMicrosoft Corp., One Microsoft Way, Redmond WA 98052-
6399; dansimonamicrosoft.com

Unfortunately, the problems explored in [DJ, BB1,
BB2, BB3] are all efficiently solved by a (classical)
probabilistic Turing Machine with exponentially small
error probability. However, Bernstein and Vazirani
([BV]) subsequently constructed an oracle- which pro-
duces a superpolynomial relativized separation be-
tween the quantum and (classical) probabilistic mod-
els. l‘hey also gave the first efficient construction of a
universal quantum computer which can simulate any
quantum computer (as defined by Deutsch, subject

116
02’72-542-4 $04.00 Q 1994 IEEE

http://dansimonamicrosoft.com

to a slight constraint later removed in fyao]) with
only polynomial overhead (Deutsch’s universal quan-
tum computer was subject to exponential slowdown).

In this paper, we present an expected polynomial-
time algorithm for a quantum computer that dis-
tinguishes between two reasonably natural classes of
polynomial-time computable function. This task ap-
pears computationally difficult in the classical setting;
in particular, if the function is supplied as an oracle,
then distinguishing (with non-negligible probability)
between a random function from one class and a ran-
dom member of the other would take exponential time
for a classical probabilistic Turing Machine. (A direct
consequence is an oracle which produces an exponen-
tial relativized gap between the quantum and classical
probabilistic models.) Recently Shor ([Sho]), drawing
on the general approach presented here and using a
number of ingenious new techniques, has constructed
quantum polynomial-time algorithms for the discrete
logarithm and integer factoring problems.

the configuration associated with the parent node, re-
gardless of the node’s position in the tree.

Of course, this tree must necessarily conform not
only to the constraints set by the definition of the
TM whose computation it represents, but also to the
laws of probability. For example, the probability of
a particular path’s being followed from the root to a
node is simply the product of the probabilities along
its edges. Hence we can associate a probability with
each node, corresponding to the probability that that
node is reached in the computation, and equal to the
product of the probabilities assigned to the edges in
the path leading to it from the root. Moreover, the
probability that a particular configuration is reached
at a certain step i in the computation is simply the
sum of the probabilities of all the nodes corresponding
to that configuration at level i in the tree. (For exam-
ple, the probability of a particular final configuration
is the sum of the probabilities of all leaf nodes corre-
sponding to that configuration). Finally, the sum of
the probabilities of all the configurations at any level
of the tree must always be 1, regardless of the starting
configuration. A necessary and sufficient condition for

2 Quantum Probability and a well-defined computation tree always to satisfy this
constraint is that the sum of the probabilities on edges
leaving any single node always be 1.

computation

2.1 Classical and quantum probability

We can represent a (classical) probabilistic computa-
tion on a Turing Machine (TM) as a levelled tree, as
follows: each node corresponds to a state of the ma-
chine (ie., a configuration), and each level represents
a step of the computation. The root corresponds to
the machine’s starting configuration, and each other
node corresponds to a different configuration reach-
able with non-zero probability, in one computation
step, from the configuration represented by its par-
ent node. Each edge, directed from parent to.child, is
associated with the probability that the computation
follows that edge to the child node’s configuration once
reaching the parent node’s configuration. Obviously,
configurations may be duplicated across a single level
of the tree, as children of different parents, as well as
appearing on different levels of the tree; nevertheless
we represent each such appearance by a separate node.
Also, we say that any such computation tree is well-
defined, meaning that the probabilities on the edges
emanating from a parent node, and the configurations
associated with its children, are strictly a function of

A familiar equivalentl representation of our well-
defined computation, of course, is the Markov chain, in
which a vector of probabilities for each possible config-
uration at a given step is multiplied by a fixed matrix
to obtain the vector of probabilities of each configu-
ration a t the next step. For example, a space-S(n)-
bounded computation can be represented by a Markov
process with 2°(s(n)) states. Such a process can al-
ways be translated into a probabilistic TM (PTM), as
long as (a) it never takes one configuration to another
with nonzero probability unless the second can be ob-
tained from the first via a single T M operation (ie.,
changing the control state, and/or changing the con-
tents of the cell under the tape head, and/or moving
the head position by one cell), and (b) it assigns prob-
abilities t o new configurations consistently for any set
of original configurations in which the control state
and the contents of the cell under the tape head are
identical. We say that processes with this property
are local; obviously, the computation of any PTM can
be represented as a computation tree which is not only
well-defined but also local.

117

A computation on a quanturn Turing Machine, or
QTM (as described in [Deul]) can be represented by
a similar tree, but the laws of probability in the world
of quantum mechanics require that we make some ad-
justments to it. Instead of a probability, each edge is
associated with an amplitude. (In general, an ampli-
tude is a complex number with magnitude at most 1 ,
but it is shown in [RV] that it is sufficient for complex-
ity t,heoretic purposes to consider only real amplitudes
in the interval [-I, 11.) As before, the amplitude of a
node is simply the product of the amplitudes of the
edges on the path from the root to that node. The
arriplitude of a particular configuration ato any step in
the computation is simply the sum of the amplitudes
of all nodes corresponding to that configuration, a t
the level in the tree corresponding to that step. In
the vector-matrix representation corresponding t,o the
classical Markov process, a quantum probabilistic step
corresponds to multiplying the vector of amplitudes
of all possible configurations at the current step by
a fixed matrix, to obtain the vector representing the
amplitude of each configuration in the next step.

N o w , the probability of a configuration at any step
is the square of it,s amplitjude. For example, the proba-
bility of a particular final configuration is the square of
the sum (not the sum of the squares) of the amplitudes
of all leaf nodes corresponding to that, configurat#ion.
This way of calculating probability has sorne reinark-
able consequences; for instance, a particular configu-
ration c could correspond to two leaf nodes with am-
plitudes (Y and -a respectively, and the probability
of c being the final configuration would therefore be
zero. Yet the parent nodes of these two nodes might
both have nonzero probability. In fact, the computa-
t,iori would produce r with probability c y 2 if only the
c.onfiguration of one of the leaf nodes were in some way
different. Similarly, if both leaf nodes had amplitude
a , then the probability of c being the final configura-
tion would be, not 2a2, but rather 4a2-that is, more
than twice the probability we would obtain if either of
the nodes corresponded to a different configuration.
This mutual influence between different branches of
the computation is called interference, and it is the
reason why quantum computation is conjec,tured to be
more powerful, in a complexity theoretic sense, than
classical probabilistic computation.

However, even a quantum computation tree must
obey the property that the sum of the probabilities of
configurations at any level must always equal 1. The
choice of amplitudes on the edges leading from a node

to its children must therefore be restjrict8ed so as to
ensure that this condition is always obeyed, regardless
of the starting configuration. Now, it turns out no t to
be sufficient simply to require that for each node the
sum of the squares of the amplitudes on edges lead-
ing to its children be 1. In fact, even determznistic
computation steps, in which a single outgoing edge to
a single child has amplitude 1, can violate this con-
straint, by causing previously different configurations
in different branches of the tree to become identical.
Such an event might change the pat,t,ern of interfer-
enc,e, thereby altering the sum of t,he probabilities of
the configurations.

Computation steps which never violate this con-
straint are called unitary, because they are equivalent
to mult,iplying the vector of amplitudes of all possible
configurations by a unitary matrix. (Recall that a uni-
tary matrix is one whose inverse is its conjugate trans-
pose; when we restrict ourselves to real amplitudes,
such a matrix bec.ornes orthogonal-that is, equal to
the inverse of its transpose.) A QTM must always exe-
cute unitary steps: for instance, it,s deterministic steps
must be reversihk, in the sense t2hat the preceding con-
figuration can always be det,ermined given t,he current.
one. (This restriction elirninat,es the aforementioned
problem of distinct configurations suddenly becoming
identical.) Probabilist,ic st,eps, to be unitary, must also
be reversible, in the sense that) some unitary proba-
bilistic step “undoes” the step. Such “unflipping” of
quantum coins is made possible by the magic of inter-
ference, which can cause alt,ernative branches to cancel
each other out, leaving the remaining ones (possibly
all leading to an identical outcome) certain.

Deutsch’s QTM model of c.ornputrat,ion is simply a
PTM which obeys the rules of quantjurri, rat,her t,han
classical, probability. Just, as t,he cornputation t,ree
of a classical probabilistic computation is always well-
defined and local, with probabilities always summing
to 1, the computation tree of a quantum computation
is always well-defined, local and unitary. At each step,
the amplitudes of possible next configurations are de-
termined by the amplitudes of possible current con-
figurations, according to a fixed, local, unitary trans-
formation representable by a matrix analogous to the
stochastic matrix of a Markov process.

It, is important) to notme that, t’he st>andard equiva-
lent characterization of a classical probabilistic c,om-
putation tree, in which a deterministic machine sirn-
ply reads a tape containing pre-written outcomes of

118

independent fair coin tosses, does not appear to have
a counterpart in the quantum model. I t is true that
an efficient universal QTM was shown in [BV] to re-
quire only a fixed, standard set of amplitudes for all its
“probabilistic” steps. However, the reversibility condi-
tion guarantees that no new interference will be intro-
duced once those steps have been completed (say, after
all the “quantum coins” have been tossed), and any
remaining computation will thus be unable to exploit
quantum effects. Hence the probabilistic and deter-
ministic parts of the quantum computation tree can-
not be “teased apart’’ the way they can in the classical
case, and we must always keep an entire tree in mind
when we deal with quantum computation, rather than
assuming we can just follow a particular (determinis-
tic) branch after some point. We therefore refer to a
quantum computation as resulting, at any one step, in
a superposztzon of all the branches of its tree simulta-
neously.

2.2 Notation and an example

It is useful to have a notation to denote superposi-
tions (that is, entire levels of a computation tree). We
say that at any step i, the computation is in a super-
position of all the configurations Iq), . . . , lek) corre-
sponding to nodes that appear in level i of the tree
representing the computation, each Icj) having ampli-
tude crj. (Borrowing quantum mechanics notation, we
distinguish symbols representing configurations from
those representing amplitudes by placing I) brackets
around configuration symbols.) An abbreviated no-
tation for this superposition is xi (yi.Jcj); as we shall
see, the suggestive addition/summation notation for
superpositions is quite appropriate.

A simple example of a unitary quantum probabilis-
tic step is the quantum “fair coin flip” performed upon
a single bit. It is represented by the following matrix
M :

M acts on 2-element column vectors whose top
and bottom entries represent the amplitudes of the
states 10) and 11) respectively. A bit in state 10) is
transformed by M into a superposition of 10) and 11)]
both with amplitude 1 / f i . Similarly, a bit in state
11) is transformed into a superposition of 10) and 11)

with amplitude of magnitude l/& in each case, but
with the sign, or phase of the amplitude of 11) be-
ing negative. In other words, the state (0) is trans-
formed into (1 I f i) l O) + (1 /4)11) , and 11) becomes
(l / f i) IO) + (- l / f i) I l) .

It turns out that this transformation is its own
inverse. For example, performing it, a second time
on a bit that, was originally in state 10) produces

(-l/fi)Il)). Collecting like terms in this expression
(here we see the aptness of the addition/sumrnation
notation) allows us to obtain the amplitude of each
distinct configuration, which in this case is 1 for (0)
and 0 for 11). Similarly, performing this same trans-
formation twice on the initial configuration 11) gives
us 11) (with certainty) again.

(1 / f i) ((~ I J Z) l O) + (1 /4> I1)) + (1 / J Z) ((l / 4) 1 0) +

In a system of 71 bits, with 2” possible configiira-
tions, we can perform such a transformation on each
bit independently in sequence. The matrices rep-
resenting these transformations will be of dimension
2” x 2”, of course; their rows, each corresponding to
a different configuration, will each have two non-zero
entries, taken from either the top or bottom row of M .
Their columns will similarly have two non-zero entries
each, taken from either the left or right column of M .
Also, they will all be unitary, since they each represent
a local, unitary transforrnation.

The result of performing these 11 different trans-
formations in sequence will be a superposition of all
possible n-bit strings. The amplitude of each string at
the end of the TI transformations will have magnitude
2-”12. As the transformations are applied in turn,
the phase of a resulting configuration is changed when
a bit that was previously a 1 remains a 1 after the
transformation is performed. Hence, the phase of the
amplitude of string 2 is determined by the parity of the
dot product of the original configuration string and z.
More precisely, if the string w is the original config-
uration, then performing the product transformation
c,omposed of these TI transformations in sequence will
result in the superposition

2-12 E(- 1)””l.)
z

This product transformation was introduced in [DJ],
and is referred to in [BV] as the Fourier transforma-
tion F .

119

3 Using quantum probability

3.1 Problem: is a function invariant
under some xor-mask?

Suppose we are given a function f : {0,1}” -+ (0, l}m,
with m 2 n , and we are promised that either f
is 1-to-1, or there exists a non-trivial s such that
Vx # z’(f(x) = f(z’) z’ = zes), where @ denotes
bitwise exclusive-or. We wish to determine which of
these conditions holds for f , and, in the second case,
to find s.

We now present an algorithm for a QTM which
solves the above problem, with zero error probability,
in expected time O(nT’(n) + G (n)) , where T’(n) is
the time required to compute f on inputs of size n,
and G (n) is the time required to solve an n x n linear
system of equations over HI. The algorithm is very
simple, consisting essentially of (an expected) O(n)
repetitions of the following routine:

Routine Fourier- t wice

1. perform the transformation F described
above on a string of n zeroes, producing

2. compute f(z), concatenating the answer to 2,

3. perform F on x, producing

2-nf2 E, 12).
thus producing 2-”12 E, I(., f(z))).

2-“ cy C,(-1)”’”(Y, f(.))).
End Fourier-twice

Note that the (deterministic) computation of
(x , f (x)) from z in time T f (n) in step 2 can always
be made reversible (and hence unitary) at the cost of
only a constant factor in the number of computation
steps. This is due to a result obtained independently
by Lecerf ([Lec]) and Bemett ([Benn]).

Suppose f is 1-to-1. Then after each perfor-
mance of Fourier-twice, all the possible configura-
tions l(y, f(z))) in the superposition will be distinct,
and their amplitudes will therefore all be 2-”, up
to phase. Their probabilities will therefore each be
2-2n, and k independent repetitions of Fourier-twice
will thus yield k configurations each distributed uni-
formly and independently over configurations of the
form KY, f(2))).

Now suppose that there is some s such that
Vz # d(f (z) = f(z’) e 2’ = x e s) . Then for each y
and x, the configurations [(y, f(z))) and I(y, f (z @ s)))
are identical, and the amplitude a (z , y) of this config-
uration will be 2-”((- 1),.Y + (- l) (” @ ’) ’ Y) . Note that
if y . s z 0 (mod 2), then z . y E (z s) . y (mod 2),
and a(x,y) = 2-”+l ; otherwise a(z,y) = 0. Thus
rl. independent repetitions of Fourier-twice will yield
k configurations distributed uniformly and indepen-
dently over configurations of the form I(y, f(z))) such
that y . s z 0 (mod 2).

In both cases, after an expected O(n) repetitions
of Fourier-twice, sufficiently many linearly indepen-
dent values of y will have been collected that the non-
trivial string s* whose dot product with each is even
will be uniquely determined. s+ can then easily be
obtained by solving the linear system of equations de-
fined by these values of y. In the second case, this
string s* must be the s we are looking for, since we
know that y . .$ E 0 (mod 2) for each y generated in
the second case. On the other hand, in the first, case,
where f is 1-to-1, S* will simply be a random string.
Hence, evaluation of, say, f (0“) and f(.s*) will reveal
whether we have found the true s (in the second case)
or simply selected a random string (in the first case).

If we allow a bounded error probability, we can use
essentially the same algorithm to solve slightly less
constrained promise problems. For example, in the
case where f is 1 - t e l l the outputs of n / c repetitions
of Fourier-twice (for constants E < 1) will with prob-
ability 1 - 2c’(n) contain a basis for (Z,).. On the
other hand, if there exists an .v such that, for a fraction
at least l-c/n of possible choices of z, f (z) = f(z@s),
then the outputs of n/c repetitions of Fourier-twice
will still all satisfy y . s 0 (mod 2), with constant
probability, regardless of any other properties of f .
Hence we can efficiently distinguish between these two
classes of function (for appropriate c) on a quantum
computer with negligible error probability.

3.2 Relativized hardness of our prob-
lem

Now, in a relativized setting, suppose that an oracle
is equiprobably either an oracle uniformly distributed
among permutations on n-bit values, or an oracle uni-
formly distributed among those 2-to-1 functions f for
which there exists a unique nontrivial s such that f(z)

120

always equals f (z @ s). Then a classical probabilistic
oracle TM would require exponentially many oracle
queries to successfully distinguish the two cases with
probability non-negligibly greater than 1/2.

Theorem 3.1 Let 0 be an oracle constructed as fol-
lows: for each n, a random n-bit string s (n) and a
random bit b (n) are chosen. If b(n) = 0, then the
function f n : (0, 1)" (0 , l) " chosen for 0 t o com-
pute on ri-bit queries is a random I-to-1 function;
o t h m o z s c , zt 2 s a random 2- to-1 function such that
f,&(x) = fn(z @ s (n)) for all 2, where @ denotes bit-
wise exclusive-or. Then any PTM that queries 0 no
more than 2"14 times (except forfinitely many n) can-
not correctly guess b(n) with probability greater than
(1/2)+2-"f2 [except forfinitely many n), over choices
m a d e in the construction of 0, and its own probabilis-
tic choices.

Proof: (sketch) Consider any such PTM M . We say
that M ' s choice of the first k queries is good for n if
12.I queries 0 at two 71-bit input values whose exclusive
or is 472). If M makes a good choice of queries
for n, then the distribution on answers given by 0
differs depending on b(n); otherwise, the distributions
are identical (ie., completely random distinct values
for each distinct query). Since the probability that M
guesses b(n) is only greater than 1/2 when its choices
are good for n, we need only calculate that probability
to obtain a bound on M's probability of guessing b(n).

Now, since 0 ' s answers are randomly chosen wher-
ever they are not required to be identical, they reveal
no information other than sameness or distinctness.
Hence M ' s queries can be assumed chosen indepen-
dently of previously given query answers. But for any
t queries, the number of distinct pairs of input values
queried (and hence the number of distinct values of s
for which the queries might be good for n) is less than
k 2 . The probability that M ' s (assumed independently
chosen) 2"f4 queries are good for n is therefore no bet-
ter than (2n/4)2/2n, or 2-n/2, over choices of s(?~). It
follows that M cannot estimate b (n) with probability
better than (1/2) + 2-"/2.

We can also use the above theorem to prove the
existence of a specific oracle relative to which there
is an exponential gap (in terms of classical comput-
ing time) between B P P and its quantum analogue,
BQP (defined in the natural way; see [BV]). Let E
be the (countable) set of classical oracle PTM's mak-

ing at most P I 4 queries on input 1". We say that
M E E solves an oracle 0 generated as in Theorem
3.1 if for all n, M computes b (n) , with error bounded
away from 1/2, on input In . By Boole's inequality,
the probability that there exists such an M , for an 0
so generated, is at most the sum over the choices of M
of the probability that M solves 0. Since this latter
probability is zero for all M E E , an oracle 0 chosen
as described in Theorem 3.1 will with probability 1 be
solved by no M E E . Hence with probability 1, the
language (1"(6(n) = I}, for b(n) chosen as in Theo-
rem 3.1, cannot be accepted with error bounded away
from 1/2 by any M E E .

Theorem 3.2 There exists an oracle 0 relative t o
which B Q P P T I M E (2 ' ") (with two-sided error).

4 Conclusion

Since any quantum computer running in polynomial
time can be fairly easily simulated in P SPACE, as
was pointed out in [BV], we are unlikely to be able to
prove anytime soon that B Q P is larger than P . How-
ever, Shor ([Sho]) has recently made a huge advance
towards establishing the complexity-theoretic advan-
tage of the quantum model compared to the classical
one, by giving quantum polynomial-time algorithms
for two well-known presumed-hard problems: com-
puting discrete logarithms modulo an arbitrary prime,
and factoring integers. His algorithms follow the very
rough outline of the ones presented here, but with
many additional sophistications that allow them to
work over the field Z; (for primes p such that p - 1 is
smooth) rather than (Z,)., and to extract much more
than a single bit of information per iteration.

A logical next step might be to try to separate
B P P and B Q P based on a more general complexity-
theoretic assumption such as P # N P or the exis-
tence of one-way functions. Alternatively, it may be
possible to prove limits to the advantages of quantum
computation through simulation results of some kind.
(In [BBBV], oracle methods are used to give evidence
that N P B Q P .) Further possible simplifications of
the model should also be explored; for example, does
the "fair quantum coin flip" suffice as a universal non-
classical step, the way its classical counterpart, the fair
coin flip, suffices as a universal (classical) probabilistic
step?

121

Another issue is that of alternative models of quan-
turn computation. Yao ([Yao]) has presented a quan-
turn c.ircuit model (following [Deua]) and proven it
equivalent to the QTM. In contrast, it is not yet known
whether a quantum cellular automaton is equivalent
or more powerful, or even how reasonably to define
such a machine. Still other distinct quantum-based
computational models may exist, as well. For ex-
ample, any unitary “evolution” matrix describing a
quantum computation (in any model) is related (by
Schrodinger’s equation) to a corresponding Hermitian
“Hamiltonian” matrix which describes the same pro-
cess. There, is also a natural notion of locality for
Hamiltonians-but evolution matrices and their asso-
ciated Hamiltonians are not necessarily both local or
both nonlocal. It is therefore unclear whether even the
definition of BQP (for QTMs or for any other model)
is t,he same for operator-based and Hamiltonian-based
rncodings.

Beyond the question of models is the matter of their
implementation. For example, any physical realization
of a quantum computer would necessarily be subject
to some error; exact superpositions would end up be-
ing represented by approximations just as determinis-
tic discrete computations and random coin flips are ap-
proximated in modern computers using analog quanti-
ties such as voltages. Considerable work has been done
on the feasibility of resiliently simulating true random-
ness with “approximate randomness” (see, for exam-
ple> [VV], [CX]); similar work is necessary to deter-
mine if computation using approximations of quantum
superpositions can be made comparably resilient. Res-
olution of these and other theoretical issues would be
a crucial step towards understanding both the utility
and the ultimate feasibility of implementing a quan-
tum computer.

Acknowledgements

Many thanks to Charles Bennett, Ethan Bernstein,
Gilles Brassard, Jeroen van de Graaf, Richard Jozsa,
and Dominic Mayers for valuable insights and helpful
discussion.

References

Phys. 29, pp. 515-546 (1982).

[Benn] C. H. Bennett, Logical Reversibility of Com-
putation, IBM J . Res. Develop. 17, pp. 525-
532 (1973).

[BBBV] C.H. Bennett, E. Bernstein, G. Brassard and
U. Vazirani, Strengths and Weaknesses of
Quantum Computing, manuscript (1994).

A. Berthiaume and G. Brassard, The Quan-
tum Challenge to Structural Complexity The-
ory, Proc. 7th IEEE Conference on Structure
in Complexity Theory (1992).

[BBl]

[BB2] A. Berthiaume and G. Brassard, Oracle
Quantum Computing, Proc. Physics of Com-
putation (1992).

[BB3] A. Berthiaume and G. Brassard, Oracle
Quantum Computing, J . Modern Optics, to
appear.

[BV] E. Bernstein and U . Vazirani, Quantum
Complexity Theory, Proc. 25th ACM Symp.
on Theory of Computation, pp. 11-20 (1993).

[CG] B. Chor and 0. Goldreich, Unbiased Bits
from Sources of Weak Randomness and Prob-
abilistic Communication Complexity, SIAM
J . Comput. 17, pp. 230-261 (1988).

D. Deutsch, Quantum Theory, the Church-
Turing Principle and the Universal Quantum
Computer, Proc. R. Soc. Lond. A400, pp.

[Deul]

73-90 (1985).

[Deu2] D. Deutsch, Quantum Computational Net-
works, Proc. R. Soc. Lond. A425, pp. 73-90
(1989).

D. Deutsch and R. Jozsa, Rapid Solution of
Problems by Quantum Computation, Proc.
R. Soc. Lond. A439, pp. 553-558 (1992).

R. Feynman, Simulaiing Physics with Com-
puters, International Journal of Theoretical
Physics 21, pp. 467-488 (1982).

Yves Lecerf, Machines de Turing reversibles.
Re‘cursive insolubiliti en nrN de 1’Lquation
U = 8” ou 8 est un “isomorphism de codes”.
Comptes Rendus de L’Academie kancaise
des Sciences 257, 2597-2600 (1963).

[DJ]

[Fey]

[Lec]

[Beni] P. Benioff, Quantum Mechanical Hamilto-
nian Models of Turing Machines, J . Stat.

122

[Sho] P. Shor, Algorithms for Quantum Computa-
tion: Discrete Log and Factoring, Proc. 35th
IEEE Symp. on Foundations of Computer
Science, 1994.

[VV] U.V. Vazirani and V.V. Vazirani Ran-
dom Polynomial Time is Equal to Slightly-
Random Polynomial Tame, Proc. 26th IEEE
Symp. on Foundations of Computer Science,
pp. 417-428 (1985).

[Yao] A. Yao, Quantum Circuit Complexity, Proc.
34th IEEE Symp. on Foundations of Com-
puter Science, 1993.

123

