CERTAIN OPERATORS AND FOURIER TRANSFORMS
ON L?

RICHARD R. GOLDBERG

1. Introduction. A well known theorem of Titchmarsh [2] states
that if f&EL%(0, «) and if g is the Fourier cosine transform of f, then
G(x)=x"1fg(y)dy is the cosine transform of F(y)=[; (f(x)/x)dx
(both F and G being in L?). The same result applies to sine transforms.

In this paper we prove the following result for a wide class of func-
tions y: If g is the cosine transform of f& L? then

Cl) = a f “u (/e dy

is the cosine transform of F(y) = [y x~(y/x)f(x)dx. (The same result
again applies to sine transforms.) The theorem of Titchmarsh stated
above is the special case of our result in which ¢ is the characteristic
function of (0, 1).

We shall prove the above result by developing properties of a cer-
tain class of bounded operators on L2

Finally we shall construct a class of self-adjoint bounded operators
which commute with the Fourier cosine (or sine) transform.

2. Preliminaries. We shall denote L?(0, «) by L?, (p=1, 2) with
the L? norm ||f||, defined as usual as ([§|f(x)| ?dx)V». If T is a linear
transformation on L? into itself then ||T}| is defined as

lub || Tgl|o/| gl
oeL?
We shall make use of the
ScHWARZ INEQUALITY: if f, g€ L? then fg€ L’ and ||fgl|: <||fllllgl|2
and its

CoNVERsSE: if for each h€L?, ||Gh||\<A|#|; then GEL? and
lGll.=4.

3. A Class of bounded operators on L2.
LeMMA. If ¢(y) 20 and [§y¥(y)y~2%dy=A <  then for any g, hEL?

fo "y ) " M) | dx = allHdle]

Proor. For y>0
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-] 1 -]
2y = — 2y,
L|wa yﬁimﬂx

Therefore, by the Schwarz Inequality,

[ Viagtan | a5 il il

1/2

Hence
[ vy [V neasten | e gl [T vstiay= Al
0 0 0

The first part of the next theorem was proved in a much different
form by Schur [1].

THEOREM 1. Let { be non-negative with [y (y)y~V?dy=A < . Let
¥ define the linear transformation T on L? as follows:

h—GmmGw——f ()MMf (g€ L.

Then T is a bounded operator on L? and | T|| £ A.
Furthermore if we define T* as

® 1 x
7' = F means #(5) = [ . (7)f(y)dy ye 1,

then T* is the adjoint of T and so | T*|| < 4.
Proor. We shall first show that GEL? and that ||G||.<4]|g]-.
For any h&L? we have

[T lewnas = [ 'h(x)ldf o(2)1 6001 a5

= [Tl Lo [ s s L ay = [Ty [T regten | an

The last iterated integral converges (absolutely) by the lemma justi-
fying the change in order of integration. Thus by the lemma

1GH[x = All ][]
The converse of the Schwarz Inequality thus implies that
Ge L and [|Gl: = 4flgls.
Since G = Tg this shows that || Tg||s < 4||g||; for all gEL? and so T'is a
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bounded linear transformation on L2 into itself (bounded operator)
and ||T|| £ 4. The first part of the theorem is thus established.

Now choose any f, g& L2 Then with (a, b) defined as [ a(x)b(x)dx,
the usual inner product in L?, we have

(1) @) = [ ) ’% s [ "y (1) 8(5)d,
and
@ 1 = [ s [ — v(2) s

The integrals in (1) and (2) converge absolutely by the lemma and
hence are equal. Thus

(Tg, /) = (g, T*)

which, by definition of adjoint, shows that T* is the adjoint of T.
Finally, since || T*| =||T]|, we have ||T*|| <4 and the proof is com-
plete.

In passing we remark that the integrals defining F and G in the
statement of Theorem 1 exist only almost everywhere.

4. Relation to Fourier transforms. We shall write Uf =g if g is the
Fourier cosine transform of f. Thus if Uf=g then

2 1/2 R
gy) = lki'm' (—) f f(®) cos ytdi fE L2,
0

— 00 T

where l.i.m. stands for limit in the L? mean. Furthermore
2 1/2 0
g(y) = (—) f J(®) cos ytdt iffe L'N Ly
™ 0

the above holding for almost all y.

It is well known that if f&L? and Uf=g then g&€L? and Ug=f.
Moreover U is a self-adjoint operator (U= U*).

It will be readily verified that everything we prove about the
Fourier cosine transform U will also hold for the Fourier sine trans-
form.

THEOREM 2. If { is non-negative, Y EL’, and [ (y)y~1?dy <  then
TU = UT*
where T, T* are as in Theorem 1.

Proor. It is sufficient to prove
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TUf = UT* for fE L' N L?

since L'ML? is dense in L2 and T, T*, U are continuous on LZ.
Accordingly, choose any f& L’ L? and let

g = Uf, G = Tg, F = T*f.
We need only show that G=UF. With ¢=(2/7)'/? we have

Gx) = — f o(2) sty = [ 0(2) s [0 cos it
= —:—:-j; f(t)dlf0 9//(%) cos yidy

@  =c f " fa f “y(y) cos aytdy

= f @df ( )cosxydy
= cfo cosxydyj;w—‘p(f)f(t)dl

= cf F(y) cos xydy.
0

The integral in (3) converges absolutely since ¢, fEL’. This justifies
the changes in order of integration and also shows that FEL'. Thus
G = UF which is what we wished to show.

REMARK. If we set

'/’(y) = 1’ 0= y
‘l/(y) =0, y > 1,
then if G=Tg, F=T%*f we have

A

1 z 0
6@ == [y, Fo = [ @d

Yy

From Theorem 2 we see that if g= Uf then G= UF. This is the theo-
rem of Titchmarsh mentioned in the introduction.

5. A more general result. We may drop the hypothesis thaty &L’
in Theorem 2. To see this choose any non-negative ¢ such that
Jov(y)y Vidy=A < » (but not necessarily such that ¢y €L’). For
n=1,2, -+ - define

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1959] CERTAIN OPERATORS AND FOURIER TRANSFORMS ON L2 389

¥a(y) =¥(), 1/n=y=n;
¥a(y) = 0, 0= y<l/m;n<y< o,

Then [o¥a(y)y Y2dy=A4,<x and, by the Lebesgue convergence
theorem,

lim 4, = 4.

n— o

Moreover if T, T, are defined by ¥, ¥, as in Theorem 1 then T— T,
is defined by ¢ —y,, and thus, by Theorem 1,

(4) |IT-T| =4 - 4,—0 asnm— oo,
But ¥, obeys the hypotheses of Theorem 2. Hence

T.U = UT.*.
Letting —  and using (4) we have

TU = UT*.

We have thus shown that TU= UT* even for T defined by a non-
negative ¢ for which we assume only [oy¥(y)y~V2dy< . We now
state this in detail.

THEOREM 3. Let ¢ be non-negative with [3y(y)y~Y2dy < ». Define
the linear transformation T on L2 as follows:

1 0
Tg = G means G(x) = —f ¢<l) g(y)dy.
x 0 X
Then T is a bounded operator on L2. Moreover if T* is the adjoint of T
and U 1s the Fourier cosine transform then
TU = UT*.

REMARK. This theorem, translated back into classical terminology,
is the generalization of the theorem of Titchmarsh stated in the intro-
duction.

6. Operators that commute with the cosine transform. In order
for T to be self-adjoint (T=T*) we see from the definition of T, T*
in Theorem 1 that it is sufficient to have

1 y 1 x
_'/’<—>=_'/’('—>) 0<zxy< o
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1 1
) ¢(y>=—¢(—>, 0<y< .
y y

Suppose then that we have a non-negative function ¢ defined on (0, 1]
such that

1

(6) f Yy My <
0

and define ¢(y) for y>1 by

1 1
¢(y)=—¢(—>, 1<y< .
y y

1
‘I’(_‘> = yw(y)
Y1

so that Yy (y) =(1/y)¢(1/y) for all y>0 (i.e. (5) holds). From (5) and
(6) we have

0 0 1 1
f Y(y)y iy = f sl/(;) y 3y = f Y(y)yVidy < .
1 1 0

This and (6) imply

Then if ¥ <1 we have

f Y(y)y iy < =
0

so that the hypotheses of Theorem 3 hold. From (5) we conclude
that the T defined by ¢ is self-adjoint so that we have the following
consequence of Theorem 3.

THEOREM 4. Let  be non-negative on (0, 1] with [3(y)y~2dy < =.
Define Y(y) =(1/y)¥(1/y) for y>1. Then if T is as in Theorem 1

TU = UT.
In other words T commutes with the Fourier cosine transform.
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