
REQUEST: A testbed relational database management
system for instructional and research purposes

by BOGDAN CZEJDO and MAREK RUSINKIEWICZ
University of Houston
Houston, Texas

ABSTRACT

A database management system designed for instructional use should offer facilities
usually not required in a commercial environment. In particular, it should support
a wide range of user interfaces, access methods, and internal organizations in a
modular and flexible way, so that the effect on the system performance of choosing
one of them may be illustrated.

REQUEST is a relational database management system that, in addition to the
usual data definition and data manipulation functions, offers facilities for use in an
instructional environment. Various nonprocedural query languages are supported
within a single system, using unified database dictionaries. Cross-translation be­
tween various query languages is allowed. The results of every important phase of
the query transformation during its execution are available to the user.

Preliminary experience with the system has shown that it can significantly facili­
tate teaching important concepts of the database system organization. At the same
time the system has been used as a testbed in many research and development
projects.

531

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

INTRODUCTION

With the changing emphasis in data processing from algo­
rithms to data, courses in database management are assuming
a central position in undergraduate and graduate computer
science curricula. When teaching a database-related course,
the instructor usually faces the following alternatives1

: either
to use a commercial type DBMS (if available) or to let the
students design and implement procedures functionally equiv­
alent to some parts of the DBMS. Both approaches have
significant drawbacks.

Commercial DBMSs are (very expensive) software prod­
ucts for the business or scientific, production-type environ­
ment. They are, naturally, concerned with problems of re­
liability, high performance, backup and recovery, data
integrity, etc. Such systems are not suitable for use on usually
limited and overloaded campus computer installations. The
more serious disadvantage of their use for teaching purposes
is that, however sophisticated they may be, they are usually
used as "black boxes." Not only are the users not allowed to
modify the source programs but they cannot even read and
analyze them (even if the source code is available the details
of performance and security obscure and distract from the
basic concepts that support the instructional standpoint). As
a result, students get limited experience in writing simple
application programs in a database environment and are
never exposed to the internal organization of the DBMS. This
situation is, of course, highly undesirable.

Letting the students design and implement their own rou­
tines to perform some DBMS-flavored data definition and
data-manipulation. functions seems to be preferred. The great
danger of this solution is that the necessary scope limitations
and simplifications as well as the small size of such "data­
bases" tend to underemphasize the fundamental differences
(at least within current technology) between accessing objects
in main memory and secondary storage. As a result, students
accustomed to Pascal programming and algorithm complexity
analysis tend to develop intuitions that are pathetically inap­
propriate in a database environment, particularly as far as the
suitability of data structures and search algorithms are con­
cerned.

A Relational Query System (REQUEST) was designed at
the University of Houston to alleviate the above problems. To
facilitate its use in an instructional environment the following
general design objectives were adopted.

1. The system should support a wide variety of user inter­
faces, access methods, internal data organizations,
query optimization, and concurrency control techniques
in a modular and flexible way, so that the effect of choos-

REQUEST: A Testbed Relational DBMS 533

ing one of them on the user's interactions and system
performance can be illustrated.

2. To facilitate the learning of nonprocedural query lan­
guages it should allow the student to analyze expressions
based on the relational algebra or the relational calculus
(queries, integrity constraints, and predicate locks),
translate them, and investigate their equivalence or in­
tersections.

3. As a learning tool the system should support an inter­
active mode in which a user may trace the execution of
a query.

4. The reliability and peformance aspects should be as­
signed secondary importance. Rather, assuming the
large number of relatively small databases, we should"
concentrate on keeping the size of the system manage­
able so it may be used in an instructional environment
with minimal effect on the computer installation.

REQUEST SYSTEM STRUCTURE

The general structure of the system with its main modules and
the interactions between them is illustrated in Figure 1. As can
be seen from the schema the system supports the usual range
of functions expected in a relational DBMS, including
parsing, optimization, and interpretation of query language
expressions. However, in addition to the above the system
includes a number of facilities for instructional use that are not
available in commercial DBMSs.

1. Various nonprocedural query languages including user­
defined languages are supported within a single system.
They are decomposed into a standardized parse tree
based on the unified database dictionary system.

2. Cross-translation between various query languages is al­
lowed.

3. A facility to convert query trees back into query expres­
sions in supported languages is provided.

4. The results of every important phase of the query trans­
formation during its execution are available to the user.
A facility is provided to examine a query, its equivalent
algebraic structure, corresponding parse tree before and
after optimization, the access paths selected by a low­
level optimizer, and the intermediate pseudocode used
by the interpreter.

5 . ..tA,1S a query in interpreted, not only the final resulting
relation but also the created temporary relations are
available to the user; that is, single step tracing is sup­
ported.

REQUEST was designed as a relational DBMS running un­
der VAXlVMS. It is intended to support many users concur-

From the collection of the Computer History Museum (www.computerhistory.org)

534 National Computer Conference, 1984

L2RANSLATION [

DATABASE

Figure 1-The general structure of the system

rently in both interactive and batch modes. The main modules
of the system are discussed briefly below.

Data Definition

The main functions of the DEFINE module are to describe
the intension of a databasse and to create and update an
integrated data dictionary system. The dictionary is a col­
lection of related files containing the information about data­
base objects stored under the control of the DBMS. The
dictionaries are not, however, stored as relations accessible
through the system's query facility (as, for example, in SQLI
DMS).2 The reasons for this design decision are pedagogical:
it was found that, for beginners, introducing a clear distinction
between dictionary relations and data relations is desirable.
This enables users to intuitively identify the dictionaries as
containing "meta-information" about the data structure. The
data dictionaries describe the following:

1. Database relations, both "real" (base tables) and "vir­
tual" (views).

2. Attributes of every relation. For each attribute the cor­
responding domain together with the "null" value and
attribute's location are recorded.

3. Primary and secondary keys for every relation.
4. Integrity constraints.
5. Security constraints such as security clearance required

for every type of operation, passwords, etc.
6. Authorized system users with the information about

passwords, access grants received, user's security clear­
ances, etc.

The data definition operations can be performed on line,
dynamically, in a multiuser environment. Proper synchroni­
zation is enforced, if necessary, by the concurrency control
module. Relations can be added or dropped; attributes can be
added, dropped, modified, or designated as indexes at any
time.

Data Update

The update operations (INSERT, DELETE, MODIFY)
are performed a record at a time. This was found to be an
acceptable solution, because the volume of volatile data ma­
nipulated under REQUEST's control is usually small. In addi­
tion it allows the concurrency control to be much simplified
and a higher degree of concurrency between conflicting trans­
actions to be achieved.

The updates are performed in a user's working space and
installed in the database in accordance with the "two-phase­
commit" policy. 9 An automatic roll back is performed in case
of system malfunction.

Query Decomposition

REQUESTis intended to support a multilanguage environ­
ment: a database described by a uniform dictionary system
can be queried by any of the query modules corresponding to
the different languages. Queries specified directly as se­
quences of operations of relational algebra and relational cal­
culus or expressed in a user-defined language are also sup­
ported. Query decomposition is performed by a parser whose
functions include validating relations and attributes names,
checking the domains of attributes and constants used in com­
parisons, and generating an (un optimized) parse tree.

Query Optimization

While constructing a parse tree the parser does not consider
the efficiency of evaluating the tree. The problem of query
tree optimization has been substantially researched. 3

,10,11 The
query optimizer uses several heuristic rules to convert the tree
into an equivalent one that could be evaluated faster. Some of
these are as follows 12:

1. selections should be performed as early as possible; that
is, select operators should be pushed toward the leaves
of the expression tree,

2. selections and projections involving one file should be
combined, when possible, so that only one scan of the
file is required.

3. joins should be combined with the following projections,
4. if the query involves a common subexpression such as a

view it is often beneficial to evaluate it once and then use
the resulting relation in subsequent computations.

The optimization rules used here are based on commutative
and associative algebraic laws for projections, selections,

From the collection of the Computer History Museum (www.computerhistory.org)

joins, and Cartesian products and allow one to convert an
expression into an equivalent one. These rules can be applied
independently of the information about the internal organiza­
tion of files used to store the relations.

Path Selection and Query Interpretation

Before a join or a selection is performed, the file(s) should
be preprocessed; in particular we should take advantage of
existing secondary indices and ordering of the files (if applica­
ble to the operation).4 For every basic operation a decision is
made on how it should be implemented, taking into account
the cardinality of the relation, the number of distinct values
occurring in each attribute's domain, the expected reduction
of a table as a result of select operation, the existing secondary
indices, etc. If a temporary table has to be created and used
as an input argument for a subsequent join or selection oper­
ation, the relevant secondary indices should be created while
constructing the table.

Access Method

REQUEST uses its own access method implemented on top
of the VAXlVMS Record Management Services (RMS). Ac­
cess method routines that could be invoked from a high-level
programming language perform basic file and record manipu­
lation functions. The decision to provide an interface to the
RMS rather than implement a totally independent file system
was made to achieve an acceptable speed of operation. The
file organizations include index sequential, hashing, and ex­
tendible hashing. 13

REQUEST Batch

Both data definition and data manipulation facilities dis­
cussed so far are available to the user in an interactive mode
from a terminal. In many applications an access to a database
from a general-purpose host programming language is re­
quired. In REQUEST, access to a database can be achieved
in the embedded mode through one of the two available inter­
faces:

1. a Pascal preprocessor for SQL that produces relatively
small executable modules by performing the syntax er­
ror checking, name validation, and access path selection
at the preprocessing stage so that only selected relevant
modules of the DBMS need to be linked with the host­
language program

2. a general call facility that allows the DML statements to
be executed from any programming language obeying
VMS calling and parameter-passing conventions

Concurrency Control

To support a multiuser environment it is necessary to sched­
ule conflicting transactions using some concurrency control
mechanism. The well-known concept of serializability is em­
ployed to assure that both read-write and write-write conflicts
are scheduled according to some serialization order. 9 A wide

REQUEST: A Testbed Relational DBMS 535

variety of concurrency control algorithms proposed in the
literature can be classified into three main groups:

1. locking-based methods (exclusive and shared locks,
predicate locks, intent locks)

2. timestamp-ordering-based methods (basic T/O, conser­
vative T/O, multiversion T/O)

3. circulating-permit-based algorithms

A transaction scheduler is a program module that performs
the following functions: it keeps track of the status of each
data item in the database; it receives transaction's requests to
access a data item; it either allows the transaction to proceed
(updating the status indicators) or rejects it if the requested
operation is in conflict with other transactions in progress.
Depending on the concurrency control algorithm used, the
rejected transaction will be queued, or under some algorithms
it will be rolled back and restarted. Communication between
transactions and the scheduler is implemented through mail­
boxes and event flags.

It was found that an intent locking scheme capable of sup­
porting different granularities of locks seems to be particularly
appropriate in a system that like REQUEST, supports both
record-at-a-time and set-at-a-time operations. 8

Query Translation

Translation of queries is an important facility that enables
the user of an instructionai system to see the equivalence of
expressions specified in different languages. 7 Some transfor­
mations such as reduction of relational algebra to tuple-rela­
tional calculus are well described in the literature. 12 Others,
such as the direct transformation from SQL to QUEL need to
be investigated. The approach adopted in REQUEST is based
on formulating translation rules and employing them to per­
form symbol and tree manipulation.5

,6

Query Construction

Query construction is a unique feature of the instructional
DBMS. This module accepts the parse tree based on rela­
tional algebra as an input. It produces as an output query
expressions in any of the supported languages including a
user-defined language. This feature is not necessary in com­
mercial DBMSs but very useful for student training. In addi­
tion, this facility provides an alternate way of translating que­
ries, by first decomposing a query into a parse tree and then
constructing a query expression in a different language.

CONCLUSIONS

The development of the system started in 1980 as a research
project of the authors at the Department of Computer Science
of the University of Houston. The first version, which consti­
tutes a functional subset of the system, was completed in 1981.
Since then it has been used successfully both as a teaching tool
in database courses and as a testbed system for research.
Currently available modules include, among others, inte­
grated data dictionary system, parsers, optimizers and an in-

From the collection of the Computer History Museum (www.computerhistory.org)

536 National Computer Conference, 1984

terpreter for SQL, locking and TIO based transaction sched­
ulers, etc. An important implemented part of the system is a
friendly query interface that guides an inexperienced user
through the database definition process and allows him to
formulate queries based on the relational algebra in a menu­
driven mode. Other parts of the system including the query
translation and query construction modules are currently be­
ing designed and developed.

The preliminary experiences with the system have shown
that it can significantly facilitate teaching of the important
concepts related to the database system organization. At the
same time, REQUEST has been used in many research and
development projects including the design of an integrated
text and graphics database system. 14 Although the initial re­
sults are quite satisfactory, a number of important research
issues will have to be resolved before the system can achieve
its full functional scope.

REFERENCES

1. Bradley, J. File and Data Base Techniques. Holt, Rinehart and Winston,
1981.

2. Astrahan, M. M., et al. "System R: Relational Approach to Database
Management." ACM TODS, 1 (1976).

3. Smith, J. M., and Yang, Y. T. "Optimizing the Performance of a Relational
Algebra Database Interface." Comm. ACM, 18 (1975), pp.

4. Grifiths, P. P., et al. "Access Path Selection in a Relational Database
Management System." R. J. 2479, IBM San Jose, 1970.

5. Czejdo, B. "Transformation of Universal Algebraic Expressions in PAS­
CAL," ACM Computer Science Conference, Kansas City, February 12-14,
1980.

6. Czejdo, B. "ALGEBRA-Language for Automatic Transformation of
Universal Algebraic Expressions," ACM Computer Science Conference,
St. Louis, February 24-26, 1981.

7. Czejdo, B., and M. Rusinkiewicz. "Query Transformation in an Institu­
tional Database System." ACM SIGCSE Bulletin, 1 (1984), pp. 217-223.

8. Gray, J. N., et al. "Granularity of Locks in a Large Shared Database."
Proc. 1st Int. Conf. on VLDB, September 1975.

9. Bernstein, P. A., and Goodman, N. "Concurrency Control in Distributed
Database Systems." Computing Surveys, 13 (1981), pp.

10. Yao, S. B. "Optimization of Query Evaluation Algorithms," ACM TODS,
4 (1979), pp.

11. Aho, A. V., et al. "Equivalence of Relational Expressions." SIAM 1.
Computing, 8 (1979), pp.

12. Ullman, J. D. Principles of Database Systems. Computer Science Press,
1983.

13. Fagin, R., et al. "Extendable Hashing-A Fast Access Method for Dy­
namic Files", ACM TODS, 4 (1979), pp. 315-344.

14. Rusinkiewicz, M., and Li, Y. Y. "Textual and Graphics Database for SAL
Geophysical Models." University of Houston, SAL Review, 10 (1982), pp.
417-423.

From the collection of the Computer History Museum (www.computerhistory.org)

