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Abstract 
This paper introduces a new and practical approach to several 
layout optimization problems. A novel two-dimensional pattem 
generator, in connection with a set of routing and placement 
transformations, is employed to efficiently solve problems 
ranging from Wire Crossing Minimization and Topological Via 
Minimization to Minimum Steiner Tree Optimization and IO 
Alignment. The expected running time is O(n1ogn) and the space 
requirement is O(n), where n is the number of layout objects. The 
system is fully coded and tested, and excellent results in both 
laboratory and real-life examples have been achieved. 

Introduction 
Many times as one nears completion of a layout, various 
optimizations can still be performed. We categorize some of the 
most common layout optimization problems as follows: 

facets: first, the global wire ordering problem, which is 
rearranging junction terminals between routing regions in an 
optimal manner [ 2 ] ;  second, minimizing wire crossing inside the 
routing areas. 

Topological (Unconstrained) Via Minimization. 
This problem concems producing a layout with the primary cost 
function equal to the number of vias [lo]. In reality, this is usually 
not the cost function of choice. In systems with this cost 
function, sometimes there is an explosion in wire length and area. 
This explosion occurs because detours around vias are taken to 
use fewer vias [8]. 

Minimum Steiner Tree (MST). Non-optimal MSTs 
(that is, MSTs with extra twistings and comers) may be 
observed in the layout [6]. We set two criteria for deciding 
between two Steiner trees. The first one is wire length, and the 
second one is number of comers. (Comers decrease the 
manufacturability of a chip.) Wire length takes precedence in our 
formulation; that is, if one Steiner tree has less length and more 
comers, it is considered better than one that has more wire length 
and fewer comers. We call the first problem Wire Length 
Minimization and the second one Comer Minimization. By 
solving the above two problems simultaneously, we present a 
heuristic for the Minimum Steiner Tree problem. 

IO Alignment. In many designs, the position of top- 
level 10s (terminals and IO pads) is flexible. Given the side to 
which a top-level IO belongs, generating a solution with the 
minimum number of crossings, wire length, vias, and comers is 
called the IO alignment problem. The precedence of optimization 
criteria is as given in the previous sentence. Optimizing the 
above criteria often helps to reduce the chip area. 

Topology Optimization gives reasonable and user-controlled 
solutions for these four optimization problems. It works in a 
symbolic environment and requires a compactor [ 5 ] .  The tool 
makes very few assumptions. However, to achieve maximum 

Wire Crossing Minimization. This problem has two 

quality, it needs a router that honors a direction for each routing 
layer [2], a re-layering routine, and a compactor with automatic 
jog insertion capability. 
Methodologically, Topology Optimization solves the four 
optimization problems as follows. The working unit of the 
program is a pattem (a small, connected piece of routing), which 
we define precisely later. The pattems are big enough so that 
their number is manageable (in our case, linear), but they are also 
small enough so that almost every point in the solution space is 
reachable. (The solution space of the program is the set of all 
possible topologies.) To reduce wire crossings, a pattem is 
taken and the number of wire crossings is minimized for that 
pattem. To build better Steiner trees, pattems are optimized 
with respect to wire length and number of comers. To solve the 
IO alignment problem, routings around 10s are taken as inputs and 
are optimized with respect to wire crossing and twisting. To 
solve the Unconstrained Via Minimization problem, the number 
of wire crossings is reduced, and then a standard via minimizer 
[9] is called to minimize vias. 

Overview of Topology Optimization 
Topology Optimization lets the user perform some or all of the 
above optimizations. The input can come from an automatic 
place and route system or can be manually created; but it has to 
be in symbolic form. The tool can also be run on selected areas or 
partial layouts. 
A typical design flow is shown in Figure 1. After placement, the 
symbolic router is run. Topology Optimization then optimizes 
the layout topologically. A re-layering routine then minimizes the 
number of vias. Finally, a compactor with automatic jog insertion 
capability produces compact and design-rule-correct solutions. 

Topology 
Optimization 

Symbolic 
Routing 

I I 1  I 

Typical Design Flow 
Figure 1 

After symbolic routing, the user might choose to iterate a few 
times through the topology optimization, via minimization, and 
compaction to achieve better results. At all times, manual changes 
are accepted. We refer the reader to [4] for a discussion of our 
optimization environment. In this paper, we concentrate on 
Topology Optimization’s intemal structure. 
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Topology Optimization can perform one or more of the four 
transformations-wire crossing minimization, comer 
minimization, wire length minimization, and IO alignment- 
simultaneously. Each transformation is controlled by a variable, 
which takes discrete values between 0 and 5. If the user specifies 
0, no optimization of that kind happens. If the user specifies 5 ,  
the program iterates until the slope of improvement is very small 
or 5 iterations are performed. The number 5 is chosen because, in 
our experience, the optimization process converges after 2 or 3 
iterations. By providing these variables explicitly, the user can 
control time versus quality trade-offs. The high-level algorithm 
follows. 

Topology Optimization Algorithm 
1 )  Get input and build data structures. 
2) For each net 

repeat 

- Generate a pattern. 
- Call the appropriate moving transformations 

- Adjust the internal state if a change occurs. 
until no more Datterns can be aenerated. 

During the first step, data is read in and data structures are built. 
Then, all the connected pieces are extracted and are represented 
as trees. This second step is known as net tree extraction. The 
nets are sorted according to the number of terminals and wire 
length. We have experimented with several net selection 
strategies. The best strategy is going from bigger to smaller 
nets, which resolves net dependencies usually in only two or 
three iterations. After we present the pattem matcher and the 
moving transformations, we will analyze this algorithm for 
complexity. 

The pattem matcher is the heart of Topology Optimization. It 
takes a net tree as input (Figure 2) and produces pattems one at a 
time. It calls the appropriate moving transformation on each 
pattem. If a move happens, the pattem matcher's state is re- 
adjusted, and pattem generation continues. The pattem matcher 
assumes that the first element is a terminal and there is only one 
wire connected to it. 

Pattern Matcher 

Intemal representation 
of a connected piece. 

wire3 pin2 

wire2 
wirel 

pin1 

pin3 contact 1 
wire7 

wire5 
pin4 NetTree 

Nets Represented Intemally as Trees 

Figure 2 

Definitions 
1) A connectivity change is a transformation that changes 
connectivity information. 
2) A topological change is a transformation that does not change 
connectivity information. 

3) A wire chain is a sorted set of connected wires, where all the 
wires have the same direction but can be on different layers 
(Figure 3a). 
4) A jog is a pattem composed of three connected wire chains. 
The first and third wire chains are parallel to each other and are 
perpendicular to the second one. Moreover, the first and third 
wire chains are on two opposite sides of the second wire chain 
(Figure 3c). There are four kinds of jogs depending on the 
orientation. 
5 )  A U-tum is the same as a jog, except that the first and the third 
wire chains are on the same side of the second chain (Figure 3b). 
6) A useful pattem is either a jog or a U-turn. 
7) A Minimal Useful Pattem (MUP) of a kind from a (net tree) 
node is the smallest pattem of that kind visible from the node. 
There are eight kinds of pattems since there are two useful 
pattems and each can have four orientations. Note that a minimal 
useful pattem is a function of two variables, node and kind of 
pattem. There might be many choices. However, only the 
"smallest" ones are considered. By smallest, we mean the pattem 
with the smallest second wire chain (Figures 3d and 3e). 
However, for the last wire chain, the maximal wire chain is taken 
(Figure 30. 

wire chain I I ;"""1 & 
Minimal 

node 2 Pattems 

node n node n 

Only the thicker pattems are minimal among 
all the useful pattems seen from the node n. 

Pattem Terminology 
Figure 3 

8) The Set of Minimal Useful Pattems (SMUP) of a connected 
piece is the set of all minimal useful pattems visible from all the 
nodes, subtracted from the set of all the pattems that are not 
minimal from a node. The definition of minimal useful pattem is 
chosen carefully so that an efficient algorithm for recognizing the 
SMUP can be devised. 
The example in Figure 3e clarifies the definition of SMUP. If we 
look from nodes 2 and 3, we see two minimal jogs. These are not 
in the SMUP of the connected piece since they are non-minimal 
from node n. Figure 3f shows why we include the condition of 
taking the maximal last wire chain in the definition of MUP. The 
reason is we do not want to generate U-tums from nodes 1 and 2 
since they are non-minimal from node n. 
To show the difference between one-dimensional matching and 
two-dimensional matching, let us concentrate on Figure 2. 
Assume we start the search at pinl and visit wirel, wire2, 
wire3, and pin2. As we stand at pin2, we remember all the pieces 
we have seen so far. Now, we backtrack to the junction of wirel 
and wire2. To recognize all the MUPs from pin3 and pin4, we 
need to know about wire2 and wire3. Therefore, in two- 
dimensional matching we not only need to know of things we 
have seen before, but also we need to know about things that are 
ahead of us. 
To cope with the above problem, we extend the notion of a 
finite state automata as follows. In a finite state automata, a state 
contains a number. A two-dimensional state is a set of four lists, 
corresponding to four directions: north, south, west, and east. 
Each list contains a set of states (the states of one-dimensional 
matching). Repetition of states is not allowed in the state lists. 
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To define a finite automata, we need to define five parameters 
[ 11. The set of states Q is the set of all two-dimensional states, 
which we show is still finite (Lemma 1). The input alphabet 
contains two symbols: horizontal and vertical wires. The 
transition function is a function of previous state, input symbol, 
and moving direction. The transition function produces a list of 
states. The set of final two-dimensional states F contains those 
two-dimensional states with at least one final state. In our case, if 
at least one state in any of the state lists corresponds to a useful 
pattem, the state is final. The initial state is q0. 
The pattem matching algorithm follows. 

PatternMatch Algorithm 
MatchNet(netTree) I" Sets up the environment for MatchLine . "1 

1) Make the initial state "state0." 
2) Get the child node. 
3) MatchLine(childNode, stateo). 

0) Make a state, "currentstate." 
1) Update the list in direction of laststate. 
2) If there is a final state and none of the children 

MatchLine(netTreeNode, laststate) /" main matching routine "/ 

has the same direction as the current one, call the 
moving routines. Adjust internal states if a move occurs. 

3) 
3.0) IastChildNode = NULL. 
3.1) For all the child nodes that are wires 

( "cu rC h ildNode") 
if last Childwire is not NULL 

MatchLine(curChiIdNode, currentstate). 
IastChildNode = curChildNode. 

propState(currentState, IastDir, 2). 

PropState(state. dir, proplevel) I" This routine looks back 
propLevel in the given direction to update state list 
of the state. " i  

1) Go back propLevel in the given direction. 
2) Get all the unvisited nodes in a sorted manner. 
3) Expand states one after another until hitting the 

given state. 

The subroutine MatchNet sets up the pattem matching. It creates 
the initial state and calls the pattem matcher on the first node's 
child (assuming there is only one child). Note that here we are 
only interested in wires. The algorithm MatchLine walks 
through a net tree until it hits a leaf of the tree. Then it backtracks 
to a branch-point. That is when it calls the routine PropState to 
get information about neighboring nodes. Since the length of the 
useful pattem is 3, we only need to look 2 steps back. We will 
show that each node is visited by PropState only once. Thus, 
this operation takes total linear time. If a final state is found, a 
routine is called that retums the MUP corresponding to that 
state, on which the appropriate moving transformations are 
called. 
Because of space limitations, all proofs for the following lemmas 
and theorems have been omitted. 
Lemma 1: The maximum number of states in a two-dimensional 
state recognizing useful pattems is 16; that is, a constant. 
Theorem 1: The PattemMatch algorithm recognizes the set of 
all minimal useful pattems. 
Lemma 2: The total cost of generating minimal useful pattems 
after a final state is recognized is linear. In other words, the 
amortized cost of generating an MUP is constant. 
Lemma 3: The total cost of adjusting the pattem matcher's 
state in the absence of connectivity changes is linear. In other 
words, in the absence of connectivity changes, the amortized 
cost of adjusting a two-dimensional state is constant. 
Lemma 4: The total cost for PropState is linear over the 
running time of the algorithm on a connected piece; that is, 
constant in an amortized sense. 

Theorem 2: If there are no connectivity changes, the 
PattemMatch algorithm runs in linear time and space. 
Corollary 1: The PattemMatch algorithm generates all the 
minimal useful pattems in linear time and space. Moreover, the 
set of minimal useful pattems is linear. 

Proof Follows directly from Theorems 1 and 2 

There is one question unanswered: What happens when a 
connectivity change occurs? Although it seems that after a 
connectivity change we should be able to adjust the automata's 
state in constant amortized time, the process is actually rather 
involved and error-prone. Thus, we restart the pattem matcher 
every time a connectivity change happens. The worst-case 
running time now increases to quadratic time in terms of the 
number of elements in a net (not layout objects). Since most of the 
program's time is spent in the region query routines (for all 
practical cases), we need a scheme so that, if we visit a pattem 
and no changes are possible on that pattem, that pattem is not 
generated over and over as we iterate. This means that only a 
linear number of pattems are passed to moving routines, which 
saves us from a time-complexity explosion. 
The scheme is as follows: As we visit an element if no changes 
occur, we mark the element as visited and not changed. If a 
change happens, the pattem is marked changed. If a pattem is 
marked changed and no changes happen, we reset the element's 
flag to not changed. If all the elements of a pattem are marked 
visited and unchanged, we do not pass it to the moving routines. 
This scheme achieves the above goal: as we iterate, we do not 
look at the pattems that we have previously considered, where 
no improvements could be done. 

Moving Transformations 
The moving transformations take a pattem and apply local 
changes to that pattem. They are broken down into two sets: 
routing and placement transformations. 

Routing Transformations 
There are two kinds of useful pattems: jogs and U-tums. For each 
one, there is a corresponding transformation, which is invoked 
by the pattem matcher. We present simplified versions of our 
transformations here. 

I Jog Transformation Algorithm 
1) If minimize corner flag is ON, try to flip the corner by 

pushing the second wire chain of the jog to the level 
of the first or the last 

2 1) Get all the wires parallel to the second wire chain in 

2 2) Break them into two pieces, the ones higher and lower 

2 3) Sort each group so that the first one in each group is the 

2 4) Consider the position between each wire and its 

2) If minimize wire crossing is ON 

the jog's rectangle 

than the second wire chain 

furthest from the second wire chain 

predecessor in the above groups Push the second 
wire chain to this position if less wire crossings would 
result I 

The above algorithm has two functions. First, it tries to 
minimize the number of comers by pushing the second wire chain 
to maximum or minimum locations defined by the jog (Figure 4). 
Second, i t  tries to heuristically minimize wire crossings. The 
heuristic for choosing a move is whether the net of the parallel 
wire crosses the jog twice (Figure 5). 
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Comer Minimization Strategy for Jogs 
Figure 4 

HFl  
Crossing Heuristics 

& - 4~ wire 

wire wire 

? - I  r U-tum 
Wire Length 

Crossing Minimization Heuristics for Jogs 
Figure 5 

The next routing algorithm manipulates U-tums. It minimizes 
wire length, comers, and crossings. 

U-turn Transformation Algorithm 
1) If minimum wire length or minimum corner flag IS ON, try to push 

the second wire chain as far as passible if wire length or number 
of corners will be minimized. 

2.1) Get the wires parallel to the second wire chain in the U-turn 

2.2) Sort the wires so that the first one is furthest from the second 

2.3) For each parallel wire, if wire crossings are minimized, try to 

2) If minimum wire crossing flag is ON 

rectangle. 

wire chain. 

push the second wire chain between the parallel wire 
and its predecessor. 

The move happens when the smaller U-tum is processed. 

Order Dependency of Moves 
Figure 7 

Placement Transformations 
The placement modifications are limited to top-level IO. For 
placement modifications, the concept of useful pattems is too 
general. To cope with this problem, we define the concept of IO- 
pattem. An IO-pattem is a jog or U-tum with the last piece left 

out. A jog or U-tum can have at most two IO-patterns. This 
happens when the first and last wire chains are connected to 10s 
(Figure 8). 

q 5  L I n r  
An IO-pattem A jog has two A U-tum has two 

IO pattems IO-pattems 

IO-pattem 
Figure 8 

The algorithm we present here also takes care of equivalent 
logical pin swapping. However, no results of this kind of 
optimization are reported in this paper. There are three data 
objects: terminals, terminal instances, and IO pads. Two 
operations are defined: move and swap. Terminals can only 
move. Terminal instances can only swap. IO pads can both move 
and swap. The move operation first tries to align terminals and 
pad cells (Figure 9, left) to decrease wire length, contacts, and 
comers. If the operation can not align the IO in question, it tries 
to re-position the IO to decrease wire crossings. 

Figure 9 

Swap attempts to minimize wire crossings by re-positioning 
10s (Figure 9, right). Consequently, wire length and the number of 
vias might decrease; however, this decrease is not guaranteed. 

Move-IO Algorithm 1 
1) Get all the relevant 10s in the rectangle formed by the 

2) Sort all the 10s with respect to the moving direction. 
3) Until no more choices are available or a move happens, do 

IO-pattern. 

3.1) If a jog can be formed with the IO-pattern as part of it 
Try to straighten the jog (align IO). 

3.2) - Get all the wires crossing the IO-pattern 
- For each IO in the IO list 

If the IO net crosses the IO-pattern 
try to move the IO beyond the crossing wire. 

Swap-IO Algorithm 
1) Get all the relevant 10s in the rectangle formed by the 

2) Sort all the 10s with respect to the moving direction. 
3) Until no more choices are available or a move happens 

3.1) Get all the wires crossing the IO-pattern. 
3.2) For all the 10s in the IO list 

IO-pattern. 

3.2.1) If the Io's net crosses the IO-pattern 
Try to swap this IO with the pattern's IO. 

Analysis 
In this section, we look first at the program from a functional 
point of view. Then, we discuss the time and space complexity 
of the program. 

Functional Analysis 
Instead of using heuristics to guide moving transformations, one 
can use actual calculations. Although actual calculations are easy 
to incorporate into our system, we have not done this for a few 
reasons. First, our heuristics work well. In almost all cases, they 
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find the optimal solution. This is especially true when each layer 
has a fixed direction, implying wires of one direction will not 
prevent movements of wires of the other direction. Second, the 
incorporation of actual calculations would increase the running 
time. Third, there are cases where a "bad" move is taken and is 
corrected by subsequent moves. If actual calculations are used, 
such bad moves might be discarded. In Figure 10, a three- 
terminal net moves beyond the horizontal wire in a sequence of 
two moves. After the first move, the number of comers and 
contacts might increase, which might be regarded as a bad move. 

The move happens in two steps. The first move might 
increase the number of contacts or comers. However, the 

second move corrects this problem. 
Stepwise Refinement 

Figure 10 

Although our transformations are only concemed with the second 
wire chains, a very good portion of the topological solution 
space is covered. The reason is that every wire chain is the 
second wire chain of some pattem, with the exception of the 
first and last. However, the first and last wire chains are 
connected to 10s; therefore, if they are movable, they are 
considered by IO moving transformations. 
At this point, we will compare our work to the work of others. 
Wire crossing minimization is studied in [3] and [lo]. In [31, 
wire crossing minimization between the routing areas is 
attacked. Although an elegant approach is proposed, since the 
optimization happens during global routing, some information 
might be lost during detailed routing. Also, wire minimization 
inside routing areas is not addressed. However, wire crossing 
minimization inside the routing areas is studied in [ 101. The 
same methodological approach to Unconstrained Via 
Minimization as ours is proposed; that is, minimizing wire 
crossings to create new topologies, and then using a standard re- 
layering routine to minimize vias. Because of insensitivity of 
the approach in [ 101 to area-contact trade-off, a practical 
algorithm is not presented (results are obtained manually). 
Our Steiner tree heuristics are very good in reducing the 
meandering paths, thereby producing better Steiner trees. Our 
heuristics handle multi-terminal nets effectively. However, our 
heuristics do not make any new global decisions; that is, they do 
not perform a rip up and re-route function. Our approach is 
superior to traditional wire channel straighteners [7] since it 
optimizes across various layers. A different approach to reduce 
meandering paths is presented in [6], which involves creating 
alternating paths to reduce meandering paths. 
The IO alignment problem is handled effectively by the program: 
given the side of an IO, optimal solutions are often found. Our 
experience tells us that it is better to perform IO swapping 
during global routing. Nonetheless, the IO move operation is 
necessary to clean up after compaction. Many placers try to 
come up with optimal positions for top-level 10s during 
placement. 

Let n be the number of wires, contacts, pins, pin instances, and 
cell instances. 

Time: We use sophisticated data structures, which are similar 
to k-d trees. The expected look-up time is O(1ogn) if the number 
of retrieved elements is small. In the worst case, the look-up time 
can be linear. 

Complexity Analysis 

Let M be the maximum number of elements in a net. If the number 
of connectivity changes is proportional to M, the pattem 
matcher can take time O(M). If the look-up time is linear, the 
worst-case time for a transformation is O(n). By the 
modification we presented in the pattem matching section, the 
number of times we call the moving rules is linear. Thus, the 
worst-case running time is O(M + n). Since n is bigger than M, 
the worst-case running time is O(n). However, the expected 
running time is O(nlogn), where a linear number of patterns is 
generated and the look-up times are logarithmic. Our experiments 
show that, in fact, the number of generated pattems is linear, and 
the look-up time is layout-dependent but seems to be 
logarithmic. For example, the complexity of switch-box areas 
has a great effect on the running time. Interestingly enough, in 
cases where Topology Optimization takes longer, both the 
router and compactor take longer, too. 

Space: Empirically the program's space is divided roughly 
into three pieces: one for object size, one for connectivity size, 
and one for data structures. Empirically the average space is 20n 
words (4 bytes). The upper bound on space is 40n words. 

Experimental Results 
We present two sets of examples. In the first section, we give 
two laboratory examples that have appeared in the recent works. 
Then we present our results on actual circuits. More examples are 
provided in [4]. 

Laboratory Examples 
In [3], a test case for a wire-ordering problem is shown. The 
diagram below shows that Topology Optimization produces the 
optimal solution (Figure 11, top). In [8], a test case is shown, on 
which topology is changed to minimize vias. The solution 
reported has three vias. By using Topology Optimization and 
Via Minimization, we got the planar solution (Figure 11, 
bottom). 

+ 

Q 0 

In each diagram, left is before optimization 
and right is after optimization. 

Laboratory Examples 
Figure 11 

Real-Life Circuits 
We conducted tests on six industrial circuits, which mostly 
represent block-oriented layouts. Compared to standard-cell 
designs, block-oriented layouts are more complicated; therefore, 
we expect more optimizations can be done. The results are 
compared in three different modes. First, only routing and via 
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minimization is done. Then, Topology Optimization with only 
routing modification is executed. Finally, Topology 
Optimization with both routing and placement changes is 
performed. In some cases, no IO optimization is possible 
because the IO cells are big IO rings (IO optimization is done 
only on pad cells with one routed pin instance). 
In the following table, the percentage appearing in “Route & Via 
Min” under “Route Area” is the ratio of routing area to total 
area. The other percentages are the improvements over via 
minimization as the only optimization performed. The table 
shows that, compared to routing without topological 
optimization, on average we achieve a 14.5% reduction in 
routing area, a 27% reduction in the number of vias, and a 10.5% 
reduction in wire length. The CPU times are measured on a Sun 
41260 and are reported in seconds. 

Conclusion 
In this paper, we present a new approach to several layout 
optimization problems: Wire Crossing Minimization, 
Topological Via Minimization, Minimum Steiner Tree 
Optimization, and IO Alignment. Our approach is based on 
pattem-recognition techniques and is accompanied by efficient 
heuristic transformations. The system is fully coded and tested, 
and will be included in the next Cadence IC design software 
release. It performs very well on both laboratory and real-life 
examples. For our industrial test cases, compared to layout 
without topological optimization, we have recorded average 
reductions of about 14.5% in routing area, 27% in the number of 
vias, and 10.5% in wire length. The running time is very 
reasonable (expected O(nlogn)) and falls between our symbolic 
router and compactor. The space requirement of our system is 
linear and is empirically measured at about O(20n) words. 
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Test Case Route & Via Min Routing, Topology, Routing, Topology 
Optimization, Via Min Optimization, IO Align, Via Min 

# Wires 480 Route Area 392.0 (34.8%) 331.9 (15.3%) 3 1 1.4 (20.6%) 
# Contacts 326 Contacts 176 107 (39.2%) 103 (41.5%) 

1 #Term&Term 33 + 210 Wire Length 4104.8 3785.1 (7.8%) 3727.7 (9.2%) 
Instances 

# Pads & Cells 0 +  11 CPUTime 7.1 8.0 

# Wires 2105 Route Area 679.0 (62.1 %) 573.2 ( 1  5.6%) 483.9 (28.7%) 
# Contacts 1422 Contacts 1337 1042 (22.1%) 723 (45.9%) 
#Term&Term 197 + 824 Wire Length 7977.3 7019.8 (12.0%) 6099.3 (23.5%) 

# Pads & Cells 0 + 20 CPUTime 55.8 52.3 
# Wires 1002 Route Area 950.2 (40.2%) 841.9 ( 1  1.4%) 834.8 (1  2.1 %) 
# Contacts 777 Contacts 627 505 (19.5%) 501 (20.1%) 3 #Term&Term 0 + 399 Wire Length 373267 355787 (5.2%) 347700 (6.8%) 

Instances 

Instances 
# Pads & Cells 55 + 17 CPUTime 15.0 16.7 

# Wires 1957 Route Area 9583.5 (52.7%) 8999.6 (6.1%) 8210.8 (14.3%) 
# Contacts 1366 Contacts 1289 1281 (.6%) 1139 (11.6%) 

101 + 660 WireLength 1061.2 1005.5 (5.3%) 946 (10.9%) 4 #Term&Term 
Instances 

# Pads & Cells 0 + 17 CPUTime 61 69 

# Wires 4028 Route Area 5323.7 (40.2%) 5028.0 (5.6%) 
# Contacts 3141 Contacts 3038 2624 (13.6%) 5 #Term&Term 0 + 1476 Wire Length 4377.1 4150.9 (5.2%) 

# Pads & Cells 4 + 14 CPUTime 233.3 
# Wires 12237 Route Area 5391.4 (44.3%) 5090.7 (5.6%) 
# Contacts 7419 Contacts 5884 4180 (29.0%) 6 #Term&Term 0 + 3254 Wire Length 2306.9 2140.2 (7.2%) 

# Pads &Cells 38/+ 102 CPUTime 25 1 

Instances 

Instances 

Paper 38.2 
637 


