
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 980962, 13 pages
http://dx.doi.org/10.1155/2013/980962

Research Article
An Approach to Design and Implement RFID Middleware
System over Cloud Computing

Wenhong Tian, Ruini Xue, Xu Dong, and Haoyan Wang

School of Computer Science, University of Electronics and Science Technology of China, Chengdu 610054, China

Correspondence should be addressed to Wenhong Tian; tian wenhong@uestc.edu.cn

Received 22 December 2012; Revised 11 April 2013; Accepted 20 May 2013

Academic Editor: Xinrong Li

Copyright © 2013 Wenhong Tian et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of Internet of things, the number of radio frequency identification (RFID) network readers and tags increases
very fast. Large-scale application of RFID networks requires that RFID middleware system can process a large amount of data
efficiently, with load-balancing, efficient redundant data elimination, andWeb service capabilities so that required information can
be transmitted to applications with low overhead and transparency. In view of these objectives and taking especially advantages of
virtualization and transparency of Cloud computing, this paper introduces an advanced RFID middleware management system
(ARMMS) over Cloud computing, which provides equipment management, RFID tag information management, application
level event (ALE) management, and Web service APIs and related functions. ARMMS has different focuses than existing RFID
middleware in distributed design, data filtering, integrated load balance, and Web service APIs and designs all these over Cloud.
The distributed architecture can support large-scale applications, integrated load-balancing strategy guarantees stability and high
performance of the system, and layered and parallel redundancy data elimination scheme makes sure that needed information
is transmitted to application level with low overhead; Web service APIs support cross-platform information processing with
transparency to lower level RFID hardware.

1. Introduction

Radio frequency identification (RFID) middleware plays an
intermediary role between systems. Therefore, the upper-
layer applications can add and delete contents or even
be replaced by other software without the need to make
any changes to the middleware; similarly, the underlying
types of RFID readers can increase and decrease its various
hardware and software operations; the upper layer does not
need to make any changes. Therefore, RFID middleware can
eliminate the need of many tomany connections and reduces
operating costs.

Figure 1 provides an overview of EPCglobal standards
architecture, EPC information service (EPCIS), application
level event (ALE), discovery configuration and installation
(DCI), and reader management (RM) that are very much
related in this paper.

As shown in Figure 2, the EPC system has several impor-
tant components: readers, middleware, EPCIS, andONS.The
reader identifies and reads tags.Themiddleware processes all

the information in tags and manages the information. The
information aftermiddleware processing is sent to the EPCIS.
The EPCIS can share the information over the Internet.
Finally, the object naming service (ONS) sends other tag
requests to EPCIS [1]. The RFID middleware also has several
fundamental functions, including data filtering, counting and
aggregation of tag data, and handling the huge quantity of
data generated by the RFID system [1, 2]. When facing a huge
amount of data, load balance among different middleware
(their hosts) is very important to keep high performance
and reliability of the system [3]. Additionally, providing Web
service is a way to support large-scale applications and a
convenient way for management.

Figure 3 shows a possible organization of a physical RFID
network.

When designing an RFID middleware solution, the fol-
lowing issues need to be considered [1, 2].

(a) Multiple types of hardware and vendors support: the
middleware must provide a common interface to

2 International Journal of Distributed Sensor Networks

Certificate profile

Architecture framework

Pedigree

Discovery services

EPC information service (EIS) Core business vocabulary (CBV)

Application level event (ALE)

Discovery configuration and installation Reader management (RM)

Low level reader protocol (LLRP) Reader protocol (RP)

Tag Protocol-EPC HF

Tag data standard (TDS) Tag data translate (TDT)

Data standards
Interface standards
Standards in development

Exchange

Capture

Object name services (ONS)

Tag protocol-UHF Gen2

Figure 1: EPCglobal standards architecture [4].

Application interface

Enterprise application

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Reader interfaces

Reader Reader Reader

EPCIS

ONS

Other
services

Figure 2: RFID middleware organization [1].

access different kinds of hardware by one or more
vendors.

(b) Real-time handling of incoming data from the RFID
readers: the middleware should handle the huge
amount of data captured by the connected readers in
real time without read misses.

(c) Interfacing with multiple applications: the middle-
ware should be capable of interacting with multi-
ple applications simultaneously, by catering to all
the requirements of the applications with minimal
latency.

Central manager

Switch Switch

RFID readers RFID readersRFID
Edge server

RFID
Edge server

· · ·

· · ·· · ·

Figure 3: A networking example of RFID networks.

(d) Device neutral interface to the applications: the appli-
cation developer should only use the generic set of
interfaces provided by the middleware independently
of the type of hardware connected to the system.

(e) Scalability: the middleware design must allow easy
integration of new hardware and data processing
features. This needs distributed design and an open
system to adapt to change.

(f) International standards compliant: the middleware
design should follow international standards such as
EPCglobal so that other related RFID hardware and
software can also comply to the standards to make
networking easier.

International Journal of Distributed Sensor Networks 3

In view of these and taking especially advantages of vir-
tualization and transparency of Cloud computing, this paper
introduces an advanced RFID middleware management
system (ARMMS) over Cloud computing, which provides
equipment management, RFID tag information manage-
ment, application level event (ALE) management, and Web
service APIs and related functions. ARMMS has different
focuses than existing RFIDmiddleware in distributed design,
data filtering, integrated load balance, and Web service APIs
over Cloud.

Major contributions of this paper include

(1) proposing an RFID middleware architecture over
Cloud computing including live migration;

(2) proposing a layered and parallel redundant data
removal mechanism;

(3) introducing an integrated load-balance mechanism
for RFID middleware;

(4) introducing Web service APIs to support cross-
platform operation and information processing to
improve transparency of RFID middleware to lower
level hardware and software.

The rest of this work is organized as follows: Section 2
describes the related works on RFID networks and mid-
dleware design. Section 3 presents detailed features and
implementation of our proposed RFID middleware system.
Section 4 provides performance evaluation of proposedRFID
middleware. Conclusions and future works are finally drawn
in Section 5.

2. Related Research

In this section, we mainly introduce related researches on
general introduction, related standards, redundancy removal,
and load balance of RFID middleware design. There are
several surveys in the literature [3, 5–8] that propose system
taxonomies and major development in RFID middleware.
General introduction of RFID technology and middleware
is provided in [7–10]. Reference [5] presents a taxonomy for
RFID system. There are many researches on standardization
of the RFID middleware system. Massachusetts Institute
of Technology (MIT) proposes EPCglobal standards. Many
researchers have proposed various extensions based on the
standards and implementation methods, such as in [11–13]
which focus on an RFIDmiddleware information addressing.
Reference [14] is about Class 1 General 2 UHF air interface
protocol. Reference [4, 15] introduces EPCglobal, EPCglobal
ALE middleware design standards, ALE middleware, and
messaging and device management standards.

There are many researches on RFID middleware design.
Reference [16] studies RFIDmiddleware for distributed large-
scale systems. Reference [17] reviews the state-of-art RFID
middleware. Reference [3] discusses the application require-
ments and RFID constraints for middleware. Reference [6]
introduces the basics of RFID networks and middleware
including Savant, WinRFID, IBM WebSphere RFID middle-
ware, Sun Java RFID system, and FlexRFID with a focus on

security, privacy, and business rules. Reference [18] presents
a lightweight RFID middleware design (through temporary
database implementation). Reference [19] introduces a mid-
dleware called WinRFID. Reference [20] shows the behavior
and performance of message-oriented middleware system.

Some researches on redundant data removal are as
follows. Reference [21] introduces a mechanism filtering
redundant data in large-scale applications of RFID inventory.
Reference [22] proposes an efficient filtering algorithm CLIF,
for the detection and elimination of redundant data within
a network. Reference [23] defines the EPC global standard
of RFID tag data and proposed in-network phased filtering
mechanisms (INPFM). Reference [24] proposes an adaptive
RFID data-smoothing filter SMURF. Reference [25] intro-
duces tuning approach in data filtering to reduce energy
consumption in wireless sensor networks. Reference [26]
presents an energy-efficient in-network RFID data filtering
scheme in wireless sensor networks that has better perfor-
mance regarding computational and communication costs
than INPFM and CLIF. Tian et al. [27] present a parallel
method to redundancy data elimination in RFID networks by
applying MapReduce and Hadoop cluster in Cloud comput-
ing. INPFM and CLIF eliminate duplicated data during tags
transmission phase. INPFM filters duplicated data at 𝑘 hop
distance. As pointed out in [26], several problems still exist by
applying INPFMorCLIF. Problems include that computation
cost is high, duplicate transmission cost is high, and inducing
large delays when the total number of tags increase. EIFS [26]
is claimed to have better performance than INPFM and CLIF
regarding computational and communication cost; however,
it can just eliminate about 80% of all redundancy, which may
still be a problem for upper layer applications. Another issue
for EIFS is that it just simulated a small number of tags (max
500 tags). In this paper, we propose a parallel method for
redundancy elimination, which can remove 100% redundant
data for large scale of data up to 100 million.

Many researches on load balance of RFID middleware
have been conducted. Reference [28] introduces a number of
RFID tag-based middleware load-balancing strategies which
are good for all middleware and their hosting servers which
have same configuration (homogenous case). Reference [29]
introduces a distributed and agent-based design of load
balance system for RFID middleware, which applies mobile
and stationary agents to gather information and execute
load balancing. Reference [1] proposes a grid-based load-
balancing mechanism for RFID middleware applications,
which incorporates functional modules buffer management
and load balancing management over a grid networking
platform, to buffer the read data and share the middle-
ware loading, and compared the processing time and the
packet lost ratio to the existing methods. Reference [30]
introduces a centralized method for load-balancing method
using connection pool in RFID middleware. Reference [31]
introduces a dynamic load balancing approach based on the
standard RFIDmiddleware architecture by considering inter-
dependencies due to RFID readers in contrast to most of
the existing approaches where independencies are assumed
among jobs. Reference [32] introduces a framework to

4 International Journal of Distributed Sensor Networks

EPCglobal,
EPCIS etc. Cloud

Middleware 1

Load balance

Redundancy
removal

Web service APIs

Middleware 2

Redundancy
removal

Redundancy

Reader 11 Reader 21 Reader 22 Reader 23

Load balance Load balance

Web service APIs Web service APIs

removal

Middleware n

Reader n1 Reader n2

Figure 4: Proposed ARMMS middleware architecture.

dynamic and integrated load balancing for RFIDmiddleware
by considering heterogeneous configuration and multiple
factors such as CPU and memory of middleware hosting
servers.

3. Architecture and Features of Proposed
RFID Middleware

Figure 4 shows proposed ARMMS middleware architecture
based onCloud computing.TheARMMSmiddleware system
can be built based on Cloud computing. Especially for
the load balance, hosting servers can be set up on virtual
machines which can bring benefits to allocation, migration,
and security; for redundancy removal, layered mechanism
and parallel processing of MapReduce in Cloud computing
can be applied; for Web service (APIs), dynamic web serving
based on elastic Cloud computing can be applied. We will
introduce these features in detail in the following section.

ARMMS has a very clear hierarchy from bottom to up
as shown in Figure 5: Reader API Interface, Edge servers,
RFID middleware manager/ALE server, middleware API,
and RFID applications. In the following, these five layers are
introduced briefly.

RFID Reader APIs. Different RFID readers should provide
related APIs tomiddleware system to access so that functions
such as equipment management, data filtering and aggrega-
tion, snd load-balance, can be conducted.

Edge Server. The main function of an Edge server is to
run a single middleware software, directly manage readers
by calling their APIs, acquire tag data sent by readers,
and execute preliminary tag filtering algorithm to filter out
redundant tag data generated by a reader.

RFID applications

Middleware API module
(for EPCGlobal APIs, and virtual manag.

tools)

RFID middleware
management/

ALE server

Information
management

module

Middleware deployed on Edge server
(Vary from one to another with APIs)

Different kinds of RFID reader APIs

Middleware
system

Figure 5: The structure of ARMMS.

Middleware Manager/ALE Server. Middleware manager/ALE
server is primarily responsible for a single middleware soft-
ware management on an Edge server according to the host
load.

Information Management Module. Providing related dis-
tributed messaging queues for several applications to achieve
asynchronous communication. The application may not be
only on one machine but can be on different machines in a
local area network. Figure 6 shows messaging mechanism in
distributed ARMMS.

Middleware API Module. According to EPCglobal APIs,
this module provides basic API operations including ALE
events manipulation and information checking operations.
Meanwhile, the visual management tools may also include
a hierarchy of the visual management tools, mainly for

International Journal of Distributed Sensor Networks 5

Public
MSMQ
server

Edge
server

Middleware management
server/ALE server

Information
managment

server

Visual management
tools

Middleware API
messages

RFID applications

ECReport/
error callback

callUser
requests

User
requests

Reader
instructions

Up: getting tags
Down: real-time tags

Figure 6: Messaging in distributed ARMMS.

providing more convenient modification and configuration
of the middleware.

RFID Applications. Upper layer applications can interface
with ARMMS middleware system to provide different ser-
vice.

3.1. Edge Server Design. Edge server is made up of two
types of backend applications, RFID Edge server and Mon-
itor process. RFIDEdgeserver is responsible for providing
message queues and collecting and distributing messages.
An Edge server runs only one RFID Edge server process.
Monitor backend process is the only object calls a specific
RFID device API, one per type of RFID device. It uses an
internal communication protocol to communicatewithRFID
Edge server. For a specific type of RFID device, a monitor
process should be implemented. So, if we want to extend this
middleware system to support a new type of RFID device,
we should implement a new monitor process with the new
device’s API and internal communication protocol. Figure 7
shows the structure of proposed Edge server.

The main function of the monitor backend process
includes the following.

(1) Calling the corresponding RFID devices’ API and
obtaining the tag data in the reading range.

(2) Monitoring the RFID devices connected with Edge
server in real time and sending the error reports to
Center Node (management center).

(3) Sending TagDetected message to the RFID Edge
server process when a tag data is arrived.

RFID devices from different manufactures apply different
API calling mechanisms. If middleware system calls the
API directly, the scaling ability will undoubtedly become

RFID Edge server

Type A of

monitor

Edge server internal communication protocol

Thread

RFID
reader A1

RFID
reader A2

Edge server

Thread Thread Thread

reader
Type B of

monitor
reader

RFID
reader B1

RFID
reader B2

· · · · · ·

· · ·

Figure 7: Structure of proposed Edge server.

very poor. Applying support for new type of RFID device
will lead to recompiling the source code. Despite operation
mechanisms for reading andwriting varying fromone type of
device to another, it is easy to find that they obtain tag data in a
similar way. Edge server real-time tag algorithm is designed
for the hardware abstract layer and implementing first level
(reader level) redundant data elimination. We allocate a real-
time tag cache for each RFID device object in the monitor
thread, the real-time algorithm is responsible for assuring the
tag data in the cache is in the device reading/writing range.

3.2. ALE Server Design. The requirements of central man-
agement node are in ECSpec and formatted as xml doc-
ument. ALE server will transform the xml document to
ECSpec object in memory when it gets the ALE requirement
from central management node and initial an ECSpecUnit
object with data in ECSpec to handle the requirement. The
ECBoundarySpec part in ECSpec defines the ALE executing
arguments, like recycle reading time, reading trigger, and so
forth.TheECReportSpec part defines the report feeding back,
like tag filtering pattern, grouping pattern, and so forth. So,
the ECSpec is the only input in the ALE middleware system,
it includes all the arguments, which are needed in ALE
executing mechanism. There is a timer in the ECSpecUnit
object. ALE mechanism is all depending on this clock. The
ALE server flowchart is provided in Figure 8.

3.3. Central Management Node. The center node includes
backend process and soap process. Soap process is responsi-
ble for communicationwith the RFID applicationwho calling
the middleware API. The relevant standard is “ale 1 1 1-
standard-XML and SOAP bindings-20090313.” Backend pro-
cess is responsible for the load balance of the RFID device
connection to Edge server. The Edge server load balance
is shown in Figure 9 and will be explained in detail in
Section 3.5.

6 International Journal of Distributed Sensor Networks

Obtain ALE requirements

Analyze the ECSpec

Initialize ECSpecUnit

Subscribe tag from Edge sever

Operating time up

ECSpecUnit collecting message from
Edge server

Recycling
time up

Sending report

Operating over

Set Tag HitCount to 0

Yes Yes

No

No

Figure 8: Flowchart of ALE server process executing.

3.4. Layered Redundant Elimination Mechanism. Figure 10
shows the data redundancy in RFID system, which can be
divided into the following categories.

3.4.1. Redundancy within a Reader. When the reader gets an
accurate reading of data to obtain object information on a tag,
multiple times of same tag information can be read within a
short period, so that redundant tags are generated.

3.4.2. Redundancy between Readers. Many readers are often
densely installed to cover the entire region, and these readers’
reading range may overlap with nearby readers (as shown in
Figure 10); when two or more adjacent readers read the same
tag information in the overlap region, redundant (repeating)
tags information can be obtained.

3.4.3. Redundancy between Different Logical Groups. Differ-
ent logical groups can be formed by functionality or location
differences. When two or more adjacent logical groups read
the same tag information in the overlap region, redundant
(repeating) tags information can be obtained. Redundancy of
a reader and between readers cannot be completely removed

because of locality view, this is shown as the redundancy elim-
ination percentage in [22, 23]. It needs a global elimination
by collecting all tag data after reader layer and logical layer
removal. To the best of our knowledge, there is no approach
proposed using MapReduce [33] for redundancy elimination
in RFID networks.This paper proposes a parallelMapReduce
method to the redundancy data elimination. MapReduce is
a programming model and can be applied to a cluster that
consists of a large number of machines. Parallel MapReduce
method can greatly increase the speed and efficiency of
eliminating redundancy. Figure 11 presents our proposed
MapReduce flowchart for redundancy elimination.

3.5. Dynamic and Integrated Load-Balancing Mechanism.
Workloads of RFID middleware can change from location to
location and can vary at different times. There is an urgent
need to provide dynamic and integrated load-balancing
solution to manage RFID network and serve upper layer
applications. In our proposed model, the Edge server load-
balancing module is responsible for monitoring the load on
the Edge server and dynamic adjusting connections between
Edge servers and RFID reader devices.

International Journal of Distributed Sensor Networks 7

Load-balancing start

Gathering Edge server
information

Is it Overloading?

Migrating

Is it Overloading?

Waiting for Edge server
information

Waiting for Edge server
information

Sending back

Sending error

No

Yes

No

Yes

migrating result

Figure 9: Edge server load balance mechanism.

Tag

Reader

Range of reading

Figure 10: Data redundancy in RFID networks.

Reference [28] defines an RFID network middleware
system, reader collection,middleware collection, reader load,
and middleware load as shown in Figure 12.

(a) 𝑀 = {𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
}, where 𝑀 is a middleware

collection and 𝑚
𝑛
represents middleware 𝑛; 𝐶𝑅

𝑘
=

{𝑟
𝑘

1
, 𝑟
𝑘

2
, . . . , 𝑟

𝑘

𝑝
} is a reader collection connected to the

middleware 𝑘; one reader is connected to only one
middleware during a period of time.

Begin

Raw RFID tag data

Map Map Map

Reduce Reduce

Collecting tags Collecting tags

End

Figure 11: Proposed MapReduce flowchart.

(b) 𝑊𝐿
𝑅
[𝑟]: the amount of tags handled by the reader,

representing the load of a reader.
(c) 𝑊𝐿

𝑀
[𝑚
𝑖
]: the amount of tags handled bymiddleware

𝑚
𝑖
.

(d) 𝑊𝐿𝑈
𝑀
[𝑚
𝑖
] and 𝑊𝐿𝐿

𝑀
[𝑚
𝑖
] and the upper and lower

load limits of middleware𝑚
𝑖
, respectively.

8 International Journal of Distributed Sensor Networks

m1 mnmk

r11 r12 r13 rk1 rk2 rkp rni rnj rnk

CR k

· · ·· · ·

· · · · · ·

Figure 12: Definition of RFID middleware load [28].

Load-balancing strategy in [28] is to always choose the
most overloaded middleware to migrate. During a certain
period, relocation always migrates one or more readers on
themost loadedmiddleware to least loadedmiddleware.This
strategy is suitable for the situation that all middleware have
the same configuration (homogenous case). This does not
work for the case that middleware is not configured as the
same. The configuration of middleware depends on CPU,
memory, network bandwidth, and so forth, of their hosts.
Therefore, we design a new strategy to consider the case
that all middleware may not have the same configuration
(heterogeneous case), with focus on dynamic and integrated
load balancing.

(1) Average utilization of CPU and memory of each
middleware:

CPU 𝑚
𝑖
=
𝑊𝐿
𝑀
[𝑚
𝑖
]

𝑊𝐿𝑈
𝑀
[𝑚
𝑖
]
× CPU 𝑚𝑈

𝑖
+ CPU 𝑏,

Mem 𝑚
𝑖
=
𝑊𝐿
𝑀
[𝑚
𝑖
]

𝑊𝐿𝑈
𝑀
[𝑚
𝑖
]
×Mem 𝑚𝑈

𝑖
+Mem 𝑏,

AVG 𝑐 =
∑ (CPU 𝑚

𝑖
× SpeC 𝑚

𝑖
)

∑ SpeC 𝑚
𝑖

,

AVG 𝑚 =
∑ (Mem 𝑚

𝑖
× SpeM 𝑚

𝑖
)

∑ SpeM 𝑚
𝑖

.

(1)

(2) Integrated load imbalance level of middleware 𝑚
𝑖
is

defined as

𝐿 𝑚 [𝑚
𝑖
]

=
1

2
((CPU 𝑚

𝑖
− AVG 𝑐)2 + (Mem 𝑚

𝑖
− AVG 𝑚)2) .

(2)

(3) Average imbalance level of host servers equals to the
sum of imbalance levels of all servers divided by the
number of hosting servers:

𝐿 𝑀 =
1

𝑛
∑𝐿 𝑚 [𝑚

𝑖
] . (3)

In (1)–(3), CPU 𝑚
𝑖
is CPU utilization of host server 𝑚

𝑖
,

Mem 𝑚
𝑖
is memory utilization of host server 𝑚

𝑖
, AVG 𝑐 is

Hotspot
detector

Control

Migration
manager

Load
balancing

Middleware 1

V
M

 3

V
M

 2

V
M

 1

· · ·

Middleware N

Figure 13: Live migration of middleware by virtual machines.

averageCPUutilization of all host servers, AVG 𝑚 ismemory
utilization of all host servers, SpeC 𝑚

𝑖
is CPU configuration

of host server𝑚
𝑖
, for example, the number of CPU cores and

CPU frequencies, and SpeM 𝑚
𝑖
is memory configuration of

host server𝑚
𝑖
. CPU 𝑚𝑈

𝑖
is CPU utilization of host server𝑚

𝑖

with full load, and Mem 𝑚𝑈
𝑖
is memory utilization of host

server 𝑚
𝑖
with full load. CPU 𝑏 is CPU utilization of the

middleware itself, and Mem 𝑏 is memory utilization of the
middleware itself.

Integrated load balance considers factors including CPU
utilization, memory utilization, and network bandwidth uti-
lization, which can be expanded.

Allocation Policy.When there are new readers to add, it always
chooses the middleware with lowest integrated load L M to
connect.

Reallocation (Migration) Policy. This mainly considers over-
loaded circumstance and chooses an overloaded middleware
for migration. It needs to quantify how many readers to
migration, at the same time to reduce the number of migra-
tions to avoid system oscillation. Therefore, always migrate
readers in the middleware with highest integrated load to
the middleware with lowest integrated load until all load-
balance thresholds (metrics) are met. In the migration, we
take full advantages of live virtualization technology in Cloud
computing. Migration of a virtual machine is simply moving
the VM running on a physical machine (let us call it host
Edge server) to another physical machine (let us call it target
node). The key of live migration is that it does not disrupt
any active network connections even after the VM is moved
to the target node. Virtualization has other advantages such as
running multiple applications on one Edge server, providing
security and isolation to different applications, rapidly adjust
resource allocation, and be transparent to applications with-
out downtime. Figure 13 shows live migration of middleware
by virtual machines.

Through extensive numerical examples, we find that this
dynamic and integrated load-balancing mechanism achieves

International Journal of Distributed Sensor Networks 9

Figure 14: Logical view of RFID readers.

Figure 15: Physical RFID readers.

lower average and a total imbalance level than traditional
load-balancing strategies such as Round-robin and the one
introduced in [1, 28].

3.6. Web Service APIs. In order to provide convenient man-
agement and service, Web service APIs are necessary. It has
an interface described in a machine-processing format (e.g.,
WSDL format). Other systems can interact with the Web
service APIs in a manner prescribed by description using
messages, conveyed using HTTP with an XML serialization.

4. Performance Evaluation

4.1. General Information and Web APIs. Figures 14 and 15
show the logical view and physical view of readers, respec-
tively; Figure 16 presents tag data information management,
Figure 17 forALEmanagement, and Figure 18 forWeb service
APIs.

4.2. Load Balance. For the performance evaluation, we have
the following configuration: Edge server 𝐴 has one reader
with process rate of 1500 tags/second; Edge server 𝐵 has two
readers, both with process rate 2000 tags/second; Edge server
𝐶 has three readers with process rate 5000 tags/second; Edge
server 𝐷 has one reader with process rate 6000 tags/second.
Table 1 also provides the configuration of host Edge servers
including CPU in Ghz, memory (MEM) in GB; the upper
bound (UB) of utilization of CPU (UB) and MEM (UB); and
𝑊𝐿
𝑈

𝑀
[𝑚
𝑖
] for each host Edge servers. Table 2 is the CPU and

Figure 16: Tag data information.

Figure 17: ALE management.

MEMutilization information of four host Edge servers before
load balancing. Table 3 provides CPU and MEM utilization
results comparison between ARRMS and the method in [28].
It can be observed that ARRMS has better integrated load
balance for both CPU andmemory in host Edge servers since
it considers CPU and memory integrated.

4.3. Redundancy Elimination and Others. Table 4 shows the
data format of an RFID tag: Device ID (2 bits) represents
the identification of the device, EPC code (28 bits) is for
tag content, and Timestamp (14 bits) records date and time
information of a tag.

Taking a tag “003000C2001602200001457FFC000420110
627172133” as an example:

(i) bit 0-1-00 is the device number of a tag, which has
length 2;

(ii) bit 2-29-3000C2001602200001457FFC0004 are tag’s
EPC code, whose length is 28 bits;

(iii) bit 30-43-20110627172133 is the information of times-
tamp of a tag, 20110627 is the date, 172133 is the time,
and the length of the time is 14 bits.

First, we define data redundancy based on the following
RFID data model [25]: when a reader reads a tag, the
following data can be read: EPC (EPC code), reader (reader
ID), and timestamp (timestamp). When the reader reads two

10 International Journal of Distributed Sensor Networks

Figure 18: Some Web service APIs.

Table 1: The configuration of Edge servers.

Edge server CPU (GHz) MEM (GB) CPU (UB) MEM (UB) 𝑊𝐿
𝑈

𝑀
[𝑚
𝑖
]

𝐴 1.5 1 0.7 0.7 5000
𝐵 2 1.5 0.7 0.7 10000
𝐶 2.5 2 0.7 0.7 20000
𝐷 3 2.5 0.7 0.7 30000

Table 2: Utilization information before load balancing.

Edge server CPU utilization (%) MEM utilization (%)
𝐴 34 37
𝐵 42 46
𝐶 70 78
𝐷 26 28

labels (Label 𝐴 and Label 𝐵), if all of the following three
conditions are satisfied, it can be said that these two labels
are repeated data (tags), that is redundant data [4]:

Label 𝐴: EPC𝐴, reader 𝐴, and timestamp 𝐴;

Label 𝐵: EPC𝐵, reader 𝐵, and timestamp 𝐵.

(1) EPC codes are the same, that is EPC𝐴 = EPC𝐵.
(2) Reader 𝐴 and Reader 𝐵 are the same.
(3) The difference between Timestamp 𝐴 and

Timestamp 𝐵 is less than constant 𝑇, which
may be 10 milliseconds, for example. Figure 19
provides an example using MapReduce.

The process of parallel MapReduce redundancy data
elimination can be summarized as follows (see [27] for more
details).

(1) In Map phase, the data structure Tag consists of
three variables: Reader ID, EPC, and Timestamp.
According to the definition of tag redundancy, if two
tags are redundant, their Reader IDs and EPC codes
must be the same, and if one of them is different, the
two tags are not redundant tags. Input RFID tags are
divided into different blocks and assigned to hosts of
Hadoop clusters. Reader ID and EPC codes are Keys
and timestamps are outputs as Values to form (Key,
Value) pairs inMapReducemodel. In this case, that is,
Key is (Reader ID + EPC), while Value is Timestamp.

(2) After simple sorting based on theKey,Map (mapping)
outputs of each host are transferred to Reduce.

(3) Reduce stage: based on outputs of Map stage, it
compares values of each group of Key Value (calling
time comparison function), and if they are less than
constants 𝑇 (predefined), they are redundant and
should be removed, then Reduce removes the redun-
dancies and obtains an output and repeats doing this
until all inputs are proceeded. Notice that there may
be multiple workers (servers) that work paralleled in
Map and Reduce stages.

(4) Working nodes (hosts) in MapReduce cluster sum-
marize Key, Value pairs of other hosts processed by
Reduce and output them according to the original tag
format.

International Journal of Distributed Sensor Networks 11

Table 3: Utilization information after applying our load-balancing mechanism and method in [28].

Edge server CPU (%) [28] MEM (%) [28] CPU (%) ARRMS MEM (%) ARRMS
𝐴 34.0 37.0 34.0 37.0
𝐵 82.0 91.0 42.0 46.0
𝐶 50.0 55.0 50.0 55.0
𝐷 26.0 28.0 39.0 43.0
𝐿 𝑀 0.12 0.01

MapReduce phasesInput#
records#

Split&

Split&
...

...
...

...

...
...

Reduce$

ReduceMap

Map$

Output#
records#

Shuffle$

!!
!!

k1# k1#

k1#

k1#k1#

k1#

k2#

k2#

k2#

k2#

�1# �1#

�2#

�2#

�3#

�3#

�4#

�4#�5#

�5#

Figure 19: Redundancy elimination example using MapReduce.

Table 4: Data format of an RFID tag.

Field Device ID EPC code Timestamp
Bits 2 28 14

As for evaluation, set the total number of RFID tags is 𝑆,
the redundancy ratio is 𝑃

𝑑
and redundant tags are randomly

generated following EPC data format (32 bits currently), as
shown in Table 4 where total number of tags varying from
30 to 45 million and Cluster size means the number of host
servers used in Hadoop MapReduce. From Table 5, we can
see that the larger the number of tags and the MapReduce
cluster size is, the bigger the difference of time spent on
redundancy elimination is. As the number of tags increases
(above 50000), MapReduce begins to show the advantages
of scalability. The proposed method can be applied to large
scale RFID applications such as supermarkets and other
areas conveniently. The reason that Hadoop cluster can
remove 100% redundant data for large-scale of data up to 100
million lies in that it is a centralized redundancy elimination
mechanism and it can take all redundancy information into
consideration.

Figure 20 also shows tag lost ratio comparison from
simulation results, where connection pool is obtained using
the method in [30] and Agent is obtained, applying by
method in [29]. In the simulation, the total number of
readers is fixed as 30 but with varying the total number of
middleware: 2, 4, 6, 8, and 10.The tag information generation
rate is 50 tags/sec, and the time for a middleware to process a
tag information is 2 microseconds, and the total test length
of each run is 15 minutes, and our results are the average
of six runs. Figure 21 also provides average process time
comparison for the same total amount of tags. Similar results
are obtained in other cases, because of page limit, those results
are not provided here.

2 4 6 8 10
0

10

20

30

40

50

60

(%
)

Tag lost ratio

Middleware server account
Connection pSool
Agent
Proposed ARMMS

Figure 20: Tag lost ratio comparison.

5. Conclusions and Future Work

In this paper, a distributed and messaging RFID middleware
design is proposed. ARMMS provides equipment manage-
ment, RFID tag information management, application level
event (ALE) management, and Web service APIs, and so
forth, functions. For the equipment management, ARMMS

12 International Journal of Distributed Sensor Networks

Table 5: Times spent for Hadoop cluster to eliminate redundancy.

Number of tags Cluster size
1 server 2 servers 3 servers 4 servers 10 servers 15 servers 20 servers

30 4 sec 7 sec 7 sec 7 sec 7 sec 7 sec 7 sec
50000 5 sec 8 sec 7 sec 7 sec 4 sec 2 sec 1 sec
500000 16 sec 18 sec 14 sec 12 sec 6 sec 3 sec 2 sec
1.2 million 33 sec 24 sec 22 sec 19 sec 10 sec 6 sec 3 sec
45 million 52min 48min 42min 41min 21min 11min 5min

0

50

100

150

200

250

300

2 4 6 8 10
Middleware host number

Connection pool
Agent
Proposed mechanism

Average middleware processing time (ms)

Figure 21: Average process time comparison.

provides real-time monitoring and load balancing of multi-
site RFID devices also logical grouping of RFID readers.
For tag information management, it provides filtering and
statistical reports. ARMMS also provides Web service APIs
based on EPCglobal standards. We are conducting more
experimental tests and comparing different load-balancing
strategies with proposed one. There are still several research
directions awaiting further investigation.

(1) Considering distributed redundancy data elimina-
tion: when facing large-scale distributed applications,
distributed redundancy data elimination other than
parallel method should be investigated further, and
elimination efficiency should be quantitatively eval-
uated.

(2) Considering real-time data allocation and evaluating
further live migration costs and load balancing: real-
time data allocation among different middleware
(host Edge servers) causes a new challenge for load

balance and should be considered further. Also, the
live migration costs in time and other respects should
be included to provide a complete view for load bal-
ance so that decisionmakers can have comprehensive
information.

(3) Providing more comparative results against exist-
ing methods: currently, there is still difficulty to
repeat some of the existing methods such as in [1],
where experimental details are not provided. We
need repeating their algorithms and configuration so
that more comparative scienarios and results can be
obtained.

Acknowledgments

This research is supported by the National Natural Science
Foundation of China (NSFC) (Grants nos. 61150110486,
61034005 and 61272528) and by China Postdoc Funding
(2011-2012).

References

[1] Y. Ma, H. Chao, J. Chen, and C. Wu, “Load-balancing mecha-
nism for the RFID middleware applications over grid network-
ing,” Journal of Network and Computer Applications, vol. 34, no.
3, pp. 811–820, 2011.

[2] I. Abad, C. Cerrada, J. A. Cerrada, R. Heradio, and E. Valero,
“Managing RFID sensors networks with a general purpose
RFID middleware,” Sensors, vol. 12, no. 6, pp. 7719–7737, 2012.

[3] C. Floerkemeier and M. Lampe, “RFID middleware design:
addressing application requirements and RFID constraints,” in
Proceedings of the Smart Objects Conference (SOC ’05), pp. 219–
224, Grenoble, France, October 2005.

[4] EPCglobal Inc, http://www.epcglobalinc.org/.
[5] X. Huang, S. Le, and D. Sharma, “A taxonomy for RFID

systems,” in Proceedings of the 1st International Conference on
Signal Processing and Communication System, pp. 1–8, Gold
Coast, Australia, December 2007.

[6] M. A. E. Khaddar, M. Boulmalf, H. Harroud, and M. Elkoutbi,
“RFID middleware design and architecture, book chapter,
design and deploying RFID applications”.

[7] R. Want, “An introduction to RFID technology,” IEEE Pervasive
Computing, vol. 5, no. 1, pp. 25–33, 2006.

[8] R.Weinstein, “RFID: a technical overview and its application to
the enterprise,” IT Professional, vol. 7, no. 3, pp. 27–33, 2005.

[9] K. Finkenzeller, RFID Handbook: Radio-Frequency Identifica-
tion Fundamentals and Applications, John Wiley & Sons, New
York, NY, USA, 2000.

International Journal of Distributed Sensor Networks 13

[10] B. Nath, F. Reynolds, and R. Want, “RFID technology and
applications,” IEEE Pervasive Computing, vol. 5, no. 1, pp. 22–
24, 2006.

[11] “ALE 1 1 1-standard-core-20090313[EB/OL],” http://wwwepcglo-
balinc.org, 2009.

[12] “ALE 1 1 1-standard-XML and SOAP bindings-20090313[EB/
OL],” http://www.epcglobalinc.org, 2009.

[13] Auto-ID Labs, http://www.autoidlabs.org/S .
[14] “Class 1 Generation 2 UHF Air Interface Protocol Standard

Version 1. 0. 9[EB/OL],” http://www.epcglobalinc.org/.
[15] “EPCglobal-ReaderManagementrm 1 0 1-standard-20070531

[EB/OL],” http://www.epcglobalinc.org/, 2007.
[16] B. Feng, J. T. Li, P. Zhang, and J. B. Guo, “Study of RFID

middleware for distributed large-scale systems,” in Proceedings
of the Information and Communication Technologies (ICTTA
’06), vol. 2, pp. 2754–2759, 2006.

[17] M. Cezon, G. Vaudaux-Ruth, L. Laurens, and J. Soldatos,
“Review of state-of-the-artmiddleware,” ASPIRE Project Public
Deliverable D2. 1., 2008.

[18] F. Lin and B. Chen, “The design of a lightweight RFID mid-
dleware,” International Journal of Engineering Business Manage-
ment, vol. 1, no. 2, pp. 25–30, 2009.

[19] B. S. Prabhu, X. Su, H. Ramamurthy, C. Chu, and R. Gadh,
“WinRFID: amiddleware for the enablement of radio frequency
identification (RFID) based applications,” in Proceedings of
the Wireless Internet for the Mobile Enterprise Consortium
(WINMEC ’05), Los Angeles, Calif, USA, December 2005.

[20] P. Tran, P. Greenfield, and I. Gorton, “Behavior and per-
formance of message-oriented middleware systems,” in Pro-
ceedings of the 22nd International Conference on Distributed
Computing Systems, 2002.

[21] Y. Bai, F. Wang, and P. Liu, “Efficiently filtering RFID data
streams,” in Proceedings of the 1st International VLDBWorkshop
on Clean Databases (CleanDB ’06), September 2006.

[22] C. Yingwen, V. L. Hong, X. Ming, C. Jiannong, K. C. C.
Chan, and A. T. S. Chan, “In-network data processing for
wireless sensor networks,” in Proceedings of the 7th International
Conference on Mobile Data-Management (MDM ’06), Nara,
Japan, May 2006.

[23] W. Choi and M. Park, “In-network phased filtering mechanism
for a large-scale RFID inventory application,” in Proceedings of
the 4th International Conference on Information Technology and
Applications (ICITA ’07), pp. 401–405, Harbin, China, January
2007.

[24] S. R. Jeffery, M. Garofalakis, and M. J. Franklin, “Adaptive
cleaning for RFID data streams,” in Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB ’06),
September 2006.

[25] I. Kadayif and M. Kandemir, “Tuning in-sensor data filtering
to reduce energy consumption in wireless sensor networks,” in
Proceedings of Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE ’04), pp. 1530–1539, Paris, France,
February 2004.

[26] A. K. Bashir, S. Lim, C. S. Hussain, and M. Park, “Energy
efficient in-network RFID data filtering scheme in wireless
sensor networks,” Sensors, vol. 11, no. 7, pp. 7004–7021, 2011.

[27] W. H. Tian, Y. P. Yang, K. She, X. Dong, and H. Y. Wang,
“A parallel method to redundancy data elimination in RFID
network,” in Proceedings of the International Conference on
Instrumentation, Measurement, Circuits and Systems (ICIMCS
’11), pp. 399–402, Hongkong, China, December 2011.

[28] H. S. Chae and J. Park, “An approach to adaptive load balancing
for RFID middlewares,” International Journal of Mathematical
and Computer Sciences, vol. 2, no. 2, 2006.

[29] F. C. Jian and S. C. Heung, “Agent-based design of load balanc-
ing system for RFID middlewares,” in Proceedings of the 11th
IEEE International Workshop on Future Trends of Distributed
Computing Systems (FTDCS ’07), pp. 21–28, March 2007.

[30] S. Park, J. Song, C. Kim, and J. Kim, “Load balancing method
using connection pool in RFID middleware,” in Proceedings of
the 5th ACIS International Conference on Software Engineering
Research, Management, and Applications (SERA ’07), pp. 132–
137, August 2007.

[31] J. G. Park, H. S. Chae, and E. S. So, “A dynamic load balancing
approach based on the standard RFID middleware architec-
ture,” in Proceedings of the IEEE International Conference on e-
Business Engineering (ICEBE ’07), pp. 337–340, October 2007.

[32] W. H. Tian, K. She, Y. P. Yang, and X. Dong, “An approach
to dynamic and integrated load-balancing of distributed and
messaging RFID middleware,” in Proceedings of the Interna-
tional Conference on Instrumentation, Measurement, Circuits
and Systems (ICIMCS ’11), pp. 403–406, Hongkong, China,
December 2011.

[33] J. Dean and S. Ghemawat, “MapReduce: simplied data process-
ing on large clusters,” Google Paper, 2004.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

