
We can achieve more optimal
function assignments betwveen

microcode and software levels by
applying techniques described herein

to statkcally or dynamically
mkrprgrmnd prcso design

M.Co Escher, Ascending and Descending, 1960 © M.C. Escher Heirs c/o Cordon
Art, Baarn, Holland

Automated Vertical Migration
to Dynamic Microcode:

An Overview and Example
Robert I. Winner, Institute for Defense Analyses

Edward M. Carter, United States Air Force Academy

F irmware engineering provides a method for system Modern computer systems can be viewed as hierarchically
tuning-one of its most promising uses. A technique arranged interpreters, each level interpreting the next level up and

F called vertical migration moves functions from high- providing it with primitive operations. Using primitive operations
level applications into control store, improving performance found in the macroarchitecture, forexample, microprograms inter-
appreciably. The term dynamic microprogramming describes the pret machine language instructions.
loading of a control store with different functions throughout the We shall refer to one skill involved in designing a computer sys-
lifetime of a process (including the operating system). We can have tem (that is, proper function placement in specific hierarchical
a useful system-tuning environment ifwe select vertical-migration levels) as architecture binding. Such placement requires that sys-
candidates in an automated manner, and if we migrate them to tem architects (1) make subjective judgments regarding applica-
control store in a transparent manner. tions to be run on machines and (2) optimize performance for the

most likely applications-resulting in architectures tuned for a
specific problem class. Unless architects have perfect foresight,

An overview the resulting architecture may be unsuited for other problems.
This article overviews vertical migration and dynamic micro- Myers' describes this architectural tendency to improperly sup-

programming, highlights their benefits, and (concentrating on port many problems as the "semantic gap." One solution would
interfaces between the various involved software elements) delay binding until the problems to be run are described. Verti-
describes a general vertical-migration system. We will describe an cal migration, allowing the late binding of an architecture, moves
exemplary automated vertical-migration system called ATOM functions from one computer system level to another. Primitives
(abstract type-oriented migration) and will discuss and relate a supporting an abstract data type (a queue data structure, for exam-
general dynamic microprogramming management scheme to the ple) might be moved from an application program into a program-
example implementation. ming language-as in the Ada rendezvous. Primitives might also

6 0740-7459/86/0700/0006$01.00 (1986 IEEE IEEE SOFTWARE

be moved into system microcode, providing new machine level provides specific solutions-we neither need nor desire general-
instructions and effectively redefining machine architecture. ity. Holtkamp also observes that control store entry/exit overhead,
Colwell2 discusses some benefits of this migration type. expensive in a general-purpose machine language instruction set,

Reduced-instruction-set computers (RISCs), another contem- can be easily overcome in a tailored vertical-migration envi-
porary approach to architecture design, provide low-level, ronment.
language-directed primitives and require compilers to map high- If the microarchitecture provides for parallelism in microin-
level language constructs onto these primitives.3 The approach struction execution, as in architectures known as horizontal
reported in this article has characteristics of both the reduced and machines, we improve performance even more. In these machines,
the complex instruction set approaches. Vertical migration com- microinstructions are simply collections of micro-orders with each
piles directly to RISC-like microcode where appropriate, thereby micro-order controlling separate, concurrent functional proces-
creating a complex "instruction" exactly matching software sor units. For example, we can perform fixed and floating-point
needs. arithmetic operations, address generation, and memory access
Dynamic microprogramming-the alteration of a computer's concurrently. Packing micro-orders as densely as possible, with

control store contents while the system is running-requires writa- no contention for devices or operands, is the key to performance
ble control store (WCS) rather than read-only (ROM). Processors improvement here. Such microinstruction packing is called com-
often have conventional machine language emulators in ROM paction. When we migrate functions into microcode, the microin-
with optional WCS for user microprogramming. However, we struction sequences we would have to execute to interpret
don't know of any current commercial system providing more conventional machine language can almost always be compacted
than the most rudimentary WCS support. A few vendors provide or otherwise optimized.
so-called Fortran accelerators, microprograms implementing All vertical-migration, dynamic microprogramming systems
some intrinsic Fortran mathematical functions. While some oper- seek to increase processor-bound workload performance. To
ating systems may support loading WCS once during cold starts, accomplish this, we require the following steps:
no commercial product provides serious support for user- * Application programs must be analyzed to determine highly
implemented dynamic microprogramming. profitable migration candidates;

Vertical-migration performance benefits depend upon whether * The best set from among those candidates must be selected;
or not microcode written to solve a specific problem will perform * The selected set of candidates must be translated into
better than conventional generic code aggregated to solve the same microcode;
problem. In many contemporary machine architectures, instruc- * Macro- and micro-objects must be linked into memory
tion sets are designed to solve broad problem classes-a reality images;- Micro-objects must be archived;influenced as much by marketing as by technical decisions. If the * Microimages must be associated with running processes;
instruction set is too specific, the market is limited and the * WCS must be managed as a virtual store; and
machine's commercial success is similarly constrained. * All of this must be accomplished with minimum overhead
Microprogramming enables us to place new instructions in the and user effort.
machine instruction set, thereby tailoring the architecture for our
specific problem solutions. Tomlinson Rauscher pioneered this
approach.4 A model vertical-migration system

Vertical migration improves performance by reducing both Vertical-migration systems consist of processors and data sets.
fetch/decode overhead processing for machine level instructions Processors implement various parts of a vertical-migration policy.
and the number of executed microinstructions. Without vertical A general model description follows, and the next section illus-
migration, we must implement functions by a machine level trates our ATOM implementation of this model.
instruction sequence with each instruction fetched from memory,
decoded by underlying hardware or firmware, and interpreted by The model. Given a debugged software system implementing
a series of microinstructions. Fetch/decode performance improve- some functions, vertical-migration systems must do two things:
ment from vertical migration results from performing the normal (1) decide what software parts would migrate most profitably and
fetch/decode/execute cycle only once for the entire function. This (2) migrate and translate those parts into micro-objects. The inter-
cycle is required only for the machine level instruction that causes face between vertical migration and dynamic microprogramming
an entry into WCS. Therefore, instead of a memory fetch series, amalgamates micro-objects into usable structures. Dynamic
we have only one; and instead of decoding many machine level microprogramming causes those structures to be used at the right
instructions, we decode only one. moments.
We can further improve performance with a tailored instruc- These usable structures are called microimaWges (see Figure 1).

tion set. Holtkamp5 describes the overhead of interpreting a Microimage creation is sensitive to both vertical-migration and
general-purpose machine instruction set. This can involve addi- dynamic microprogramming policies; consequently, creating
tional mnicroinstructions allowing many different addressing microimages from micro-objects can be viewed as an interfacing
modes, condition code settings, and operands. A tailored instruc- between the two systems.
tion set avoids code added for generality because tailored code Figure 1 illustrates, in coarse steps, software progress from ver-

July 1986 7

Macro-objects Micro-objects

Macroimage builder Microimage builder

Macroimage Microimage

Primary P Dynamic
memory maaermnae
manager _ mng

Operating
system

Figure 1. A vertical migration to dynamic microprogramming system.

tical migration to the execution point. Vertical migration splits formance improvements when used in manual and semiautomatic
software objects between macro- and microlevels. Image builders migration experiments. In the granularity trade-off (it seems) the
correspond roughly to linkage editors-they are sensitive to finer the resolution, the smaller the probability of wasting WCS
vertical-migration policy in the way they choose objects to link, space-but the more complex the profitability analysis. In addi-
and are sensitive to the operating system's dynamic tion, larger grains such as subprograms and abstract data types
microprogramming in the nature of produced images. could yield information about object relationships that could, in

turn, help predict profits.
Profitability. Profitability decisions that vertical-migration sys- For example, we can predict local profit by comparing expected

tems take must be based on several factors. A set of candidates individual instruction execution times in a given object's macro-
exists; the system scrutinizes this set and assigns a profitability and microforms and taking into account loops and branches.
indication. The resulting set may be larger than the original. This Global profit prediction that must later consider object relation-
first profit is an object's "local" profit. It describes profit the sys- ships, however, might benefit from the fact that object A is an
tem predictg will be realized in one execution of that object com- abstract data type derived from object B.
pared to macrolevel execution. It ignores overhead in getting the
object into WCS and interaction with other macro- or micro- Scope of analysis. Another policy issue in the profit analysis
objects. phase is scope of analysis. We may intend a single microimage to
New candidate sets may be larger than originally due to be loaded when the system is bootstrapped, and used until the sys-

granularity of analysis. One basic part of vertical-migration policy tem is shut down-as with conventional instruction set emulators
is the conceptual object size that can be migrated. Example grains and Fortran accelerators. In such cases, to determine microimage
are arbitravry machine language sequences, intermediate code makeup requires that scope of analysis be over a large collection
statements, intermediate code sequences, high-level statements, of programs.
high-level sequences, high-level subprograms, and abstract data On the other hand, suppose we want language-specific microi-
types. If grain size for analysis is smaller than macro-object size, mages;- there might be a Pascal microimage,6 for example, or one
then new and smaller objects may be extracted for migration. for each language implemented on a machine such as the Bur-
Thus, assigned candidate sets may be larger than original sets. roughs B-1700.7 Again, the scope of analysis covers a large col-

While the choice of granularity as related to workload remains lection of programs.
to be investigated, all listed approaches have shown significant per- Yet another possibility exists, that the scope be over a small class

8 IEEE SOFTWARE

otwa

Static analyzer Ordinary compilation

Compiler

Ordinary
S 0* . linkage

Profit predictions and Macro-objedtor
interrelationship information

Ordinary
bound code

Candidate Dynamic
selebctor t analyzer xecutions

Profite ictions

. O1Microcompiler
Macro-objects

Micro-objects

Figure 2. Analysis, selection,
Macroimage Microimage translation, and image

builder builder building.
..~~~~~~~~~~~~~~~~~~~~~~~ulig

of programs-such as some processor-bound library package or quite effective, so its use is worth considering.
single application program. TheATOM experiment proposed that Having assigned predicted profits to candidate objects, we need
scope of analysis should cover the lexical visibility scopes of a a policy and mechanism for candidate selection and a mechanism
block-structured language like Ada. Here, several microimages for translation to microcode. Figure 2 illustrates relationships
could exist for a given program. Different processes simultane- between analysis, selection, and translation.
ously executing this program might each be using different microi-
mages. Analyzing over scopes could capture the fact that optimal Candidate selection. Candidate selection policy depends on the
microimage selection may depend on input data. WCS management scheme in use. We assume that a microimage
The scope of analysis choice could be critical in total system must fit into physical WCS; that is, WCS is not paged. Otherwise,

performance because dynamic microprogramming systems must candidate selection must be driven by a working-set analysis.8
manage more if scope is smaller. However, we will describe a Assuming we have a fixed, maximum rnicroimage size, we can split
means of getting around this in the microimage selection strate- candidate selection into two parts: profit revision and image pack-
gies section. For the time being, consider analysis to result sim- ing. Profit revision inputs objects and their local profits, as well
ply in a set of objects and associated local profits such that any as relationship information that must be produced during the
object could in principle be translated either to macromachine or analysis phase. The type derivation relationship mentioned at the
micromachine code. end of the profitability section exemplifies this information; its

use exemplifies policy applied to revise local profits.
Analysis. We now turn from profit prediction policies to Image packing means fitting as much profitability as possible

mechanisms. Two analysis types can be applied to the problem: into an image-the problem is that objects vary in size. Packing
static and dynamic. In static analysis, we analyze a program's images optimally is an NP-complete problem; therefore, we need
source or intermediate code to find relative processor-use inten- knapsack heuristics. In our system, we used a greedy algorithm.
sities of the various parts. In dynamic analysis, we translate code Holtkamp and Wagner5 used a more complex heuristic success-
into conventional machine language and execute with perform- fully, but in a far more restricted scope of analysis.
ance monitors in place. Dynamic analysis, consuming more time Candidate selection can be complicated greatly because profit
than- static analysis, is more complicated to manage. Static anal- revision and image packing are not independent. For example,
ysis is an internally complex problem. Both approaches can err suppose objects A, B, and C have profits that depend upon
due to data dependencies. Some evidence shows static analysis whether neither, one, or both of the other objects is migrated. Sup-

July 1986 9

Software A Software B

Analyzers Analyzers

Local + global Local + global
profit predictions profit predictions

Candidate Candidate
|selector § | selector

Macroimage for A Microimag for A Microimage for B acroimage for B

Figure 3. The best-possible-microimage (BPM) strategy.

Software A Software B

Analyzers Analyzers

Local + global Microimage Local + global
profit predictions library profit predictions

Candidate Archiver 4-- Candidate
selector ~~~~~~~selector

Macroimage for A Microimage for A Microimage for B Macroimage for B
(with local profits)

Figure 4. The best-available-microimage (BAM) strategy.

10 IEEE SOFTWARE

Macro-objects A Program library Macro-objects B

(BAM) (BAM)
± I

Microimage A Microimage library Microimage B

Usage analyzer (All Macroimage users
of Microimages A and B)

Syntheie Rebulde

(New macroimages using C) Figure 5. BAM plus
microimage synthesis.

Microimage C
(A nB)+

pose, however, that only room for two of these exists. The com- (see Figure 5). For example, suppose we use two microimages. We
putational effort needed to make this kind of selection mounts might find common micro-objects in these microimages. We
quickly as the number of involved candidates increases; further- might join thetwo microimages to produce a new microimage con-
more, we don't fully understand how interrelationships affect taining the intersections of the originals plus some remaining rou-
profits. Nevertheless, fairly simple approaches work reasonably tines. The two user process classes now become one class,
well in the cases we have seen. decreasing the overhead of managing WCS. Taken to its logical

conclusion, one could synthesize an optimum microimage set for
Best-possible and best-available selection strategies. We have a known system workload (perhaps a singleton). Previous vertical-

glossed over a fundamental issue: When should globalprofit come migration experiments includingATOM implement BPM. How-
into play? Global profit represents the advantage gained by the ever, our vertical-migration linkage editor9 implements BAM
complete microimage when used with a particular macroimage. with a BPM override. To our knowledge, no one has implemented
Thus, a micro-object's local profit is weighted by how frequently microimage synthesis.
the macroimage uses it. Ifwe desire the optimum microimage for
a particular macroimage, global profit predictions must affect the
microimage candidate selection policy-meaning that an opti- Abstract type-oriented migration
mum microimage be built from available micro-objects when the ATOM, a vertical-migration system, uses the previous section
macroimage is built. We call this the best-possible-microimage outline to demonstrate automated-vertical-migration feasibility.
(BPM) strategy, the method of choice for engineering special- For candidate selection granularity, ATOM uses abstract data
purpose computer systems (see Figure 3). types. It translates all abstract types into microcode and stores

them in microimages based on compilation unit rather than
However, we are considering general-purpose mul- dynamic microimage building. C source files, identified as

tiprogrammed systems and are faced with a possible trade-off abstract data types, are then passed through programs extracting
between individual process performance and overall workload information from symbol tables and creating gateways and microi-
performance. Taking system-wide performance into account, we mages for process-loading at dispatch time.
can build and archive microimages based on local profits or based Steps involved in ATOM are
on global profits of a sample program set. Microimage selection * Data collection-the collection of data about the program's
will then proceed based on the best-available-microimage (RAM) execution behavior;
strategy, as Figure 4 illustrates. * Candidate selection-the determination of execution envi-

ronment and types to include in each microimage;
The RAM strategy can be elaborated by analyzing mricroimage * Image loading-the placement of a call to each new environ-

usage. We can construct a microimage synthesis process to pro- ment at entry into the source program's appropriate lexical
duce new microimages for retrofitting to existing macroimages scope;

July 1986 11

Assembly
every lexical scope of a block-structured program defines a bound-

language
ary containing abstract data types that may be defined and used.

language Each inner scope can have more data types than its enclosing scope
and therefore can include more migration candidates. Since some
inner scopes may not define new abstract types, we can combine

premicroc some scopes for simpler analysis. In ATOM, a nested lexical-scope
collection sharing the same abstract data types is called an exe-
cution environment.

Annotated
assembly Image loading. Another task identified for dynamic
language microprogramming systems involves loading the microimage once

candidates have been selected. The ATOM compiler inserts a call
to a routine named "set-mu" at each execution environment

--as entry. This routine's parameters are the name of a microcode
image to be loaded and a unique number identifying the entered

Id I denvironment. "Set-mu" calls the operating system to associate
the named microimage with the calling process, establishing the
passed environment identifier as the current execution environ-
ment. We do not load actual images until the macroprogramExecutable attempts the first control store entry.

object The ATOM programmer associates a microimage with a pro-
and cess, but the compiler could do this with a call to "setLnu" in all

symbol but the initial execution environment. An enhanced version of the
normal Unix start-up code loads the initial microimage. Micro-
code translation software (discussed.below) supplies the image
name. A special device driver, implemented specifically for

Figure 6. Source program analysis and translation. dynamic microprogramming research,11,l2 manages the control
store as a virtual resource.

* Source program analysis and translation-the program's
compilation using an extended C compiler, saving the created as much nor-mcrocode sourcefle;andextenaa U cmpller savm tne ceatea mal Unix software as possible in ATOM, including the C compiler
microcode sourcetile; and (cc) linkage editor (Id), and assembler (as). Figure 6 depicts first-

phase source program analysis and translation. Code analysisstore image for each execution environment, identifies abstract operation entry points (C functions with names)We will now detail each of the above steps, showing how they replacing normal machine language instructions with a gateway
fit into the general vertical-migration scheme. Our references pro- that determines if the operation has been migrated; if so, the gate-
vide a more complete ATOM analysis.'0 way performs an ENTERCONTROL STORE (ECS) instruction;

otherwise, normal machine language code is executed. Note thatData collection. Earlier, we described local and global profit the decision to enter control store or the macrolevel implemen-
determination as very difficult. ATOM simplifies the process by tation is dynamic.
allowing programmers to influence decisions based on perform- Simple assembly and lnkage editing follow code analysis, caus-
ance information collected during previous program executions. ing the linkage of micro- and macro-objects into memory images.A data collection model was developed in ATOM, extracting per- We need a macrocontext object that maps macronames to primary
formance data from instrumented programs and presenting col- memory locations and a microcontext object that maps micro-
lected data in usable form. Data, oriented towards basic code names to WCS locations. Code analysis and translation create the
segments as created by the compiler, was summarized by abstract m oD . . ~~~~~macrocontext obje'ct for the main program and pass informationdata-type operations as implemented by C functions. Included t s, . . , . . ~~~~~~through the symbol table, creating the microimage- and itswere a control-store-size estimate assuming automated migration
and comparative execution time estimates resulting from migra-
tion to microcode. The data collection program described local
profits as determined by a performance estimation model. This Microimage creation. ATOM's last phase creates, links, and
analysis, dynamic in nature, is open to data dependency error. binds the final microimage to the main program. Figure 7 shows

the second stage of language translation and microimage creation.
Candidate selection. The candidate selection phase seeks to In Figures 6 and 7, premicroc, microc, mas, mulnk, and mumki

determine the best set of candidates for migration based on global are software tools built for our research. Also, the Unix linkage
profit, migrated microcode size, and control store limits. As previ- editor (ld) was extensively revised for reasons described in the sec-
ously noted, one consideration when performing vertical migra- tion on dynamic microprogramming. Microc, taking an executable
tion is scope of analysis. In ATOM, we determine this scope machine language program as input, creates microassembler
statically by the program's lexical structure. ATOM premises that source code to implement functions identified by premicroc. Iden-

12 -IEEE SOFTWARE

tification information is passed to microc through the executa- ,
ble program's symbol table.I maI

Microc results in a microassembler source file and executable E
macroprogram that will be associated with the microimage at dis- mulnk l
patch time. A series of three programs perform actualmicrocode.
generation; the first two (mas and mulnk) are a microassembler r
and microcode linkage editor, respectively; the third (mumki), a | micl
microimage maker, archives the created microimage and stores it
for later control store loading.v

Dynamic microprogramming | | storam
Since the previous sections dealt with vertical migration and | l

candidate selection for migration, we Will now assume that objects
intended to run in microcode have been chosen, translated, and
amalgamated into microimages. Dynamic microprogramming
subsystem duties are Figure 7. Microcode image creation.

* To keep microimages safe from alteration and available for
use;

* To cross-link macroimages and microimages; paged; in addition, assume that there are no instructions for load-
* To manage active microimages (those associated with live ing WCS from primary memory and for jumping to WCS from
processes); and -primary memory. The former should be a protected instruction

* To manage WCS. and the latter a user-mode instruction.
For clarity, we must first describe objects of concern. ECSp,lmeans jump to control'store physical entry pointp with

parameter I in a reserved register. The physical entry points are
Objects and programs of particular interest. An unusual aspect a few reserved WCS locations; four will suffice for normal calls,

of creating runnable images from cooperating microimages and normal returns, returns from interrupt handling, and amicrocode
macroimages appears in image cross-linking. To understand this, debugging aid. We use parameter lIto indicate the routine being
notions of sharing and context must be detailed. Dynamic called;therefore,lcanbeviewedasalogicalentrypoint.Thephys-
microprogramming management performance dependsupon how ical entry routine can range-check this parameter in microcode.
often WCS must be loaded. A required WCS load is called a WCS The fewer physical entry points the better, because they must be
fault, analogous to a virtual-memory fault. managed separately from the remalning image and might need fre-

WCS-fault frequency hinges on how much macroimages share quent reloading.
their microimages. If all macroimages share one microimage, we The last object of interest, the microimage archive, is simply a
find no faults. If each macroimage has a unique microimage, and well-protected micro-object and microimage library contalning
if microimages arenused continuously, a fault will occur every time directories to assist in micro-object selection during microimage
the scheduler dispatches a process. building (BPM andBAM strategies) and in microimage selection

If macroimages are to share microimages, we must link each (BAM strategy). The librarian, as archive manager, might imple-
image to its partner at some time; consequently, we must estab- ment extra security measures.
lish a context for the macroimage's view of its microimage (the Programs comprising the dynamic microprogramming man-
microcontext) and another context for the microimage's view of agement system manipulate the above images, contdts, WCS, and
the macroimage (the macrocontext). If the macroimage contains archives. These programs-the linkage editor, the microimage

a jump to a migrated procedure, for example, that procedure's activator, the microimage loading and WCS management system,
location is not known at compile time and must be filled in later and the microimage librarian-relate as shown in Figure 8.
by a linkage editor. This binding of references to objects estab-W
lishes the macroimage's microcontext. Cross-image linkage editing. The linkage editor joins objects
The same thing must happen in the other direction. Thus, we into an executable program. Of particular interest to us, binding

can think of contexts as tables mapping names to locations. We macroimages (shared by several processes) with microimages
refer to tables existing as unified objects (and used in that form (shared by several macroimages) becomes a complicated problem
at run time) as macro- or microcontext objects. In certain situa- whose solution depends on allowed microimage sharing-a prob-
tions, we must manage context objects separately from their lem further complicatedbyour desireto makemicroimagesinvisi-
associated images. ble to users. Thus, the system must perform all work related to
Another object of interest is WCS itself, which has only a few microimage selection and use. In fact, to describe the various

important characteristics as far as its virtual-device management designer options and system rationale requires a longer article than
is concerned. Continue to assume that WCS is swapped and not this.9

July 1986 13

Microarchive

E- 1 | ~~~~Librarian

Ordinary object files\

| Linkage editor 1< - t Microimage selector

Macroimage Macrocontext Microcontext Microimage Microcontext
(macroimage part) (microimage part)

Prtocetss Microimage activator

Memory manager WCS manager

Secondary Primary wCs
memory memory

Figure 8. Dataflow of the dynamic microprogramming system.

Among available options, assume that In addition to its normal tasks, the linkage editor
* Microimages can be shared by different macroimages; * Causes microimage selection;
* If a macroimage uses a microimage, then every macro-object * Inserts the microimage file name into the macroimage start-

referred to by the microimage must be present in the mac- up routine;
roimage; * Includes, in the macroimage, all macro-objects referred to by

* Every macroimage uses only one microimage at a time and the microimage;
these microimages are determined at linkage edit time; * Creates the microcontext's macroimage portion; and

* A macroimage needs no more than one macrocontext; and * Creates the macrocontext for the microimage.
* Migrated objects are subprograms with names. None of this requires altering the microimage in any way-it
The first assumption means that each macroimage must have remains in the microarchive until activated. The microcontext's

its own macrocontext, perhaps one for every microimage it uses. macroimage portion usually consists of gateway routines, mac-
The fourth assumption implies that one macrocontext will suf- rosubprograms with entry points whose names are identical to
fice for every macroimage. The second assumption implies that those of the original migrated objects. These are linked in the usual
all macroimages using a particular microimage can use all the fashion with macroimage external references.
microimage's routines and, therefore, can have the same micro- Creating the macrocontext for use by the microimage(s) is not
context. In particular, a given microimage's table of logical entry so obvious. One might mimic ordinary macro-to-macro linking
points remains constant despite the associated macroimage and, actions, involving the address-stuffingtechnique: The editor liter-
therefore, can be part of the microimage as described in Figure 8. ally fills in each reference with the referent's location. Two fac-

14 IEEE SOFTWARE

tors confound address stuffing, however: First, in many micro- context-even those not using WCS. For the abstainers, the PEPs
machines the microinstruction format does not allow a full pri- flow to microcode causing an illegal instruction trap. To detect
mary memory address-addresses must be built in a register by WCS faults (that is, if WCS does not contain the correct microi-
a routine taking several microinstructions. Second, and an impor- mage when a process is given use of the CPU), the PEPs must also
tant reason for avoiding address stuffing, is that address stuffing be set to cause a trap handling the fault.
embeds the macrocontext in the microimage. Therefore, since all If a process is dispatched, with the correct microimage already
macroimages using a given microimage must have the same con- present, incorrect PEPs might remain in WCS because the previ-
text, they must have all static data (including subroutine entry ous process did not use WCS and was from a different class of
points) in the same locations. processes. In such cases (correct image, incorrect PEPs), PEPs

In practice, address stuffing implies that all macroimages using might as well be loaded with the correct set during the context
a given microimage must be copies of the same executable file. switch. If image and PEPs are both correct, we need do nothing.
This is unnecessary. For different macroimages to share a microi- This results in the microimage of a given process being loaded
mage, each macroimage must have its own macrocontext object only at the first execution of an ECS during a process scheduling
for use by the microimage. All microimage references to macro- period. Thus, a process currently in a nonusing phase will not
objects are compiled as indirect references via the table in the mac- cause microimage traps even though it might be a heavyWCS user
rocontext object. On some machines, this executes faster than during some other phase-a policy resembling demand paging in
address-stuffed code. a virtual-memory system. An option would be to load the microi-

mage at context switch time-resembling virtual-memory prepag-
Microimage activation. The microimage activator locates a ing. A third approach would be to load during context switch if

named microimage, establishes this microimage in virtual WCS, the process during its previous scheduling period had executed an
and connects the client process to the microimage. Providing a ECS-resembling a working-set policy but requiring extra over-
user-level system call that includes the desired microimage's file head for every ECS.
name is an easy way to initiate microimage activation. The acti- The worst-case overhead of all these policies depends on the
vator then employs internal system utilities to resolve user-supplied scheduling quantum (the grain of scheduling periods) and the time
names to physical file names. required to service aWCS fault. On a Perkin-Elmer 3220 running
At this point, the activator must detect from the file descrip- Unix edition 7 with a 200-ms scheduling quantum, worst-case

tion that a microimage is valid and whether it is sharable. If the overhead is about 2.25 percent. This requires a very processor-
sharable microimage is already in use, the activator merely does bound set of processes, each using a unique microimage almost
housekeeping. Otherwise, the file must be loaded into primary constantly; every scheduling period must be one quantum, and
memory (used as a backing store for WCS). Although not proven, every quantum must contain a fault. Therefore, worst-case over-
it may be important to protect active microimages from secondary head relates inversely to quantum size, and is also linear in the
memory swapping. We provide such protection by managing maximum niicroimage size IfWCS size increases, worst-case over-
active microimages in kernel memory space or in pages locked into head becomes unacceptable.
primary memory. The operating system must also call the acti- Clearly, sharing is quite important. If workload includes much
vator when a process creates a new process. The child process sharing, theWCS fault rate will depend on scheduling policy and
inherits the parent's microimage unless a new program file is the number of processors. This interplay-sharing, scheduling,
executed. and multiprocessing-is not well understood. Reed and Winner'2

report preliminary results; further analysis and simulation studies
Microimage and microcontext loading. Once we have activated are underway. A complete description ofdynamic microprogram-

the microimage, the remaining issues are how and when to load ming management systems, just outlined in this article, can be
microimage and microcontext. As to how, we recommend adding found in Winner's chapter ofMicroprogramming andFirmware
an I/O driver to the operating system kernel (Roskos and Engineering.'3
Winner" examine such a driver). A write call on this driver
should move a block from primary memory to an indicated loca-
tion in WCS. The operating system can enforce access rights.
When to load the microcontext and microimage is not so sim- ur intent has been to demonstrate that automated ver-

ple: First, the microcontext's microimage portion has two parts, tical migration through dynamic microprogramming is
the physical entry points (PEPs) and the logical entry points a useful tool. Practical, automated vertical migration
(LEPs). If these are truly separated, the LEPs are merely contained has been proven a feasible instrument in system tuning. This article
in a dispatch table and can be permanently attachedto the remain- illustrates how vertical migration can be automated and used
ing microimage. transparently in an integrated-system environment. We have not
PEP managemnent is driven by the need to prevent erroneous commented on the expected performance improvement level, feel-

WCS entries, to detectWCS faults, and to allow correct WCS ing that final determinations should be reached through
entries. To prevent erroneous entries, PEPs join every process experimentation; however, we experienced 70- to 150-percent

July 1986 15

improvement in processor-bound program speed (that is, 41- to 11. J.E. Roskos and R.I. Winner, "Toward Sharing the Microprogram-
60-percent reductions in runtime) using techniques described ming Level on thePerkin-Elmer 3220," ACMSIGMICRONewslet-
herein-improvement gained on a vertical microarchitecture with ter, Vol. 12, No. 4, Dec. 1981, pp. 67-73.
a rudimentary microcode synthesis program. 12. L.B. Reed and R.I. Winner, "Operating System Support for Userrudimentar Microprogramming in UNIX, Software Practice and Experience,

Perhaps the most relevant consideration still before us is how Vol. 14, No. 12, Dec. 1984, pp. 1183-1196.
to implement candidate selection. We can significantly narrow 13. S. Dasgupta and S. Habib, Microprogramming andFirmwareEngi-
candidate sets in systems likeATOM; however, we implement only neering, Van Nostrand-Reinhold, New York, N.Y., scheduled Jan. 1987.
a best-possible microimage strategy. We don't attempt workload-
optimized microimages.
We can also apply techniques described in this article to stati-

cally microprogrammed, special-purpose processor design. In this
way, we can achieve more optimal function assignments among
hardware, microcode, and software levels. The Institute for
Defense Analyses has begun studying automated engineering of
special-purpose computer systems. Vertical-migration technology
may be fundamental in an environment supporting automatic-
system-level computer engineering, [L

Robert 1. Winner is deputy director of the Institute for Defense Analyses'
computer and software engineering division in Alexandria, Virginia. His
research interests are in the intersection of computer architecture, program-
ming languages, and operating systems. A native of Asheville, North Caro-
lina, Winner earned his BS in mathematics from Union College
(Schenectady, New York), his MS in computer science from Purdue, and
his PhD in computer science from Georgia Tech. Prior to joining IDA,

References he was an associate professor of computer science at two universities. He
1. G J. Myers,Advancesin ComputerArchitecture, Wiley-Interscience, is a member of the ACM, Sigma Xi, and has served on the IEEE-CS TC-
New York, N.Y., 1982. Microprogramming board of advisors.
B Corwell "The Performance Effects of Functional Migration and d His address is the IDA/CSED, 1801 North Beauregard Street, Alexan-
Architectural Complexity in Object-Oriented Systems, " PhD disser-
tation, Carnegie-Mellon Univ., Pittsburgh, Pa., 1985.

3. D.A. Patterson and D.R. Ditzel, "RISC I: A Reduced Instruction Set
VLSI Computer, " ACMSIGARCH ComputerArchitecture News,
Vol. 9, No. 3, May 1981, pp. 443-445.

4. T.G. Rauscher and A.K. Agrawala, "Dynamic Problem-Oriented
Redefinition of Computer Architecture via Microprogramming,"
IEEE Trans. Computers, Vol. C-27, No. II, Nov. 1978, pp. 1006-1014.

5. B. Holtkamp and P. Wagner, "An Algorithm for Selection of Migra-
tion Candidates, " ACMSIGMICRO Newsletter, Vol. 15, No. 4, Oct.

1984, pp. 140-146. -6. M.T. Schaefer and Y. Patt, "Improving the Performance ofUCSD Pas-
cal via Microprogramming on the PDP-11/60," ACM SIGMICRO
Newsletter, Vol. 14, No. 4, Oct. 1983, pp. 140-148.

7. E. Organick and J. Hinds, Interpreting Machines, North-Holland r M C i
New York, N.Y., 1978. Edward M. Carter is a major in the United States Air Force and serves

8- R.I. Winner, "Adaptive Instruction Sets and Instruction Set Local- as an associate professor of computer science at the United States Air Force8.yRI.hWnomner, "Adapiv SInstRuCtio Nesletsn nteruction. SetLocal- Academy. He received his BS from the USAF Academy in 1974, and hisity3.Phenomea," A C SIGARH NewseterVol. No.3 r MS in computer science from UCLA in 1975. He attended Vanderbilt Uni-
versity following two Air Force assignments, completing his PhD in com-

9. R.I. Winner, "Naming and Binding in a Vertical-Migration Environ- puter science in 1983. His primary research interest is the automated
ment," IDA Paper P-1938, Institute for Defense Analyses, Alexandria, adaptation of computer architectures in support of programming lan-
Va., May 1986. guages through dynamic microprogramming.

10. E.M. Carter, "Abstract Type-Oriented Dynamic Vertical Migration," His address is the Department ofComputer Science, USAF Academy,
PhD dissertation, Vanderbilt Univ., Nashville, Tenn., Dec. 1983. HQ USAFA/DFCS, Colorado Springs, CO 80840-5701.

16 IEEE SOFTWARE

