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We consider the existence of a fixed point of (𝛼−𝜓)-contractive mappings in the context of generalized quasimetric spaces without
Hausdorff assumption. The obtained results extend several results on the topic in the literature.

1. Introduction and Preliminaries

In the last decade, quasimetric spaces have been one of the
interesting topics for the researchers in the field of fixed
point theory due to two reasons. The first reason is that
the assumptions of quasimetric are weaker than the more
generalmetric. Consequently, the obtained fixed point results
in this space are more general and hence the corresponding
results in metric space are covered. The second reason is the
fact that fixed point problems in 𝐺-metric space (introduced
by Mustafa and Sims [1]) can be reduced to related fixed
point problems in the context of quasimetric space (see, e.g.,
[2, 3]). Very recently, Lin et al. [4] introduced the notion of
generalized quasimetric spaces and investigated the existence
of a certain operator on such spaces. In this paper [4], the
authors assumed that the generalized quasimetric space is
Hausdorff to get a fixed point.

In this paper, we examine the existence of (𝛼-𝜓)-contract-
ive mappings in the context of generalized quasimetric space
without the Hausdorffness assumption. Consequently, our
results extend, improve, and generalize several results in the
literature.

In what follows we recall the basic definitions and results
on the topics for the sake of completeness. Throughout
the paper, the symbols R, N, and N

0
denote the real

numbers, the natural numbers, and the positive integers,
respectively.

Let 𝑋 be a nonempty set and let 𝑑 : 𝑋 × 𝑋 → [0,∞).
Then 𝑑 is called a distance function if, for every 𝑥, 𝑦, 𝑧 ∈ 𝑋,
it satisfies

(𝑑
1
) 𝑑(𝑥, 𝑥) = 0;

(𝑑
2
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0 ⇒ 𝑥 = 𝑦;

(𝑑
3
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

(𝑑
4
) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Notice that if 𝑑 satisfies the conditions (𝑑
2
), (𝑑
3
), and (𝑑

4
),

then 𝑑 is called a dislocated metric on 𝑋. If 𝑑 satisfies the
conditions (𝑑

1
), (𝑑
2
), and (𝑑

4
), then 𝑑 is called a quasimetric

on 𝑋. On the other hand, if 𝑑 satisfies the conditions
(𝑑
1
)–(𝑑
4
), then 𝑑 is called a metric on 𝑋.

One of the very natural generalizations of the notion of a
metric was introduced by Branciari [5] in 2000 by replacing
the triangle inequality assumption of a metric with a weaker
condition, quadrilateral inequality.

Definition 1 (see [5]). Let 𝑋 be a nonempty set and let 𝑑 :

𝑋×𝑋 → [0,∞) be a mapping such that, for all 𝑥, 𝑦 ∈ 𝑋 and
for all distinct points 𝑢, V ∈ 𝑋 each of them different from 𝑥

and 𝑦, one has

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

Hindawi Publishing Corporation
Journal of Function Spaces
Volume 2014, Article ID 914398, 7 pages
http://dx.doi.org/10.1155/2014/914398



2 Journal of Function Spaces

(iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦) (quadrilateral
inequality).

Then (𝑋, 𝑑) is called a generalized metric space (or shortly
g.m.s).

We present an example to show that not every generalized
metric on a set 𝑋 is a metric on 𝑋.

Example 2 (see, e.g., [4]). Let 𝑋 = {𝑡, 2𝑡, 3𝑡, 4𝑡, 5𝑡} with 𝑡 > 0

be a constant, and we define 𝑑 : 𝑋 × 𝑋 → [0,∞) by

(1) 𝑑(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝑋;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑡, 2𝑡) = 3𝑠;
(4) 𝑑(𝑡, 3𝑡) = 𝑑(2𝑡, 3𝑡) = 𝑠;
(5) 𝑑(𝑡, 4𝑡) = 𝑑(2𝑡, 4𝑡) = 𝑑(3𝑡, 4𝑡) = 2𝑠;
(6) 𝑑(𝑡, 5𝑡) = 𝑑(2𝑡, 5𝑡) = 𝑑(3𝑡, 5𝑡) = 𝑑(4𝑡, 5𝑡) = (3/2)𝑠,

where 𝑠 > 0 is a constant. Then (𝑋, 𝑑) is a generalized metric
space, but it is not a metric space, because

𝑑 (𝑡, 2𝑡) = 3𝑠 > 𝑑 (𝑡, 3𝑡) + 𝑑 (3𝑡, 2𝑡) = 2𝑠. (1)

Despite the analogy between the definitions ofmetric and
generalized metric their topological properties differ from
each other. For example, for a generalizedmetric space (𝑋, 𝑑),
we have the following.

(P1), a generalized metric, need not be continuous;
(P2), a convergent sequence in generalized metric space,

need not be Cauchy;
(P3), an open ball (𝐵

𝑟
(𝑥) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝑟}, 𝑟 > 0),

need not be open set;
(P4), a generalized metric space, need not be Hausdorff,

and hence the uniqueness of limits cannot be guar-
anteed.

Example 3 (see [6], Example 1.1). Let 𝑋 = 𝐴 ∪ 𝐵, where 𝐴 =

{0, 2} and 𝐴 = {1/𝑛 : 𝑛 ∈ N}. Define 𝑑 : 𝑋 × 𝑋 → [0,∞) in
the following way:

𝑑 (𝑥, 𝑦) =

{{

{{

{

0, if 𝑥 = 𝑦,

1, if 𝑥 ̸= 𝑦, [{𝑥, 𝑦} ⊂ 𝐴 or {𝑥, 𝑦} ⊂ 𝐵] ,

𝑦, if 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

(2)

Notice that 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎) = 𝑏 whenever 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.
Furthermore, (𝑋, 𝑑) is a complete generalized metric space.
Clearly, we have (𝑃1)–(𝑃4). Indeed, the sequence {1/𝑛 : 𝑛 ∈

N} converges to both 0 and 2. There is no 𝑟 > 0 such that
𝐵
𝑟
(0) ∩𝐵

𝑟
(2) = 0 and hence it is not Hausdorff. It is clear that

the ball𝐵
2/3

(1/3) = {0, 1/3, 2} since there is no 𝑟 > 0 such that
𝐵
𝑟
(0) ⊂ 𝐵

2/3
(1/3); that is, open balls may not be an open set.

The function 𝑑 is not continuous since lim
𝑛→∞

𝑑(1/𝑛, 1/2) ̸=

𝑑(0, 1/2) although lim
𝑛→∞

1/𝑛 = 0. Formore details, see, e.g.,
[6, 7].

Regarding the weakness of the topology of generalized
metric space, mentioned above, the authors add some addi-
tional conditions to get the analog of existing fixed point
results in the literature; see, e.g., [8–15]. Very recently, Suzuki
[16] underlined the importance of generalized metric space
by emphasizing that generalized metric space and metric
space have no compatible topology.

The following is the definition of the notion of generalized
quasimetric space defined by Lin et al. [4]

Definition 4. Let 𝑋 be a nonempty set and let 𝑑 : 𝑋 × 𝑋 →

[0,∞) be a mapping such that, for all 𝑥, 𝑦 ∈ 𝑋 and for all
distinct points 𝑢, V ∈ 𝑋 each of them different from 𝑥 and 𝑦,
one has

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦).

Then (𝑋, 𝑑) is called a generalized quasimetric space (or
shortly g.q.m.s).

It is evident that any generalized metric space is a
generalized quasimetric space, but the converse is not true
in general. We give an example to show that not every
generalized quasimetric on a set𝑋 is a generalized metric on
𝑋.

Example 5 (see [4]). Let 𝑋 = {𝑡, 2𝑡, 3𝑡, 4𝑡, 5𝑡} with 𝑡 > 0 be a
constant, and we define 𝑑 : 𝑋 × 𝑋 → [0,∞) by

(1) 𝑑(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝑋;
(2) 𝑑(𝑡, 2𝑡) = 𝑑(2𝑡, 𝑡) = 3𝑠;
(3) 𝑑(𝑡, 3𝑡) = 𝑑(2𝑡, 3𝑡) = 𝑑(3𝑡, 𝑡) = 𝑑(3𝑡, 2𝑡) = 𝑠;
(4) 𝑑(𝑡, 4𝑡) = 𝑑(2𝑡, 4𝑡) = 𝑑(3𝑡, 4𝑡) = 𝑑(4𝑡, 𝑡) = 𝑑(4𝑡, 2𝑡) =

𝑑(4𝑡, 3𝑡) = 2𝑠;
(5) 𝑑(𝑡, 5𝑡) = 𝑑(2𝑡, 5𝑡) = 𝑑(3𝑡, 5𝑡) = 𝑑(4𝑡, 5𝑡) = (3/2)𝑠;
(6) 𝑑(5𝑡, 𝑡) = 𝑑(5𝑡, 2𝑡) = 𝑑(5𝑡, 3𝑡) = 𝑑(5𝑡, 4𝑡) = (5/4)𝑠,

where 𝑠 > 0 is a constant. Then (𝑋, 𝑑) is a generalized quasi-
metric space, but it is not a generalized metric space, because

𝑑 (𝑡, 5𝑡) =
3

2
𝑠 ̸= 𝑑 (5𝑡, 𝑡) =

5

4
𝑠. (3)

We next give the definitions of convergence and com-
pleteness on generalized quasimetric spaces.

Definition 6 (see [4]). Let (𝑋, 𝑑) be a g.q.m.s; let {𝑥
𝑛
} be

a sequence in 𝑋 and 𝑥 ∈ 𝑋. We say that {𝑥
𝑛
} is g.q.m.s

convergent to 𝑥 if and only if

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) = lim

𝑛→∞
𝑑 (𝑥, 𝑥

𝑛
) = 0. (4)

Definition 7 (see [4]). Let (𝑋, 𝑑) be a g.q.m.s and let {𝑥
𝑛
} be

a sequence in𝑋. We say that {𝑥
𝑛
} is left-Cauchy if and only if

for every 𝜀 > 0 there exists 𝑘 ∈ N such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for

all 𝑛 ≥ 𝑚 > 𝑘. We say that {𝑥
𝑛
} is right-Cauchy if and only if

for every 𝜀 > 0 there exists 𝑘 ∈ N such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for

all 𝑚 ≥ 𝑛 > 𝑘. We say that {𝑥
𝑛
} is Cauchy if and only if for

every 𝜀 > 0 there exists 𝑘 ∈ N such that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for all

𝑚, 𝑛 > 𝑘.
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Remark 8. A sequence {𝑥
𝑛
} in a g.q.m.s is Cauchy if and only

if it is left-Cauchy and right-Cauchy.

Definition 9 (see [4]). Let (𝑋, 𝑑) be a g.q.m.s. We say that

(1) (𝑋, 𝑑) is left-complete if and only if each left-Cauchy
sequence in 𝑋 is convergent;

(2) (𝑋, 𝑑) is right-complete if and only if each right-
Cauchy sequence in 𝑋 is convergent;

(3) (𝑋, 𝑑) is complete if and only if each Cauchy sequence
in 𝑋 is convergent.

Notice that, in the literature in several reports for fixed
point results in generalized metric space, an additional
but superfluous condition, “Hausdorffness,” was assumed.
Recently, Jleli and Samet [17], Kirk and Shahzad [18], Kara-
pınar [19], Kadeburg, and Radenović [7], and Aydi et al.
[20] reported new some fixed point results by removing the
assumption of Hausdorffness in the context of generalized
metric spaces. The following crucial lemma is inspired from
[7, 17].

Lemma 10. Let (𝑋, 𝑑) be a generalized quasimetric space and
let {𝑥
𝑛
} be a Cauchy sequence in𝑋 such that 𝑥

𝑚
̸= 𝑥
𝑛
whenever

𝑚 ̸= 𝑛. Then the sequence {𝑥
𝑛
} can converge to at most one

point.

Proof. Given 𝜀 > 0, since {𝑥
𝑛
} is a Cauchy sequence, there

exists 𝑘
0
∈ N such that

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) < 𝜀, ∀𝑚, 𝑛 > 𝑘

0
. (5)

We use themethod of Reductio ad absurdum. Suppose, on the
contrary, that there exist two distinct points𝑥 and𝑦 in𝑋 such
that the sequence {𝑥

𝑛
} converges to 𝑥 and 𝑦; that is,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) = lim

𝑛→∞
𝑑 (𝑥, 𝑥

𝑛
) = 0,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦) = lim

𝑛→∞
𝑑 (𝑦, 𝑥

𝑛
) = 0.

(6)

By assumption for any 𝑛 ∈ N, 𝑥
𝑛

̸= 𝑥
𝑚
, and since 𝑥 ̸= 𝑦, there

exists 𝑘
1
∈ N such that 𝑥

𝑛
̸= 𝑥 and 𝑥

𝑛
̸= 𝑦 for any 𝑛 > 𝑘

1
≥ 𝑘
0
.

Due to quadrilateral inequality, we have

𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑚
) + 𝑑 (𝑥

𝑚
, 𝑦) . (7)

Letting 𝑛,𝑚 → ∞, we can obtain that 𝑑(𝑥, 𝑦) = 0 by regard-
ing (5) and (6). Hence, we get 𝑥 = 𝑦which is a contradiction.

2. Main Results

In this section, we state and prove the main result of this
paper. We start by introducing the following family of func-
tions.

Let Ψ be the family of functions 𝜓 : [0,∞) → [0,∞)

satisfying the following conditions:

(Ψ
1
) 𝜓 is nondecreasing;

(Ψ
2
) ∑
+∞

𝑛=1
𝜓𝑛(𝑡) < ∞ for all 𝑡 > 0, where𝜓𝑛 is the 𝑛th

iterate of 𝜓.

These functions are known in the literature as (c)-comparison
functions. It is easily proved that if 𝜓 is a (c)-comparison
function, then 𝜓(𝑡) < 𝑡 for any 𝑡 > 0. For more details about
such function, we refer the reader to [21, 22]. In this study, we
discuss the notion of 𝛼-admissible mappings; see, e.g., [23–
27]. The following definition was introduced in [23].

Definition 11. Let 𝑓 : 𝑋 → 𝑋 be a self-mapping of a set 𝑋
and 𝛼 : 𝑋 × 𝑋 → R+. Then 𝑓 is called a 𝛼-admissible if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑓𝑥, 𝑓𝑦) ≥ 1. (8)

Inwhat followswe define the (𝛼−𝜓)-contractivemapping
in the setting of generalized quasimetric space.

Definition 12. Let (𝑋, 𝑑) be a g.q.m.s. and let 𝑓 : 𝑋 → 𝑋

be a given mapping. We say that 𝑓 is an (𝛼 − 𝜓)-contractive
mapping if there exist two functions 𝛼 : 𝑋 × 𝑋 → [0,∞)

and 𝜓 ∈ Ψ such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (9)

Now, we state the following fixed point theorem.

Theorem 13. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝑓 :

𝑋 → 𝑋 be an (𝛼 − 𝜓)-contractive mapping. Suppose that

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓𝑥
0
) ≥ 1,

𝛼(𝑓𝑥
0
, 𝑥
0
) ≥ 1, 𝛼(𝑥

0
, 𝑓2𝑥
0
) ≥ 1, and 𝛼(𝑓2𝑥

0
, 𝑥
0
) ≥ 1;

(iii) 𝑓 is continuous.

Then 𝑓 has a periodic point.

Proof. Due to statement (ii) of theorem, there exists 𝑥
0
∈ 𝑋

which is an arbitrary point such that 𝛼(𝑥
0
, 𝑓𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑓𝑥
0
) ≥ 1. We will construct a sequence {𝑥

𝑛
} in 𝑋 by

𝑥
𝑛+1

= 𝑓𝑥
𝑛
= 𝑓𝑛+1𝑥

0
for all 𝑛 ≥ 0. If we have 𝑥

𝑛0
= 𝑥
𝑛0+1

for
some 𝑛

0
, then 𝑢 = 𝑥

𝑛0
is a fixed point of 𝑓. Hence, for the rest

of the proof, we presume that

𝑥
𝑛

̸= 𝑥
𝑛+1

∀𝑛. (10)

Since 𝑓 is 𝛼-admissible, we have

𝛼 (𝑥
0
, 𝑥
1
) = 𝛼 (𝑥

0
, 𝑓𝑥
0
) ≥ 1

󳨐⇒ 𝛼 (𝑓𝑥
0
, 𝑓𝑥
1
) = 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1.

(11)

Utilizing the expression above, we obtain that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 = 0, 1, . . . . (12)

By repeating the same stepswith startingwith the assumption
𝛼(𝑥
1
, 𝑥
0
) = 𝛼(𝑓𝑥

0
, 𝑥
0
) ≥ 1, we conclude that

𝛼 (𝑥
𝑛+1

, 𝑥
𝑛
) ≥ 1, ∀𝑛 = 0, 1, . . . . (13)
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In a similar way, we derive that

𝛼 (𝑥
0
, 𝑥
2
) = 𝛼 (𝑥

0
, 𝑓
2
𝑥
0
) ≥ 1

󳨐⇒ 𝛼 (𝑓𝑥
0
, 𝑓𝑥
2
) = 𝛼 (𝑥

1
, 𝑥
3
) ≥ 1.

(14)

Recursively, we get that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+2

) ≥ 1, ∀𝑛 = 0, 1, . . . . (15)

Analogously, we can easily derive that

𝛼 (𝑥
𝑛+2

, 𝑥
𝑛
) ≥ 1, ∀𝑛 = 0, 1, . . . . (16)

Step 1. We will show that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 0 and
lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+2

) = 0. Regarding (8) and (12), we deduce
that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)

≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) ,

(17)

for all 𝑛 ≥ 1.
Iteratively, we find that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) ∀𝑛 ≥ 1. (18)

Similarly,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) ≤ 𝜓
𝑛
(𝑑 (𝑥
0
, 𝑥
2
)) ∀𝑛 ≥ 1. (19)

By the properties of 𝜓 we can conclude that
lim
𝑛→∞

𝜓𝑛(𝑑(𝑥
0
, 𝑥
1
)) = 0; that is,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (20)

Similarly, lim
𝑛→∞

𝜓𝑛(𝑑(𝑥
0
, 𝑥
2
)) = 0, that is;

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) = 0. (21)

Step 2. We will prove that {𝑥
𝑛
} is a right-Cauchy sequence;

that is,
lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 0 ∀𝑘 ∈ N. (22)

The cases 𝑘 = 1 and 𝑘 = 2 are proved, respectively, by (20)
and (21). Now, take 𝑘 ≥ 3 arbitrary. It is sufficient to examine
two cases.

Case (I). Suppose that 𝑘 = 2𝑚+1, where𝑚 ≥ 1.Then, by using
Step 1 and the quadrilateral inequality together with (18), we
find
𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2𝑚+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+2𝑚

, 𝑥
𝑛+2𝑚+1

)

≤

𝑛+2𝑚

∑
𝑝=𝑛

𝜓
𝑝
(𝑑 (𝑥
0
, 𝑥
1
))

≤

+∞

∑
𝑝=𝑛

𝜓
𝑝
(𝑑 (𝑥
0
, 𝑥
1
)) 󳨀→ 0 as 𝑛 󳨀→ ∞.

(23)

Case (II). Suppose that 𝑘 = 2𝑚, where 𝑚 ≥ 2. Again, by
applying the quadrilateral inequality and Step 1 together with
(18) and (19), we find

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2𝑚

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) + 𝑑 (𝑥
𝑛+2

, 𝑥
𝑛+3

)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+2𝑚−1

, 𝑥
𝑛+2𝑚

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

) +

𝑛+2𝑚−1

∑
𝑝=𝑛+2

𝜓
𝑝
(𝑑 (𝑥
0
, 𝑥
1
))

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+2

)

+

+∞

∑
𝑝=𝑛

𝜓
𝑝
(𝑑 (𝑥
0
, 𝑥
1
)) 󳨀→ 0 as 𝑛 󳨀→ ∞.

(24)

By combining the expressions (23) and (24), we have

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘

) = 0 ∀𝑘 ≥ 3. (25)

We conclude that {𝑥
𝑛
} is a right-Cauchy sequence in (𝑋, 𝑑).

In the same way {𝑥
𝑛
} is a left-Cauchy sequence in (𝑋, 𝑑).

So it is aCauchy sequence. Since𝑋 is a complete g.q.m.s, there
exists 𝑢 ∈ 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = lim

𝑛→∞
𝑑 (𝑢, 𝑥

𝑛
) = 0. (26)

Also, we can easily see that 𝑥
𝑛

̸= 𝑥
𝑚
for whenever 𝑚 ̸= 𝑛.

Indeed, if 𝑥
𝑛
= 𝑥
𝑚
, for some 𝑚, 𝑛 ∈ N with 𝑛 < 𝑚, then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

)

≤ 𝜓
𝑚−𝑛

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ,
(27)

which is a contradiction. Analogously, we derive the same
conclusion for the case 𝑛 > 𝑚. Therefore, we conclude that
the sequence {𝑥

𝑛
} cannot have two limits due to Lemma 10.

Step 3. We claim that 𝑓 has a periodic point in 𝑋. Suppose,
on the contrary, that 𝑓 has no periodic point. Since 𝑓 is
continuous, from Step 2, we have 𝑢 = 𝑓𝑢, (𝑝 = 1) which
contradicts the assumption that 𝑓 has no periodic point.
Therefore, there exists 𝑢 ∈ 𝑋 such that 𝑢 = 𝑓

𝑝(𝑢) for some
𝑝 ∈ N. So 𝑓 has a periodic point in 𝑋.

Now, we state the following fixed point theorem.

Theorem 14. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝑓 :

𝑋 → 𝑋 be an (𝛼 − 𝜓)-contractive mapping. Suppose that

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓𝑥
0
) ≥ 1,

𝛼(𝑓𝑥
0
, 𝑥
0
) ≥ 1, 𝛼(𝑥

0
, 𝑓2𝑥
0
) ≥ 1, and 𝛼(𝑓2𝑥

0
, 𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then 𝑓 has a periodic point.
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Proof. Following the proof of Theorem 13, we know that the
sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑓𝑥
𝑛
for all 𝑛 ≥ 0 converges

for some 𝑢 ∈ 𝑋. It is sufficient to show that 𝑓 admits
a periodic point. Suppose, on the contrary, that 𝑓 has no
periodic point. Notice that𝑥

𝑛
̸= 𝑢 and𝑥

𝑛
̸= 𝑓𝑢 for sufficiently

large 𝑛. By the quadrilateral inequality, for this 𝑛, we have

𝑑 (𝑢, 𝑓𝑢) ≤ 𝑑 (𝑢, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑓𝑢) . (28)

On account of the fact that 𝜓(𝑡) < 𝑡, for all 𝑡 > 0, and
regarding the assumption (iii), we get that

𝑑 (𝑢, 𝑓𝑢) ≤ 𝑑 (𝑢, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑓𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝛼 (𝑥
𝑛
, 𝑢) 𝑑 (𝑓𝑥

𝑛
, 𝑓𝑢)

≤ 𝑑 (𝑢, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝜓 (𝑑 (𝑥
𝑛
, 𝑢))

< 𝑑 (𝑢, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛
, 𝑢) .

(29)

Letting 𝑛 → ∞ in the above equality, from (20) we find that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = 0 and so lim

𝑛→∞
𝑑 (𝑥
𝑛+1

, 𝑓𝑢) = 0. (30)

Again from (20), (26), and (30), we can obtain 𝑑(𝑢, 𝑓𝑢) = 0

and hence 𝑢 is a periodic point of 𝑓.

In what follows we give an example to illustrate
Theorem 13.

Example 15. In Example 5 define the mapping 𝑓 : 𝑋 → 𝑋 as

𝑓𝑥
def
= {

5𝑡 if 𝑥 ̸= 4𝑡 or 𝑡,

𝑡 if 𝑥 = 4𝑡 or 𝑡,
(31)

First, we can see easily that the classic Branciari contrac-
tion [5] cannot be applied in this case since

𝑑 (𝑓3𝑡, 𝑓𝑡) =
5

4
𝑠 > 𝑠 = 𝑑 (3𝑡, 𝑡) . (32)

Now we define the mapping 𝛼 from 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑥) = 𝛼 (𝑡, 4𝑡) = 𝛼 (2𝑡, 3𝑡) = 𝛼 (2𝑡, 5𝑡)

= 𝛼 (3𝑡, 5𝑡) = 1; otherwise 𝛼 (𝑥, 𝑦) = 0,
(33)

for all 𝑥, 𝑦 ∈ 𝑋. For 𝜓(𝑟) = 𝑟/2, where 𝑟 ≥ 0, we have

𝛼 (𝑥, 𝑦) 𝑑 (𝑓𝑥, 𝑓𝑦) ≤
1

2
𝑑 (𝑥, 𝑦) . (34)

Obviously 𝑓 is 𝛼-admissible and also for 𝑥
0
= 𝑡 we have

𝛼 (𝑡, 𝑓𝑡) = 𝛼 (𝑓𝑡, 𝑡) = 𝛼 (𝑡, 𝑓
2
𝑡) = 𝛼 (𝑓

2
𝑡, 𝑡) = 𝛼 (𝑡, 𝑡) = 1.

(35)

Finally 𝑓 is continuous. Therefore 𝑓 satisfies in Theorem 13
and we can see that 𝑓 has two fixed points 𝑡 and 3𝑡.

2.1. Existence Theorem. Let (𝑋, 𝑑) be a g.q.m.s and Per(𝑓
𝑋
)

denote the set of periodic points of 𝑓 : 𝑋 → 𝑋.

Property (E). For all 𝑎 ∈ Per(𝑓
𝑋
), we have 𝛼(𝑓𝑝𝑎, 𝑓𝑝+1𝑎) ≥ 1

and 𝛼(𝑓𝑝+1𝑎, 𝑓𝑝𝑎) ≥ 1, for any 𝑝 ≥ 1.

Theorem 16. Adding Property (E) to the hypotheses of
Theorem 13 (res. Theorem 14), one obtains existence of a fixed
point of 𝑓.

Proof. Suppose that 𝑎 is a periodic point of𝑓; that is,𝑓𝑝𝑎 = 𝑎.
If 𝑝 = 1, then 𝑎 is a fixed point of 𝑓; that is, 𝑓𝑝𝑎 = 𝑓𝑎 = 𝑎.
Assume that 𝑝 > 1. We will show that 𝑧 = 𝑓𝑝−1𝑎 is a fixed
point of 𝑓.

Suppose, on the contrary, that 𝑓𝑝−1𝑎 ̸= 𝑓𝑝𝑎. Then
𝑑(𝑓𝑝−1𝑎, 𝑓𝑝𝑎) > 0, 𝑑(𝑓𝑝𝑎, 𝑓𝑝−1𝑎) > 0,𝜓(𝑑(𝑓𝑝−1𝑎, 𝑓𝑝𝑎)) > 0,
and 𝜓(𝑑(𝑓𝑝𝑎, 𝑓𝑝−1𝑎)) > 0.

By Property (𝐸), we have 𝛼(𝑎, 𝑓𝑝𝑎) ≥ 1 and 𝛼(𝑓𝑝𝑎, 𝑎) ≥

1. Due to (9), we can obtain

𝑑 (𝑎, 𝑓𝑎) = 𝑑 (𝑓
𝑝
𝑎, 𝑓
𝑝+1

𝑎)

≤ 𝛼 (𝑓
𝑝
𝑎, 𝑓
𝑝+1

𝑎) 𝑑 (𝑓
𝑝
𝑎, 𝑓
𝑝+1

𝑎)

≤ 𝜓 (𝑑 (𝑓
𝑝−1

𝑎, 𝑓
𝑝
𝑎)) .

(36)

Due to property 𝜓(𝑡) < 𝑡, we get that

𝑑 (𝑎, 𝑓𝑎) < 𝑑 (𝑓
𝑝−1

𝑎, 𝑓
𝑝
𝑎) . (37)

Again by (9), we have

𝑑 (𝑓
𝑝−1

𝑎, 𝑓
𝑝
𝑎) ≤ 𝛼 (𝑓

𝑝−1
𝑎, 𝑓
𝑝
𝑎) 𝑑 (𝑓

𝑝−1
𝑎, 𝑓
𝑝
𝑎)

≤ 𝜓 (𝑑 (𝑓
𝑝−2

𝑎, 𝑓
𝑝−1

𝑎))

...

≤ 𝜓
𝑝
(𝑑 (𝑎, 𝑓𝑎))

< 𝑑 (𝑎, 𝑓𝑎) .

(38)

Consequently, we get the following contradiction:
𝑑(𝑎, 𝑓𝑎) < 𝑑(𝑎, 𝑓𝑎). Hence, the assumption that 𝑧 is not a
fixed point of 𝑓 is not true and thus 𝑧 = 𝑓

𝑝−1𝑎 is a fixed
point of 𝑓.

To assure the uniqueness of the fixed point, we will
consider the following properties.

Property (U). For all 𝑥, 𝑦 ∈ Fix(𝑓), we have 𝛼(𝑥, 𝑦) ≥ 1.

Theorem 17. Adding property (U) to the hypotheses of
Theorem 16, one obtains uniqueness of the fixed point of 𝑓.

Proof. Suppose that 𝑢 and V are two distinct fixed points of𝑓.
By property (𝑈), 𝛼(𝑇𝑢, 𝑇V) = 𝛼(𝑢, V) ≥ 1.
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Thus by 𝛼-admissibility of 𝑓 and the above relation, we
can obtain

𝑑 (𝑢, V) ≤ 𝛼 (𝑢, V) 𝑑 (𝑢, V)

= 𝛼 (𝑓𝑢, 𝑓V) 𝑑 (𝑓𝑢, 𝑓V)

≤ 𝜓𝑑 (𝑢, V) < 𝑑 (𝑢, V) ,

(39)

which is a contradiction. Therefore 𝑢 = V.

3. Consequences

Definition 18. Let (𝑋, 𝑑) be a g.q.m.s, and let 𝑓 : 𝑋 → 𝑋 be
a function satisfying

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (40)

for all 𝑥, 𝑦 ∈ 𝑋.Then𝑓 is said to be a𝜓-contractivemapping.

Theorem 19. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝑓 be a
continuous 𝜓-contractive mapping. Then 𝑓 is a unique point 𝑢
in 𝑋.

Proof. It is sufficient to take 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 20. Let (𝑋, 𝑑) be a complete 𝑔.𝑞.𝑚.𝑠, and let 𝑓 be a
continuous mapping. Suppose that there exists 𝑘 ∈ [0, 1) such
that

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (41)

Then 𝑓 is a unique point 𝑢 in 𝑋.

Proof. Take 𝜓(𝑡) = 𝑘𝑡, where 𝑘 ∈ [0, 1). It is clear that all
conditions of Theorem 19 are satisfied.

4. Conclusion

It is evident that almost all fixed point theorems, in the
context of generalized metric spaces, can be represented in
the setting of generalized quasimetric spaces. Thus, all fixed
point results obtained in Section 2 infer the analog of the
fixed point theorems in the context of generalized metric
spaces. Consequently, several results in the literature (see, e.g.,
[5, 8, 9, 19, 28]) can be derived from our main results.
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