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1. Introduction. A well known theorem of Titchmarsh [2] states

that if fEL2(0, oo) and if g is the Fourier cosine transform of/, then

G(x)=x~1Jx0g(y)dy is the cosine transform of F(y)=J™(f(x)/x)dx

(both Fand G being in L2). The same result applies to sine transforms.

In this paper we prove the following result for a wide class of func-

tions \p: If g is the cosine transform of fEL2 then

/. oo

t(y/x)g(y)dy
0

is the cosine transform of F(y) =J^x~1ip(y/x)f(x)dx. (The same result

again applies to sine transforms.) The theorem of Titchmarsh stated

above is the special case of our result in which i/' is the characteristic

function of (0, 1).

We shall prove the above result by developing properties of a cer-

tain class of bounded operators on L2.

Finally we shall construct a class of self-adjoint bounded operators

which commute with the Fourier cosine (or sine) transform.

2. Preliminaries. We shall denote Lp(0, oo) by Lp, (p = l, 2) with

the Lp norm ||/||p defined as usual as (Jo\f(x)\ "dx)llp. If T is a linear

transformation on L2 into itself then ||7|| is defined as

iub||rg|M|g||8.
eel1

We shall make use of the

Schwarz Inequality: if/, gEL2 then fgEL' and ||/g||i^||/||j||g||*,
and its

Converse:  if for each  hEL2,  \\Gh\\iSA\\h\\2 then  GEL2 and

\\G\\2fkA.

3. A Class of bounded operators on L2.

Lemma. If\p(y)^0 and Jo^(y)y~1,2dy = A < oo then for any g, hEL2

f t(y)dy f   | h(x)g(xy) | dx fk 4|a||.||«||..
J 0 J 0

Proof. For y > 0
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/, oo 1       /* °°
I gixy) \2dx = — I      I g(x) \2dx.

o y J o

Therefore, by the Schwarz Inequality,

/i I,  I,      1   I,
I h(x)g(xy) | dx S \\h\W—— \\g\\i.

o y112

Hence

/, ao r* 00 .» 00

t(y)dy I     | /z(z)g(ry) | dx S \\h\\i\\g\\2 J    ^(y)y-1/2(fy= 4||/s||2y|2.

The first part of the next theorem was proved in a much different

form by Schur [l].

Theorem 1. Let \p be non-negative with Jo^(y)y~ll2dy = A < oo. Let

\p define the linear transformation T on L2 as follows:

Tg = G means G(x) = — I    if/[ —) g(y)dy (g E L2).
x J o      \ x /

Then T is a bounded operator on L2 and || T\\ SA.

Furthermore if we define T* as

J,=°   1      / x\
— 4>[ — )f(y)dy      (}EL2),

o    y     \y /

then T* is the adjoint of T and so || T*\\ SA.

Proof. We shall first show that GEL2 and that ||G[|2g^||g||2.

For any hEL2 we have

/' °° i i C \ Kx) I      r °°   / y \ ,       ,I G(x)h(x) | dx S  I     -L——L dx j     + I —) | g(y) \ dy
o J o        x J o       \xI

/» 00 (% CO /» 00 /»  oo

I A(#) | rfa; I    ^(y) | g(xy) \ dy =   j    ^(y)dy I     | A(a;)g(xy) | dz.

The last iterated integral converges (absolutely) by the lemma justi-

fying the change in order of integration. Thus by the lemma

\\Gh\\iS A\\g\\2\\h\\2.

The converse of the Schwarz Inequality thus implies that

GEL2    and    ||c7||2 S A\\g\\2.

Since G=Tg this shows that ||7g||2^.4||g|[2 for all g£A2 and so T is a
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bounded linear transformation on L2 into itself (bounded operator)

and \\t\\ SA. The first part of the theorem is thus established.

Now choose any/, gEL2. Then with (a, b) defined as f^a(x)b(x)dx,

the usual inner product in L2, we have

(1) (Tg,/) =   rf—dx["+ (-) g(y)dy,
Jo        X Jo       \ x /

and

(2) (g, T*f) =   f   g(y)dy [     - <P (~)f(x)dx.
Jo J o       X        \ X /

The integrals in (1) and (2) converge absolutely by the lemma and

hence are equal. Thus

(Tg,f) = (g,T*f)

which, by definition of adjoint, shows that T* is the adjoint of T.

Finally, since |[F*|| =||7]|, we have ||F*|| -fkA and the proof is com-

plete.

In passing we remark that the integrals defining F and G in the

statement of Theorem 1 exist only almost everywhere.

4. Relation to Fourier transforms. We shall write Uf = g if g is the

Fourier cosine transform of/. Thus if Uf=g then

/2\i/2  r-R

g(y) = l.i.m. (— /(/) cos ytdt fEL2,
B->»   \ir /     Jo

where l.i.m. stands for limit in the L2 mean. Furthermore

g(y) = ( —)    J    f(t) cos ytdt        if/ E L' C\ L2,

the above holding for almost all y.

It is well known that ii fEL2 and Uf = g then gEL2 and Ug=f.
Moreover U is a self-ad joint operator (U= U*).

It will be readily verified that everything we prove about the

Fourier cosine transform U will also hold for the Fourier sine trans-

form.

Theorem 2. Iftyis non-negative,ipEL',and fo$(y)y~ll2dy< oo then

TV = UT*

where T, T* are as in Theorem 1.

Proof. It is sufficient to prove
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TUf = UT*f   for   fELT\L2

since L'C\L2 is dense in L2 and T, T*, U are continuous on L2.

Accordingly, choose any fELT\L2 and let

g = Uf,       G=Tg,       F = T*f.

We need only show that G= UF. With c= (2/tt)112 we have

G(*) =- - f  *(—)«(y)<*y = — f  *(—)dy f   f(t) cos ytdl
x J o      \x / x J o      \x /      Jo

c  rx rx   /y\
= — I    f(t)dl        rp I —) cos ytdy

x J o Jo      \xj

/I CO /» COf(t)dt I    4/(y) cos xyfcfy
o •* o

= c/„ t*/„Kt")C0S^

//*°°   1      /y\cos xydy I     — ^ I — Jf(t)dt

A(y) cos xydy.
o

The integral in (3) converges absolutely since \f/,fEL'. This justifies

the changes in order of integration and also shows that FEL'. Thus

G = UF which is what we wished to show.

Remark. If we set

My) = l,      o^ySU

My) = o,      y> l,

then if G = Tg, F= T*f we have

i rx rxfix)
Gix) = -      giy)dy,       Fiy) = J-^dx.

X    J  0 J y X

From Theorem 2 we see that if g= Uf then G= UF. This is the theo-

rem of Titchmarsh mentioned in the introduction.

5. A more general result. We may drop the hypothesis that^GA'

in Theorem 2. To see this choose any non-negative \p such that

fo"ipiy)y-1,2dy = A<<x> (but not necessarily such that ypEL'). For

» = 1, 2, • • •  define
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tn(y) = $(y),        l/nfkyfk n;

$n(y) =0, 0 fk y < 1/n; n < y < oo.

Then fg\(/n(y)y~ll2dy = An<'x and, by the Lebesgue convergence

theorem,

lim An = A.
n—>«

Moreover if T, Tn are defined by \[/, \p„ as in Theorem 1 then T—Tn

is defined by ip—\p» and thus, by Theorem 1,

(4) \\T - Tn\\ fk A - An^0 as «-+«>.

But \pn obeys the hypotheses of Theorem 2. Hence

TnU = VT*.

Letting n—> oo and using (4) we have

TV = VT*.

We have thus shown that TU= UT* even for T defined by a non-

negative xp for which we assume only fo^P(y)y~ll2dy< oo. We now

state this in detail.

Theorem 3. Let \p be non-negative with foi/(y)y~llidy< oo. Define

the linear transformation T on L2 as follows:

1   r°°   /y\
Tg = G means G(x) = — I    ^ I — I g(y)dy.

x J a     \ x I

Then T is a bounded operator on L2. Moreover if T* is the adjoint of T

and U is the Fourier cosine transform then

TV = VT*.

Remark. This theorem, translated back into classical terminology,

is the generalization of the theorem of Titchmarsh stated in the intro-

duction.

6. Operators that commute with the cosine transform. In order

for T to be self-adjoint (T= T*) we see from the definition of T, T*

in Theorem 1 that it is sufficient to have

~ *( — ) = — *( — )» 0<X,y<co;
x      \x/       y      \y/

or
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(5) +(y) = — iM—V 0 <y <  co.
y     \y /

Suppose then that we have a non-negative function xp defined on (0, 1 ]

such that

(6) J    <P(y)y-1l2dy < oo
J o

and define xp(y) for y>l by

*(y) = — * ( — ), 1 < 3- < co.

y     \y/

Then if yi < 1 we have

i> (—) = ynA(yi)

so that^(y) = (l/y)^(l/y) for all y>0 (i.e. (5) holds). From (5) and

(6) we have

f   Hy)y~ll2dy =   f   yp (—j y~3l2dy =   f \P(y)y-V2dy < oo .

This and (6) imply

\p(y)y-ll2dy < co

o

so that the hypotheses of Theorem 3 hold. From (5) we conclude

that the T defined by xp is self-adjoint so that we have the following

consequence of Theorem 3.

Theorem 4. Let xp be non-negative on (0, 1 ] with flxp(y)y~ll2dy < co.

Define xp(y) = (l/y)^(l/y) for y > 1. Then if T is as in Theorem 1

TU = UT.

In other words T commutes with the Fourier cosine transform.
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