
Layout Optimization by Pattern Modification

Ramin Hojati

Cadence Design Systems, Inc.
555 River Oaks Parkway

San Jose, California 95 134

Abstract
This paper introduces a new and practical approach to several
layout optimization problems. A novel two-dimensional pattem
generator, in connection with a set of routing and placement
transformations, is employed to efficiently solve problems
ranging from Wire Crossing Minimization and Topological Via
Minimization to Minimum Steiner Tree Optimization and IO
Alignment. The expected running time is O(n1ogn) and the space
requirement is O(n), where n is the number of layout objects. The
system is fully coded and tested, and excellent results in both
laboratory and real-life examples have been achieved.

Introduction
Many times as one nears completion of a layout, various
optimizations can still be performed. We categorize some of the
most common layout optimization problems as follows:

facets: first, the global wire ordering problem, which is
rearranging junction terminals between routing regions in an
optimal manner [2] ; second, minimizing wire crossing inside the
routing areas.

Topological (Unconstrained) Via Minimization.
This problem concems producing a layout with the primary cost
function equal to the number of vias [lo]. In reality, this is usually
not the cost function of choice. In systems with this cost
function, sometimes there is an explosion in wire length and area.
This explosion occurs because detours around vias are taken to
use fewer vias [8].

Minimum Steiner Tree (MST). Non-optimal MSTs
(that is, MSTs with extra twistings and comers) may be
observed in the layout [6]. We set two criteria for deciding
between two Steiner trees. The first one is wire length, and the
second one is number of comers. (Comers decrease the
manufacturability of a chip.) Wire length takes precedence in our
formulation; that is, if one Steiner tree has less length and more
comers, it is considered better than one that has more wire length
and fewer comers. We call the first problem Wire Length
Minimization and the second one Comer Minimization. By
solving the above two problems simultaneously, we present a
heuristic for the Minimum Steiner Tree problem.

IO Alignment. In many designs, the position of top-
level 10s (terminals and IO pads) is flexible. Given the side to
which a top-level IO belongs, generating a solution with the
minimum number of crossings, wire length, vias, and comers is
called the IO alignment problem. The precedence of optimization
criteria is as given in the previous sentence. Optimizing the
above criteria often helps to reduce the chip area.

Topology Optimization gives reasonable and user-controlled
solutions for these four optimization problems. It works in a
symbolic environment and requires a compactor [5] . The tool
makes very few assumptions. However, to achieve maximum

Wire Crossing Minimization. This problem has two

quality, it needs a router that honors a direction for each routing
layer [2], a re-layering routine, and a compactor with automatic
jog insertion capability.
Methodologically, Topology Optimization solves the four
optimization problems as follows. The working unit of the
program is a pattem (a small, connected piece of routing), which
we define precisely later. The pattems are big enough so that
their number is manageable (in our case, linear), but they are also
small enough so that almost every point in the solution space is
reachable. (The solution space of the program is the set of all
possible topologies.) To reduce wire crossings, a pattem is
taken and the number of wire crossings is minimized for that
pattem. To build better Steiner trees, pattems are optimized
with respect to wire length and number of comers. To solve the
IO alignment problem, routings around 10s are taken as inputs and
are optimized with respect to wire crossing and twisting. To
solve the Unconstrained Via Minimization problem, the number
of wire crossings is reduced, and then a standard via minimizer
[9] is called to minimize vias.

Overview of Topology Optimization
Topology Optimization lets the user perform some or all of the
above optimizations. The input can come from an automatic
place and route system or can be manually created; but it has to
be in symbolic form. The tool can also be run on selected areas or
partial layouts.
A typical design flow is shown in Figure 1. After placement, the
symbolic router is run. Topology Optimization then optimizes
the layout topologically. A re-layering routine then minimizes the
number of vias. Finally, a compactor with automatic jog insertion
capability produces compact and design-rule-correct solutions.

Topology
Optimization

Symbolic
Routing

I I 1 I

Typical Design Flow
Figure 1

After symbolic routing, the user might choose to iterate a few
times through the topology optimization, via minimization, and
compaction to achieve better results. At all times, manual changes
are accepted. We refer the reader to [4] for a discussion of our
optimization environment. In this paper, we concentrate on
Topology Optimization’s intemal structure.

Paper 38.2
632

27th ACMllEEE Design Automation Conference@

’ 1990 IEEE 0738-1 00>(/90/0006/0632 $1 .OO

Topology Optimization can perform one or more of the four
transformations-wire crossing minimization, comer
minimization, wire length minimization, and IO alignment-
simultaneously. Each transformation is controlled by a variable,
which takes discrete values between 0 and 5. If the user specifies
0, no optimization of that kind happens. If the user specifies 5 ,
the program iterates until the slope of improvement is very small
or 5 iterations are performed. The number 5 is chosen because, in
our experience, the optimization process converges after 2 or 3
iterations. By providing these variables explicitly, the user can
control time versus quality trade-offs. The high-level algorithm
follows.

Topology Optimization Algorithm
1) Get input and build data structures.
2) For each net

repeat

- Generate a pattern.
- Call the appropriate moving transformations

- Adjust the internal state if a change occurs.
until no more Datterns can be aenerated.

During the first step, data is read in and data structures are built.
Then, all the connected pieces are extracted and are represented
as trees. This second step is known as net tree extraction. The
nets are sorted according to the number of terminals and wire
length. We have experimented with several net selection
strategies. The best strategy is going from bigger to smaller
nets, which resolves net dependencies usually in only two or
three iterations. After we present the pattem matcher and the
moving transformations, we will analyze this algorithm for
complexity.

The pattem matcher is the heart of Topology Optimization. It
takes a net tree as input (Figure 2) and produces pattems one at a
time. It calls the appropriate moving transformation on each
pattem. If a move happens, the pattem matcher's state is re-
adjusted, and pattem generation continues. The pattem matcher
assumes that the first element is a terminal and there is only one
wire connected to it.

Pattern Matcher

Intemal representation
of a connected piece.

wire3 pin2

wire2
wirel

pin1

pin3 contact 1
wire7

wire5
pin4 NetTree

Nets Represented Intemally as Trees

Figure 2

Definitions
1) A connectivity change is a transformation that changes
connectivity information.
2) A topological change is a transformation that does not change
connectivity information.

3) A wire chain is a sorted set of connected wires, where all the
wires have the same direction but can be on different layers
(Figure 3a).
4) A jog is a pattem composed of three connected wire chains.
The first and third wire chains are parallel to each other and are
perpendicular to the second one. Moreover, the first and third
wire chains are on two opposite sides of the second wire chain
(Figure 3c). There are four kinds of jogs depending on the
orientation.
5) A U-tum is the same as a jog, except that the first and the third
wire chains are on the same side of the second chain (Figure 3b).
6) A useful pattem is either a jog or a U-turn.
7) A Minimal Useful Pattem (MUP) of a kind from a (net tree)
node is the smallest pattem of that kind visible from the node.
There are eight kinds of pattems since there are two useful
pattems and each can have four orientations. Note that a minimal
useful pattem is a function of two variables, node and kind of
pattem. There might be many choices. However, only the
"smallest" ones are considered. By smallest, we mean the pattem
with the smallest second wire chain (Figures 3d and 3e).
However, for the last wire chain, the maximal wire chain is taken
(Figure 30.

wire chain I I ;"""1 &
Minimal

node 2 Pattems

node n node n

Only the thicker pattems are minimal among
all the useful pattems seen from the node n.

Pattem Terminology
Figure 3

8) The Set of Minimal Useful Pattems (SMUP) of a connected
piece is the set of all minimal useful pattems visible from all the
nodes, subtracted from the set of all the pattems that are not
minimal from a node. The definition of minimal useful pattem is
chosen carefully so that an efficient algorithm for recognizing the
SMUP can be devised.
The example in Figure 3e clarifies the definition of SMUP. If we
look from nodes 2 and 3, we see two minimal jogs. These are not
in the SMUP of the connected piece since they are non-minimal
from node n. Figure 3f shows why we include the condition of
taking the maximal last wire chain in the definition of MUP. The
reason is we do not want to generate U-tums from nodes 1 and 2
since they are non-minimal from node n.
To show the difference between one-dimensional matching and
two-dimensional matching, let us concentrate on Figure 2.
Assume we start the search at pinl and visit wirel, wire2,
wire3, and pin2. As we stand at pin2, we remember all the pieces
we have seen so far. Now, we backtrack to the junction of wirel
and wire2. To recognize all the MUPs from pin3 and pin4, we
need to know about wire2 and wire3. Therefore, in two-
dimensional matching we not only need to know of things we
have seen before, but also we need to know about things that are
ahead of us.
To cope with the above problem, we extend the notion of a
finite state automata as follows. In a finite state automata, a state
contains a number. A two-dimensional state is a set of four lists,
corresponding to four directions: north, south, west, and east.
Each list contains a set of states (the states of one-dimensional
matching). Repetition of states is not allowed in the state lists.

Paper 38.2
633

To define a finite automata, we need to define five parameters
[11. The set of states Q is the set of all two-dimensional states,
which we show is still finite (Lemma 1). The input alphabet
contains two symbols: horizontal and vertical wires. The
transition function is a function of previous state, input symbol,
and moving direction. The transition function produces a list of
states. The set of final two-dimensional states F contains those
two-dimensional states with at least one final state. In our case, if
at least one state in any of the state lists corresponds to a useful
pattem, the state is final. The initial state is q0.
The pattem matching algorithm follows.

PatternMatch Algorithm
MatchNet(netTree) I" Sets up the environment for MatchLine . "1

1) Make the initial state "state0."
2) Get the child node.
3) MatchLine(childNode, stateo).

0) Make a state, "currentstate."
1) Update the list in direction of laststate.
2) If there is a final state and none of the children

MatchLine(netTreeNode, laststate) /" main matching routine "/

has the same direction as the current one, call the
moving routines. Adjust internal states if a move occurs.

3)
3.0) IastChildNode = NULL.
3.1) For all the child nodes that are wires

("cu rC h ildNode")
if last Childwire is not NULL

MatchLine(curChiIdNode, currentstate).
IastChildNode = curChildNode.

propState(currentState, IastDir, 2).

PropState(state. dir, proplevel) I" This routine looks back
propLevel in the given direction to update state list
of the state. " i

1) Go back propLevel in the given direction.
2) Get all the unvisited nodes in a sorted manner.
3) Expand states one after another until hitting the

given state.

The subroutine MatchNet sets up the pattem matching. It creates
the initial state and calls the pattem matcher on the first node's
child (assuming there is only one child). Note that here we are
only interested in wires. The algorithm MatchLine walks
through a net tree until it hits a leaf of the tree. Then it backtracks
to a branch-point. That is when it calls the routine PropState to
get information about neighboring nodes. Since the length of the
useful pattem is 3, we only need to look 2 steps back. We will
show that each node is visited by PropState only once. Thus,
this operation takes total linear time. If a final state is found, a
routine is called that retums the MUP corresponding to that
state, on which the appropriate moving transformations are
called.
Because of space limitations, all proofs for the following lemmas
and theorems have been omitted.
Lemma 1: The maximum number of states in a two-dimensional
state recognizing useful pattems is 16; that is, a constant.
Theorem 1: The PattemMatch algorithm recognizes the set of
all minimal useful pattems.
Lemma 2: The total cost of generating minimal useful pattems
after a final state is recognized is linear. In other words, the
amortized cost of generating an MUP is constant.
Lemma 3: The total cost of adjusting the pattem matcher's
state in the absence of connectivity changes is linear. In other
words, in the absence of connectivity changes, the amortized
cost of adjusting a two-dimensional state is constant.
Lemma 4: The total cost for PropState is linear over the
running time of the algorithm on a connected piece; that is,
constant in an amortized sense.

Theorem 2: If there are no connectivity changes, the
PattemMatch algorithm runs in linear time and space.
Corollary 1: The PattemMatch algorithm generates all the
minimal useful pattems in linear time and space. Moreover, the
set of minimal useful pattems is linear.

Proof Follows directly from Theorems 1 and 2

There is one question unanswered: What happens when a
connectivity change occurs? Although it seems that after a
connectivity change we should be able to adjust the automata's
state in constant amortized time, the process is actually rather
involved and error-prone. Thus, we restart the pattem matcher
every time a connectivity change happens. The worst-case
running time now increases to quadratic time in terms of the
number of elements in a net (not layout objects). Since most of the
program's time is spent in the region query routines (for all
practical cases), we need a scheme so that, if we visit a pattem
and no changes are possible on that pattem, that pattem is not
generated over and over as we iterate. This means that only a
linear number of pattems are passed to moving routines, which
saves us from a time-complexity explosion.
The scheme is as follows: As we visit an element if no changes
occur, we mark the element as visited and not changed. If a
change happens, the pattem is marked changed. If a pattem is
marked changed and no changes happen, we reset the element's
flag to not changed. If all the elements of a pattem are marked
visited and unchanged, we do not pass it to the moving routines.
This scheme achieves the above goal: as we iterate, we do not
look at the pattems that we have previously considered, where
no improvements could be done.

Moving Transformations
The moving transformations take a pattem and apply local
changes to that pattem. They are broken down into two sets:
routing and placement transformations.

Routing Transformations
There are two kinds of useful pattems: jogs and U-tums. For each
one, there is a corresponding transformation, which is invoked
by the pattem matcher. We present simplified versions of our
transformations here.

I Jog Transformation Algorithm
1) If minimize corner flag is ON, try to flip the corner by

pushing the second wire chain of the jog to the level
of the first or the last

2 1) Get all the wires parallel to the second wire chain in

2 2) Break them into two pieces, the ones higher and lower

2 3) Sort each group so that the first one in each group is the

2 4) Consider the position between each wire and its

2) If minimize wire crossing is ON

the jog's rectangle

than the second wire chain

furthest from the second wire chain

predecessor in the above groups Push the second
wire chain to this position if less wire crossings would
result I

The above algorithm has two functions. First, it tries to
minimize the number of comers by pushing the second wire chain
to maximum or minimum locations defined by the jog (Figure 4).
Second, i t tries to heuristically minimize wire crossings. The
heuristic for choosing a move is whether the net of the parallel
wire crosses the jog twice (Figure 5).

Paper 38.2
634

Comer Minimization Strategy for Jogs
Figure 4

HFl
Crossing Heuristics

& - 4~ wire

wire wire

? - I r U-tum
Wire Length

Crossing Minimization Heuristics for Jogs
Figure 5

The next routing algorithm manipulates U-tums. It minimizes
wire length, comers, and crossings.

U-turn Transformation Algorithm
1) If minimum wire length or minimum corner flag IS ON, try to push

the second wire chain as far as passible if wire length or number
of corners will be minimized.

2.1) Get the wires parallel to the second wire chain in the U-turn

2.2) Sort the wires so that the first one is furthest from the second

2.3) For each parallel wire, if wire crossings are minimized, try to

2) If minimum wire crossing flag is ON

rectangle.

wire chain.

push the second wire chain between the parallel wire
and its predecessor.

The move happens when the smaller U-tum is processed.

Order Dependency of Moves
Figure 7

Placement Transformations
The placement modifications are limited to top-level IO. For
placement modifications, the concept of useful pattems is too
general. To cope with this problem, we define the concept of IO-
pattem. An IO-pattem is a jog or U-tum with the last piece left

out. A jog or U-tum can have at most two IO-patterns. This
happens when the first and last wire chains are connected to 10s
(Figure 8).

q 5 L I n r
An IO-pattem A jog has two A U-tum has two

IO pattems IO-pattems

IO-pattem
Figure 8

The algorithm we present here also takes care of equivalent
logical pin swapping. However, no results of this kind of
optimization are reported in this paper. There are three data
objects: terminals, terminal instances, and IO pads. Two
operations are defined: move and swap. Terminals can only
move. Terminal instances can only swap. IO pads can both move
and swap. The move operation first tries to align terminals and
pad cells (Figure 9, left) to decrease wire length, contacts, and
comers. If the operation can not align the IO in question, it tries
to re-position the IO to decrease wire crossings.

Figure 9

Swap attempts to minimize wire crossings by re-positioning
10s (Figure 9, right). Consequently, wire length and the number of
vias might decrease; however, this decrease is not guaranteed.

Move-IO Algorithm 1
1) Get all the relevant 10s in the rectangle formed by the

2) Sort all the 10s with respect to the moving direction.
3) Until no more choices are available or a move happens, do

IO-pattern.

3.1) If a jog can be formed with the IO-pattern as part of it
Try to straighten the jog (align IO).

3.2) - Get all the wires crossing the IO-pattern
- For each IO in the IO list

If the IO net crosses the IO-pattern
try to move the IO beyond the crossing wire.

Swap-IO Algorithm
1) Get all the relevant 10s in the rectangle formed by the

2) Sort all the 10s with respect to the moving direction.
3) Until no more choices are available or a move happens

3.1) Get all the wires crossing the IO-pattern.
3.2) For all the 10s in the IO list

IO-pattern.

3.2.1) If the Io's net crosses the IO-pattern
Try to swap this IO with the pattern's IO.

Analysis
In this section, we look first at the program from a functional
point of view. Then, we discuss the time and space complexity
of the program.

Functional Analysis
Instead of using heuristics to guide moving transformations, one
can use actual calculations. Although actual calculations are easy
to incorporate into our system, we have not done this for a few
reasons. First, our heuristics work well. In almost all cases, they

Paper 38.2
635

find the optimal solution. This is especially true when each layer
has a fixed direction, implying wires of one direction will not
prevent movements of wires of the other direction. Second, the
incorporation of actual calculations would increase the running
time. Third, there are cases where a "bad" move is taken and is
corrected by subsequent moves. If actual calculations are used,
such bad moves might be discarded. In Figure 10, a three-
terminal net moves beyond the horizontal wire in a sequence of
two moves. After the first move, the number of comers and
contacts might increase, which might be regarded as a bad move.

The move happens in two steps. The first move might
increase the number of contacts or comers. However, the

second move corrects this problem.
Stepwise Refinement

Figure 10

Although our transformations are only concemed with the second
wire chains, a very good portion of the topological solution
space is covered. The reason is that every wire chain is the
second wire chain of some pattem, with the exception of the
first and last. However, the first and last wire chains are
connected to 10s; therefore, if they are movable, they are
considered by IO moving transformations.
At this point, we will compare our work to the work of others.
Wire crossing minimization is studied in [3] and [lo]. In [31,
wire crossing minimization between the routing areas is
attacked. Although an elegant approach is proposed, since the
optimization happens during global routing, some information
might be lost during detailed routing. Also, wire minimization
inside routing areas is not addressed. However, wire crossing
minimization inside the routing areas is studied in [101. The
same methodological approach to Unconstrained Via
Minimization as ours is proposed; that is, minimizing wire
crossings to create new topologies, and then using a standard re-
layering routine to minimize vias. Because of insensitivity of
the approach in [101 to area-contact trade-off, a practical
algorithm is not presented (results are obtained manually).
Our Steiner tree heuristics are very good in reducing the
meandering paths, thereby producing better Steiner trees. Our
heuristics handle multi-terminal nets effectively. However, our
heuristics do not make any new global decisions; that is, they do
not perform a rip up and re-route function. Our approach is
superior to traditional wire channel straighteners [7] since it
optimizes across various layers. A different approach to reduce
meandering paths is presented in [6], which involves creating
alternating paths to reduce meandering paths.
The IO alignment problem is handled effectively by the program:
given the side of an IO, optimal solutions are often found. Our
experience tells us that it is better to perform IO swapping
during global routing. Nonetheless, the IO move operation is
necessary to clean up after compaction. Many placers try to
come up with optimal positions for top-level 10s during
placement.

Let n be the number of wires, contacts, pins, pin instances, and
cell instances.

Time: We use sophisticated data structures, which are similar
to k-d trees. The expected look-up time is O(1ogn) if the number
of retrieved elements is small. In the worst case, the look-up time
can be linear.

Complexity Analysis

Let M be the maximum number of elements in a net. If the number
of connectivity changes is proportional to M, the pattem
matcher can take time O(M). If the look-up time is linear, the
worst-case time for a transformation is O(n). By the
modification we presented in the pattem matching section, the
number of times we call the moving rules is linear. Thus, the
worst-case running time is O(M + n). Since n is bigger than M,
the worst-case running time is O(n). However, the expected
running time is O(nlogn), where a linear number of patterns is
generated and the look-up times are logarithmic. Our experiments
show that, in fact, the number of generated pattems is linear, and
the look-up time is layout-dependent but seems to be
logarithmic. For example, the complexity of switch-box areas
has a great effect on the running time. Interestingly enough, in
cases where Topology Optimization takes longer, both the
router and compactor take longer, too.

Space: Empirically the program's space is divided roughly
into three pieces: one for object size, one for connectivity size,
and one for data structures. Empirically the average space is 20n
words (4 bytes). The upper bound on space is 40n words.

Experimental Results
We present two sets of examples. In the first section, we give
two laboratory examples that have appeared in the recent works.
Then we present our results on actual circuits. More examples are
provided in [4].

Laboratory Examples
In [3], a test case for a wire-ordering problem is shown. The
diagram below shows that Topology Optimization produces the
optimal solution (Figure 11, top). In [8], a test case is shown, on
which topology is changed to minimize vias. The solution
reported has three vias. By using Topology Optimization and
Via Minimization, we got the planar solution (Figure 11,
bottom).

+

Q 0

In each diagram, left is before optimization
and right is after optimization.

Laboratory Examples
Figure 11

Real-Life Circuits
We conducted tests on six industrial circuits, which mostly
represent block-oriented layouts. Compared to standard-cell
designs, block-oriented layouts are more complicated; therefore,
we expect more optimizations can be done. The results are
compared in three different modes. First, only routing and via

Paper 38.2
636

minimization is done. Then, Topology Optimization with only
routing modification is executed. Finally, Topology
Optimization with both routing and placement changes is
performed. In some cases, no IO optimization is possible
because the IO cells are big IO rings (IO optimization is done
only on pad cells with one routed pin instance).
In the following table, the percentage appearing in “Route & Via
Min” under “Route Area” is the ratio of routing area to total
area. The other percentages are the improvements over via
minimization as the only optimization performed. The table
shows that, compared to routing without topological
optimization, on average we achieve a 14.5% reduction in
routing area, a 27% reduction in the number of vias, and a 10.5%
reduction in wire length. The CPU times are measured on a Sun
41260 and are reported in seconds.

Conclusion
In this paper, we present a new approach to several layout
optimization problems: Wire Crossing Minimization,
Topological Via Minimization, Minimum Steiner Tree
Optimization, and IO Alignment. Our approach is based on
pattem-recognition techniques and is accompanied by efficient
heuristic transformations. The system is fully coded and tested,
and will be included in the next Cadence IC design software
release. It performs very well on both laboratory and real-life
examples. For our industrial test cases, compared to layout
without topological optimization, we have recorded average
reductions of about 14.5% in routing area, 27% in the number of
vias, and 10.5% in wire length. The running time is very
reasonable (expected O(nlogn)) and falls between our symbolic
router and compactor. The space requirement of our system is
linear and is empirically measured at about O(20n) words.

References
[11 John E. Hopcroft, Jeffrey D. Ullman, Introduction to

Automata Theory, Languages, and Computation, Addison-
Wesley, 1979.
[2] Nang-Ping Chen, “Building Block Routing - A Symbolic
Approach,” Custom Integrated Circuits Conference, 1988.
[3] P. Groenveld, “On Global Wire Ordering For Macro-cell
Routing,” Proc. 26th Design Automation Conference, pp. 155-
160, 1989.
[4] Ramin Hojati, Duan-Ping Chen “Transformation-Based
Layout Optimization,” Custom Integrated Circuits Conference,
1990.
[5] Yuh-Zen Liao, C.K. Wong, “An Algorithm to Compact a
VLSI Symbolic Layout With Mixed Constraints,” IEEE
Transactions On Computer-Aided Design of Integrated Circuits
and Systems, Vol. CAD-2, No. 2, April 1983.
[6] H. Nelson, Robert J. Smith, 11, “Verification and
Optimization for LSI & PCB Layout,” Proc. 18th Design
Automation Conference, pp. 140-144, 1981.
[7] J. Royle, M. Palczewski, H. Verheyen, N. Naccache, and J.
Soukup, “Geometrical Compaction in One Dimension for Channel
Routing,” Proc. 24th Design Automation Conference, pp. 140-
144, 1987.
[8] Khe-Sing The, D.F. Wong, Jingsheng Cong, “Via
Minimization By Layout Modification,” Proc. 26th Design
Automation Conference, pp. 799-802, 1989.
[9] Xiao-Ming Xiong, Emest Kuh, “The Constrained Via
Minimization Problem for PCB and VLSI Design,” Proc. 25th
Design Automation Conference, pp. 155-160, 1988.
[lo] Xiao-Ming Xiong, “A New Algorithm for Topological
Routing and Via Minimization,” ICCAD, 1989.

Test Case Route & Via Min Routing, Topology, Routing, Topology
Optimization, Via Min Optimization, IO Align, Via Min

Wires 480 Route Area 392.0 (34.8%) 331.9 (15.3%) 3 1 1.4 (20.6%)
Contacts 326 Contacts 176 107 (39.2%) 103 (41.5%)

1 #Term&Term 33 + 210 Wire Length 4104.8 3785.1 (7.8%) 3727.7 (9.2%)
Instances

Pads & Cells 0 + 11 CPUTime 7.1 8.0

Wires 2105 Route Area 679.0 (62.1 %) 573.2 (1 5.6%) 483.9 (28.7%)
Contacts 1422 Contacts 1337 1042 (22.1%) 723 (45.9%)
#Term&Term 197 + 824 Wire Length 7977.3 7019.8 (12.0%) 6099.3 (23.5%)

Pads & Cells 0 + 20 CPUTime 55.8 52.3
Wires 1002 Route Area 950.2 (40.2%) 841.9 (1 1.4%) 834.8 (1 2.1 %)
Contacts 777 Contacts 627 505 (19.5%) 501 (20.1%) 3 #Term&Term 0 + 399 Wire Length 373267 355787 (5.2%) 347700 (6.8%)

Instances

Instances
Pads & Cells 55 + 17 CPUTime 15.0 16.7

Wires 1957 Route Area 9583.5 (52.7%) 8999.6 (6.1%) 8210.8 (14.3%)
Contacts 1366 Contacts 1289 1281 (.6%) 1139 (11.6%)

101 + 660 WireLength 1061.2 1005.5 (5.3%) 946 (10.9%) 4 #Term&Term
Instances

Pads & Cells 0 + 17 CPUTime 61 69

Wires 4028 Route Area 5323.7 (40.2%) 5028.0 (5.6%)
Contacts 3141 Contacts 3038 2624 (13.6%) 5 #Term&Term 0 + 1476 Wire Length 4377.1 4150.9 (5.2%)

Pads & Cells 4 + 14 CPUTime 233.3
Wires 12237 Route Area 5391.4 (44.3%) 5090.7 (5.6%)
Contacts 7419 Contacts 5884 4180 (29.0%) 6 #Term&Term 0 + 3254 Wire Length 2306.9 2140.2 (7.2%)

Pads &Cells 38/+ 102 CPUTime 25 1

Instances

Instances

Paper 38.2
637

