
Application Power Profiling on IBM Blue Gene/Q

Sean Wallace,*t Venkatram Vishwanath,t Susan Coghlan,t John Tramm,t Zhiling Lan,* and Michael E. Papkat+

*Illinois Institute of Technology, Chicago, IL, USA
t Argonne National Laboratory, Argonne, IL, USA

+Northern Illinois University, DeKalb, IL, USA

swallac6@iit.edu, venkat@anl.gov, smc@anl.gov, jtranun@mcs.anl.gov, lan@iit.edu, and papka@anl.gov

Abstract-The power consumption of state of the art supercom­
puters, because of their complexity and unpredictable workloads,
is extremely difficult to estimate. Accurate and precise results, as
are now possible with the latest generation of supercomputers,
are therefore a welcome addition to the landscape. Only recently
have end users been afforded the ability to access the power
consumption of their applications. However, just because it's
possible for end users to obtain this data does not mean it's
a trivial task. This emergence of new data is therefore not only
understudied, but also not fully understood.

In this paper, we provide detailed power consumption analysis
of microbenchmarks running on Argonne's latest generation of
ffiM Blue Gene supercomputers, Mira, a Blue Gene/Q system.
The analysis is done utilizing our power monitoring library,
MonEQ, built on the ffiM provided Environmental Monitoring
(EMON) API. We describe the importance of sub-second polling
of various power domains and the implications they present. To
this end, previously well understood applications will now have
new facets of potential analysis.

Index Terms-Power Profiling, Energy Efficiency, Blue Gene/Q

I. INT RODUCTION

As the field of computational science continues to push

towards the exascale era of supercomputing, power consump­

tion has emerged as an increasingly vital area of research.

The leading system on the November 2012 TopSOO list [1],

Titan, achieves l7.S PFlops Rmax while consuming 8.2 MW

of power. It is projected that exascale systems will be capped

at 20 MW [2]. This implies that to achieve exascale, current

supercomputers will need to scale their performance by �60X

while increasing their power consumption by just �2X - a

challenging task.

Hardware manufacturers already recognize this problem,

and, by leveraging better design choices and tradeoffs, have

made significant strides toward mitigating it. Software too will

play an important role in ensuring power is not wasted, by

dynamically managing power consumption across the system.

The majority of performance studies conducted on large­

scale high performance computing (HPC) systems (including

those published by the GreenSOO [3]) focus on the Flop­

slWatt metric. While this metric is useful for measuring the

energy consumption of a particular architecture, it fails to

convey much information about the individual components

and how they affect the system on the whole. Moreover, it

is also recognized that a different metric to measure energy

consumption, namely time to solution, would likely result

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

in different rankings[4]. Therefore, the analysis of power

consumption on state-of-the-art supercomputers is imperative

to better understand how these new systems differ from their

predecessors and in which direction key characteristics are

heading.

Fortunately, hardware manufacturers have begun deploying

various sensors on HPC systems to collect power-related data

and provide relatively easy access to the data store. In this

work, we will describe two power monitoring capabilities

deployed on the Blue Gene/Q (BG/Q): one is an environ­

mental database and the other is vendor-supplied application

programming interfaces (APIs) to profile power usage through

the code of jobs actually running on the system. They provide

information about the power consumption at two different

scales.

The environmental database is maintained primarily to help

identify and eliminate insufficient cooling as well as inad­

equate distribution of power. The power profiling APIs, on

the other hand, provide power consumption data directly to

the running process across more power domains with respect

to components and at much finer granularity with respect to

time. Unfortunately, these APIs only provide the total power

consumption of all domains and are quite complicated for

application developers to use.

In this work, we present the use of these vendor-deployed

power-monitoring mechanisms on IBM Blue Gene/Q systems.

In particular, we first provide analysis of six months of

environmental data collected from the production 48-rack

Blue Gene/Q at Argonne National Laboratory. This detailed

power data analysis enables us to get a better idea of what

trends this latest generation of supercomputer exhibits. Next,

we describe our development of our power profiling library

called MonEQ, currently in development. MonEQ is designed

to address the aforementioned issues of the vendor-supplied

APIs. Using MonEQ, application developers can easily obtain

the individual voltage and current data points of all domains

by inserting as few as two lines of code. MonEQ is available

to developers and distributed as open source to the community.

Finally, we demonstrate the use of this library for power

profiling by integrating it into several proxy applications on

Mira and provide detailed analysis of the power data statistics

collected by the library.

The remainder of this paper is as follows: A review of

the IBM Blue Gene architecture as well as the environmental

data collection of the system is presented in Section ll. A

detailed environmental analysis from our experiences with

BG/Q is presented in Section III. Section IV provides a

detailed description of our profiling library, MonEQ. Section

V presents case studies of benchmarks obtained from our

profiling code. The related work is provided in Section VI.

Finally, we will provide our conclusions and future work in

Section VII.

II. BLUE GENE/Q ARCHIT ECTURE AND ENV IRONMENTAL

DATA COLLECTION

The Blue Gene/Q architecture is described in detail in [5].

Our analysis of power usage on BG/Q is based on Argonne

National Laboratory's 48-rack BG/Q system, Mira. A rack of a

BG/Q system consists of two midplanes, eight link cards, and

two service cards. A midplane contains 16 node boards. Each

node board holds 32 compute cards, for a total of 1,024 nodes

per rack. Each compute card has a single 18-core PowerPC A2

processor [6] (16 cores for applications, one core for system

software, and one core inactive) with four hardware threads

per core, with DDR3 memory. BG/Q thus has 16,384 cores

per rack.

In each BG/Q rack, bulk power modules (BPMs) convert AC

power to 48 V DC power, which is then distributed to the two

midplanes. Blue Gene systems have environmental monitoring

capabilities that periodically sample and gather environmental

data from various sensors and store this collected information

together with the timestamp and location information in an

IBM DB2 relational database - commonly referred to as

the environmental database [7]. These sensors are found in

locations such as service cards, node boards, compute nodes,

link chips, BPMs, and the coolant environment. Depending

on the sensor, the information collected ranges from various

physical attributes such as temperature, coolant flow and

pressure, fan speed, voltage, and current. This sensor data is

collected at relatively long polling intervals (about 4 minutes

on average but can be configured anywhere within a range of

60-1,800 seconds), and while a shorter polling interval would

be ideal, the resulting volume of data alone would exceed the

server's processing capacity.

The Blue Gene environmental database stores power con­

sumption information (in watts and amperes) in both the input

and output directions of the BPM.

Figure 1 depicts how power is distributed from the power

substation to the Mira BG/Q system. It shows the various

measurement points along this path where we can monitor

the power consumption.

III. ANALY SIS OF ENVIRONMENTAL POWER USAGE ON

BLUE GENE/Q

We analyzed six months of data starting in December 2012

and ending in May 2013. The number and rack utilization

breakdown of this data is presented in Figure 2. All of the

results in this section are presented from the point of view of

an "average" job. That is, for a given metric, the average across

all jobs was used for analysis. For the results that present

13.2KV
Substations

. .
.. . .

• Measuringpoints

......

.
••

......

......

......

......

......

.

BG/a co
A

ute Racks

R U
R U

Fig. I. Mira 480V compute power distribution system.

energy usage as a function of percentage of time, all of the

jobs were normalized on their respective wall time.

15,000

10,000

"E
:::>
0
U 14,520

5.000

8 12 16 24 32 48
Number of Racks

Fig. 2. Number of jobs run on n number of racks.

Figure 3 shows a boxplot of input power consumption per

rack for an average job. The results show there is not a

significant difference in power consumption between smaller

system runs and larger ones.

Figure 4 shows the distribution of average kW/rack power

consumption for the 21,778 jobs that were run during the span

of six months. The histogram displays percentages partitioned

separately by size ranging from single-rack jobs to full-system

runs. Most jobs fall into the 60-74 kW per rack range, and very

few jobs are at or above 80 kW per rack. The data shows that

larger jobs (at or above 24 racks) tend to be in the 52 kW

per rack bin. It is not yet known why larger jobs tend to use

less power. One theory is that larger jobs are generally more

prone to load imbalances and wait times due to communication

which tends to decrease power consumption.

Note that this is the sum of the 48 V DC output of the

BPMs so it does not include AC/DC conversion loss within

the BPMs. Given our measured BPM conversion efficiency of

about 94% over the six month span, the total average AC input

100.00

80.00

f � � � �
-'"

� �
u '"

a::

:v

�
a.

60.00 t: '" Ii! �
.2
>2
:; 40.00
a.
oS

20.00

.oo �--.---.---.---.--,,--.---.---,---,--�
8 12 16 24 32 48

Number of Racks

Fig. 3. Boxplot of kilowatt usage per rack. Shows no significant difference in
jobs running on small or large number of racks. Average power consumption
is 66.91 kW per rack.

per rack would be roughly 71 kW.

These results are different from those presented in our last

work [8]. Average per-rack power consumption has dropped

about 5% for all jobs measured and about 35% in the case

of large jobs. In the case of the larger jobs, these results

need to be put into context; in our previous work we had

very few large run jobs to analyze. However, the reduction in

energy consumption across the board is an interesting point.

But, given the diversity of jobs run during this period, it's

impossible to say without further analysis why the average

power consumption might be lower.

30

10

40.00 50.00 60.00 70.00
Input Kilowatt per Rack

80.00

Number of
Racks
.48
032
024
. 16
0 12
.8
04
02
0 1

90.00

Fig. 4. Frequency distribution of average per-rack power consumption. Figure
indicates most jobs fall into the 60-74 kW bins and all jobs are between 40
and 90 kW.

IV. MONEQ: A USER-LEV EL POWER PROFILING LIBRARY

FOR ApPLIC ATION DEV ELOPERS

For BG/Q, IBM provides new interfaces in the form of

an environmental monitoring API called EMON that allows

one to access power consumption data from code running on

compute nodes, with a relatively short response time. However,

EMON by itself is insufficient for our needs. The power

information obtained using EMON total power consumption

from the oldest generation. Furthermore, the underlying power

measurement infrastructure does not measure all domains at

the exact same time. This may result in some inconsistent

cases, such as the case when a piece of code begins to stress

both the CPU and memory at the same time. In this case, we

might not see an increase in power for both domains in the

same generation of data if there is a gap in time between when

the CPU and memory power are measured. There is active

research by IBM to improve the power monitoring systems,

so this problem may change in the future.

To get past this limitation, we designed, MonEQ [9], a

"power profiling library" that allows us to read the individual

voltage and current data points. The exact domains and their

corresponding BG/Q IDs are displayed in Table I.

In its default mode, MonEQ will pull data from the EMON

API every 560 ms, which is currently the lowest polling

interval possible; however users have the ability to set this

interval to whatever valid value is desired. With the value of

the polling interval set, MonEQ then registers to receive a

S IGALRM signal at that polling interval. When the signal is

delivered, MonEQ calls down to the EMON API and records

the latest generation of power data available in an array local

to agent rank of the node card.

Listing I. Simple MonEQ Example
i nt s t a t u s . myrank . n u mtasks , i t r;

s t a t u s = MPI_I n i t(& ar g c , &ar g v);

MP,-Comm_size (MPCCOMM_WO RLO , &n u m t a sks) ;
MPl_Comm_rank(MPCCO MM_WORLO , &myrank);

/* S e t u p P ower */

status = MonE�Initialize();

/* F i n a l i ze P ower */

status = MonE�Finalize();

MPI_F i n a l i z e ();

One limitation of the EMON API is that it can only collect

data at the node card level (every 32 nodes). At first this might

seem rather significant, however given the scale at which most

applications are run (i.e., some number of racks) and the nature

of large scale jobs, having 32 data points per rack is usually

sufficient. This limitation is part of the design of the system;

as such, it is not possible to change the number of nodes for

which data is collectible in software.

If the "automatic" mode of MonEQ has not been disabled,

the collection will continue on in this fashion collecting

power data for all of the domains from the initialization call

(usually called shortly after MP I_I nit) to the finalize call

(usually called shortly before MPI_Finalize). If desired,

the MPI Init and MPI_Finalize calls can be overloaded

to include automatic calls to MonEQ making integration

completely automatic.

Listing 2. Simple MonEQ Example With Tags
i nt s t a t u s , myrank , numtasks , i t r;

s t a t u s = MPCln i t(& a r g c , & a r g v);

MPCComm_size(MPCmMM_WORLD, &numtasks);
MPCComm_rank(MPCmMM_WORLD, &myrank);

/* S e t u p P ower */

status = MonE�Initialize();

status = MonEQ_StartPowerTag ("work_loop") ;

status = MonEQ_EndPowerTag("work_loop");

/* F i n a l ize P ower */

status = MonEQ_Finalize();

MPI_Fi n a l i z e ();

As soon as finalize is called on MonEQ, it proceeds to dump

311 of the data it has collected in its working array to CSV files.

A simple example of how MonEQ is implemented is shown

in Listing 1. Before collecting data the user can specify how

the output files should be partitioned according to two modes.

In the first mode, the number of CSV files will depend on

the number of node cards utilized by the application (i.e., one

per node card). In the second, the user can specify to have
output files generated based on the ranks of the MPI program.

Thus, if it was desirable to have the power data from ranks

1-10 reported in one file and ranks 11-32 in another, that is

possible with MonEQ. It should be noted this does not get

around the "one data point per node card per unit of time"

limitation. If this feature is utilized, MonEQ will bunch ranks

running on a node card together just the same as it always

would, but upon call of the finalize method data is aggregated

for the appropriate ranks into a single file. That is, if ranks

1-32 are running on a node card and the user wants files for

ranks 1-10 and 11-32, both files will contain the same data.

If automatic collection is disabled, power data is no longer

dumped to a flat file at the finalize call. Instead, the application

being profiled by MonEQ can access the data being collected

through a set of abstracted calls. As one might expect, this

data is now available to the running application during the

execution of the program. Thus, if desired, a program could

31ter itself during execution based on its power profile. While

this is possible, we have not performed any experimentation

of this nature in this work.

Oftentimes application developers have logically and func­

tionally distinct portions of their software which is of primary

interest for profiling. To address this, we have implemented a

tagging feature. An example of how tagging is implemented is

shown in Listing 2. This feature 31lows for sections of code to

be wrapped in start/end tags which inject special markers in the

output files for later processing. In this way, if an application

had three "work loops" and a user wanted to have separate

profiles for each, all that is necessary is a tot31 of 6 lines

of code. Better yet, because the injection happens after the

program has completed, the overhead of tagging is almost

negligible.

Regardless if tagging is utilized, it's possible to end up with

a substantial amount of data (a full system run for 5 minutes

at the default polling interval will produce 1,536 files and a

total of about 830,000 data points). To address this we wrote

two more pieces of software: a reducer and an an31yzer. The

reducer, as the name suggests, takes as input the output files

generated by MonEQ and reduces them into a single CSV file.

If tags are utilized, this is when they are parsed; the reducer

will create a CSV file for each tag, an overall file containing

311 of the data points, and an "untagged" file containing all

of the data points that did not fall between tags. Once the

output has been reduced it can then be more easily analyzed.

Because the data is still in its original form, if a user wishes

to analyze the data themselves, they may do so. However, if

the user has no desire to analyze the data themselves, they can

utilize our analyzer. Utilizing gnuplot and R, it will produce

power utilization graphs as a function of time for all of the

reduced files as well as descriptive statistics. Examples of this

output can be found in the following subsections.

TABLE I
NODE BOARD POWER DOMAINS

Domain ID Description
I Chip Core Voltage
2 Chip Memory Interface and DRAM Voltage
6 HSS Network Transceiver Voltage Compute+Link Chip
7 Chip SRAM Voltage
3 Optics
4 Optics + PCIExpress
8 Link Chip Core

V. CASE STUDIES

Benchmarks are a cruci31 part of understanding the capa­

bilities of a supercomputing system. The Argonne Leadership

Computing Facility (ALCF) staff have a variety of benchmarks

designed to test both the capabilities and limitations of each

system they deploy. Some of these benchmarks are designed

based on real science applications that are commonly run

on the system while others are designed simply to push

components to their maximum capability.

In this work we will provide detailed analysis of three

benchmarks: MPI bisection, DGEMM, and XSBench. Each are

intended to test a very specific portion of the system and as

such serve as excellent test platforms for profiling. For each

we will show two figures: the first will be a breakdown of the

various domains and how much they contributed to the total

power consumption; the second a power profile from MonEQ

from beginning to end of execution.

A. MPI Bisection

The bisection bandwidth benchmark [10] studies the mini­
mum bisection bandwidth, defined as the minimum delivered

MPI bidirectional bandwidth over all possible bisections. The

minimum bisection is constructed by cutting a partition of

nodes into two equally-sized, non-overlapping sections in such

a way that the resulting cut yields the smallest number of links

connecting both sections. This benchmark measures the total

bi-directional bandwidth by sending and receiving messages

using non-blocking communication between pairs of nodes in

different sections.

This benchmark was run on 4 racks with 16 ranks per node

and produced an aggregate bandwidth of 35.48 GB/s.

ChipCurc-

NctwQrk_

.� �------------ ------------------��---

ElecutionTIme (SeroOOs)

Optica_

PCIExpres&­

I..inkChipCore _

Fig. 5. Power profile of MPI bisection benchmark run for about 8 minutes.
Shows consistent power usage for across ail domains for the duration of the
run.

Figure 5 shows a complete run of the bisection benchmark.

As a consequence of only providing intense network activ­

ity, most of the domains are relatively close to idle power

consumption for the duration of the run. Even despite this

network activity, the domains that contribute the most to the

power consumption of the network are very close to what

they are at idle. Based on this result it is fair to say that the

domains which contribute the most to communication power

consumption have low variance in their power profiles. Despite

this, it can be seen in Figure 6 that certain domains, such

Domain
.ChipCore
o DRAM
DlinkChipCore
• Network
DOptics
.PCIExpress
OSRAM

Fig. 6. Domain breakdown of MP! bisection benchmark. Shows slightly
elevated consumption in optics and network domains.

. .,.

ExccutionTimc(Seoonds)

PCI"

LinkChipCore -

Fig. 7. Power profile of DGEMM benchmark run for about 5 minutes.
Shows increased chip core and DRAM power usage for duration of execution
tapering off as program cleans up at end of execution.

as the optics and network, contribute enough extra power

consumption to cause a noticeable difference in percentage.

B. DGEMM
While the MPI bisection benchmark provides an excellent

example of intense network activity, it does not provide a

good picture of the power consumption of the memory in

the system. A very well known memory intensive benchmark,

DGEMM [Il], was therefore chosen for profiling. DGEMM, a

matrix multiplication microbenchmark, is designed to overload

the caches present on the CPU and randomly access data in

very large matrices therefore causing massive DRAM activity.

This benchmark was run on 4 racks with 16 ranks per node

with an aggregate of 426.203 TFlops.

In contrast to the MPI bisection benchmark, DGEMM pro­

vides a more interesting overall picture in Figure 7. Immedi­

ately it can be seen that both the chip core and DRAM domains

are using more power in DGEMM, which is also reflected in the

domain breakdowns in Figures 6 and 8. It can also be seen that

Domain
.ChipCore
[JDRAM
DlinkChipCore
• Network
DOptics
.PCIExpress
OSRAM

Fig. 8. Domain breakdown of DGEMM benchmark. Shows more significant
power consumption in both the chip core and DRAM domains.

towards the end of execution of DGEMM both the chip core and

DRAM taper off back to a level closer to idle. This is because

the last thing this benchmark does before terminating is free

any resources it used during simulation.

C. XSBench

XSBench [12] is a simple application that executes only the

most computationally expensive steps of Monte Carlo particle

transport, the calculation of macroscopic cross sections, in an

effort to expose bottlenecks within multi-core, shared memory

architectures.

In a particle transport simulation, every time a particle

changes energy or crosses a material boundary, a new macro­

scopic cross section must be calculated. The time spent look­

ing up and calculating the required cross section information

often accounts for well over half of the total active runtime of

the simulation. XSBench uses a unionized energy grid to fa­

cilitate cross section lookups for randomized particle energies.

There are a similar number of energy grid points, material

types, and nuclides as are used in the Hoogenboom-Martin

benchmark. The probability of particles residing in any given

material is weighted based on that material's commonality

inside the Hoogenboom-Martin benchmark geometry.

The end result is that the essential computational conditions

and tasks of fully featured Monte Carlo transport codes are

retained in XSBench, without the additional complexity and

overhead inherent in a fully featured code. This provides

a much simpler and clearer platform for stressing different

architectures, and ultimately for making determinations as to

where hardware bottlenecks occur as cores are added.

This benchmark was run on 4 racks with 16 OpenMP

threads per MPI rank. The result of the benchmark was an

average of 513,749 lookups per MPI rank per second.

As with the bisection and DGEMM benchmarks, an overview

of XSBench is presented in Figure 9 and the breakdown of

the domains and their respective power usage is provided in

J

E1ecutionTime(Seoonds)

CbipCore -

N. -
SRAM-
"""'-

PCIE1prus-

LinkChipCore -

Fig. 9. Power profile of XSBench benchmark run for about 2 minutes. Shows
two points of interest at 30 seconds when program starts generating data and
90 seconds when it switches from generation to random table lookups.

Domain
.ChipCore
[JDRAM
DlinkChipCore
• Network
o Optics
.PCIE)press
OSRAM

Fig. 10. Domain breakdown of XSBench benchmark. Shows elevated
percentages in both chip core and DRAM domains.

Figure 10. As can be seen clearly, XSBench has two points of

interest. The first 30 seconds are spent setting up the program,

at which point data generation starts. This is expressed as an

uptick in both the chip core and DRAM domains. The second

point of interest, at about 90 seconds into the execution, is

when XSBench switches from generating the data in the

matrices to performing the random table lookups described

above. These lookups result in a decrease in chip core power

usage and an increase in the DRAM power usage, as expected.

As discussed in our previous works, one feature we wanted

to add to MonEQ was the ability to tag specific portions

of code that we have since implemented in this work. In

Figure 11 we show the result of placing tags around the "work

loop" which is the portion of the benchmark that performs the

random table lookups.

Because of the nature and design of these benchmarks, it's

not difficult to look at the code and figure out why there

might be a significant change in the power profile of a given

Tag Name:: WQlkJoop

82 " 86 ..
EJ.«utionTune (Secoods)

92 "

CbipCore-

SRAM
Opok>­

PCIExpress­

LinkChipOJrc_

96 "

Fig. II. Tagged "work loop" section of XSBench benchmark. Shows greater
detail for portion of profiled code.

domain at a certain point in time. However, the ability to wrap

tags around newly profiled applications can provide an easy

way to determine which portions of the application constitute

dramatic shifts in power usage.

VI. REL ATED W ORK

Research in energy-aware HPC has been active in recent

years, and existing studies have mainly focused on the fol­

lowing topics: power monitoring and profiling energy-efficient

or energy-proportional hardware, dynamic voltage and fre­

quency scaling (DVFS) techniques, shutting down hardware

components at low system utilizations, power capping, and

thermal management. These studies however focus on evalu­

ating power consumption of individual hardware components

and neglect to consider the system as a whole [13], [14], [15],

[16], [17], [IS], [19], [20], [21], [22], [23].

From the system-level perspective, power consumption of

HPC systems has increasingly become a limiting factor as

running and cooling large computing systems comes with

significant cost [24], [25], [26].

Hennecke et al. [27] provided an overview of the power

measuring capabilities of Blue Gene/P (BGP). The measured

power consumption a production workload of HPC appli­

cations and presented the integration of power and energy.

However, no in-depth analysis on the accuracy was presented

in that study.

Alam et al. [2S] measured power and performance results of

different kernels and scientific applications on BGP. They also

compared these results to other large-scale supercomputers

such as Cray's XT4. They concluded that while BGP has good

scalability and better performance-per-watt characteristics for

certain scientific applications, XT4 offers higher performance

per processor.

Yoshii et al. [29] evaluated early access power monitoring

capabilities on IBM BGIQ utilizing the EM ON API. While

they did provide an in-depth analysis of the monitoring ca­

pabilities of BGIQ, they did not analyze data from actual

jobs that had run on the system as at the time only access

to a single rack of BGIQ was available. This work also was

limited to profiling only one MPI rank per node. We have

overcome this in our monitoring mechanism and can profile

any number of MPI ranks per node. Typical applications use

S-16 MPI ranks per node and MonEQ can now be used

to profile applications on the BGIQ system. We have also

defined an API for applications to use. Additionally, features

include tagging to profile selective code fragments. Our earlier

work didn't provide any of these features. Previously no tools

were available for analysis and the task of dealing with the

numerous output files was left up to the user. Our current

work includes several utilities to analyze and plot the profiled

data. Finally, the current work has demonstrated scalable

performance up to 12SK cores of BGIQ.

In our previous work [S] we further evaluated the power

monitoring capabilities on BGIQ by providing an in depth

comparison between the environmental data and data obtain­

able from the EMON API. We seek to further our experiments

in this work by providing both updated analysis of the envi­

ronmental data (now that actual science applications have been

running for a few months) and further analysis of the EMON

API on more benchmarks.

VII. CONCLUSIONS AND FUTURE W ORK

In this paper we provided an updated analysis of the power

monitoring capabilities of an IBM Blue Gene/Q supercom­

puter. While these capabilities were designed primarily for

monitoring of system health and environmental monitoring,

they are also incredibly useful for profiling applications and

helping to make better design decisions. We found that com­

pared to our previous results, average power usage per job has

decreased, though it is not possible to say exactly why.

We also profiled, using our power monitoring library

MonEQ, several well understood benchmarks to better under­

stand what power profiles they exhibit. As expected, these

benchmarks, which are designed to stress very specific por­

tions of the system, had power profiles to match. In this

work we looked at three benchmarks: MPI bisection, DGEMM,
and XSBench, which are designed to stress communication,

memory, and computation abilities of the system. Our profiling

mechanism, MonEQ, was easily integrated into these bench­

marks and able to provide sub-second, accurate, and precise

power profiles, which have not been studied before.

Looking forward, we will continue to work with and im­

prove our power-profiling code. Given enough power profiles,

it might be eventually possible to match real science appli­

cations to well understood benchmarks allowing for potential

improvement in both efficiency as well as performance.

A CKNOWLEDGMENT S

This research has been funded in part and used resources

of the Argonne Leadership Computing Facility at Argonne

National Laboratory, which is supported by the Office of

Science of the U.S. Department of Energy under contract

DE-AC02-06CH1l357. The research has been funded in part

by the Center for Exascale Simulation of Advanced Reactors

(CESAR) Co-Design center, which is supported by the Office

of Science of the U.S. Department of Energy under contract

DE-AC02-06CHl13S7.

The authors would also like to thank Paul Coteus and

Christopher M. Marroquin from IBM for their help in clar­

ifying results as well as providing essential infonnation of

the inner workings of the EMON system. The authors thank

Vitali Morozov, Kalyan Kumaran, and the ALCF staff for their

help. They also gratefully acknowledge the help provided by

the application teams whose codes are used herein.

REFERENCES

[I] "The Top500 List;' November 2012. [Online]. Available:
http://www.top500.org/listI2012/11/

[2] DOE. "Architectures and technology for extreme scale computing;'
December 2009.

[3] "The Green500 List;' November 2012. [Online]. Available:
http://www.green500.org/lists/green201211

[4] c. Bekas and A. Curioni, "A new energy aware performance metric."
Computer Science - Research and Development, vol. 25. pp. 187-195.
2010. [Online]. Available: http://dx.doi.org/10.1007/s00450-010-0119-z

[5] IBM. "Introduction to Blue Gene/Q." 2011. [Online]. Available:
http://public.dhe.ibm.com/commonlssilecm/enldcI12345 usen/
DCL l 2345USEN.PDF

[6] R. Haring. M. Ohmacht. T. Fox. M. Gschwind. D. Satterfield. K. Suga­
van am. P. Coteus. P. Heidelberger. M. Blumrich. R. Wisniewski. A. Gara.
G.-T. Chiu. P. Boyle. N. Chist. and C. Kim. "The IBM Blue Gene/Q
compute chip." Micro. IEEE. vol. 32. no. 2, pp. 48 -60. march-april
2012.

[7] G. Lakner and B. Knudson, IBM System Blue Gene Solution: Blue
GenelQ System Administration. IBM Redbooks, June 2012. [Online].
Available: http://www.redbooks.ibm.com/abstracts/sg247869.html

[8] S. Wallace, Y. Vishwanath, S. Coghlan, Z. Lan, and M. Papka, "Measur­
ing power consumption on IBM Blue Gene/Q," in The Ninth Workshop
on High-Pe,(ormance, Power-Aware Compltling, 2013 (HPPAC'13),
Boston, USA, May 2013.

[9] "MonEQ: Power monitoring library for Blue Gene/Q," https://repo.anl­
external.org/repos/PowerMonitoring.

[10] Y. Morozov, K. Kumaran, Y. Vishwanath, J. Meng, and M. Papka,
"Early experience on the IBM Blue Gene/Q system," Proceedings of the

27th IEEE International Parallel and Distribllled Processing Symposium

(IPDPS 2013), May 2013.
[II] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, "A

set of level 3 basic linear algebra subprograms," ACM Trans. Math.

Softw., vol. 16, no. I, pp. 1-17, Mar. 1990. [Online]. Available:
http://doi.acm.org/IO.1145177626.79170

[12] J. Tramm and A. R. Siegel, "Memory Bottlenecks and Memory Con­
tention in Multi-Core Monte Carlo Transport Codes," Joint International
Conference on Supercomputing in Nuclear Applications and Monte

Carlo 2013 (SNA + MC 2013), Oct. 2013.
[13] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and

L. Niccolini, "An energy case for hybrid datacenters," SIGOPS Oper.
Syst. Rev., vol. 44, no. I, pp. 76-80, Mar. 2010. [Online]. Available:
http://doi.acm.orgIl 0.1145/1740390.1740408

[14] Y. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,
B. L. Rountree, and M. E. Femal, "Analyzing the energy-time trade-off
in high-performance computing applications," IEEE Trans. Parallel
Distrib. Syst., vol. 18, no. 6, pp. 835-848, Jun. 2007. [Online].
Available: http://dx.doi.org/IO.1109/TPDS.2007.1026

[15] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron,
"PowerPack: Energy profiling and analysis of high-performance systems
and applications," Parallel and Distributed Systems, IEEE Transactions

on, vol. 21, no. 5, pp. 658 -671, may 2010.
[16] I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart, J. Torres,

and R. Bianchini, "GreenSlot: Scheduling energy consumption in green
datacenters," in High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for, nov. 2011, pp. I -II.

[17] K. Kant, M. Murugan, and D. Du, "Willow: A control system for energy
and thermal adaptive computing," in Parallel Distributed Processing
Symposium (IPDPS), 2011 IEEE International, may 2011, pp. 36 -47.

[18] J. Laros, K. Pedretti, S. Kelly, 1. Vandyke, K. Ferreira, C. Vaughan, and
M. Swan, "Topics on measuring real power usage on high performance
computing platforms," in Cluster Computing and Workshops, 2009.

CLUSTER '09. IEEE International Conference on, 31 2009-sept. 4 2009,
pp. 1 -8.

[19] O. Mammela, M. Majanen, R. Basmadjian, H. Meer, A. Giesler,
and W. Homberg, "Energy-aware job scheduler for high-performance
computing," Compltl. Sci., vol. 27, no. 4, pp. 265-275, Nov. 2012.
[Online]. Available: http://dx.doi.org/IO.1007/s00450-011-0189-6

[20] Y. Patil and Y. Chaudhary, "Rack aware scheduling in HPC data centers:
An energy conservation strategy," in Parallel and Distributed Process­
ing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, may 2011, pp. 814 -821.

[21] Q. Tang, S. Gupta, and G. VarsanlOpoulos, "Energy-efficient thermal­
aware task scheduling for homogeneous high-performance computing
data centers: A cyber-physical approach," Parallel and Distribltled
Systems, IEEE Transactions on, vol. 19, no. II, pp. 1458 -1472, nov.
2008.

[22] T. Y. T. Duy, Y Sato, and Y Inoguchi, "Performance evaluation of a
green scheduling algorithm for energy savings in cloud computing," in
Parallel Distribltled Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, april 2010, pp. I -8.

[23] Z. Xu, y-c. Tu, and X. Wang, "Exploring power-performance tradeoffs
in database systems," in Data Engineering (ICDE), 20} 0 IEEE 26th

International Co'!(erence on, march 2010, pp. 485 -496.
[24] N. Rasmussen, "Calculating total cooling requirements for data centers,"

White Paper, April 20 II.
[25] W. chun Feng and K. Cameron, "The Green500 list: Encouraging

sustainable supercomputing," Computer, vol. 40, no. 12, pp. 50 -55,
dec. 2007.

[26] E. Pakbaznia, M. Ghasemazar, and M. Pedram, 'Temperature-aware
dynamic resource provisioning in a power-optimized datacenter," in
Design, Altlomation Test in Europe Cof((erence Exhibition (DATE), 20}0,
march 2010, pp. 124 -129.

[27] M. Hennecke, W. Frings, W. Homberg, A. Zitz, M. Knobloch, and
H. Bottiger, "Measuring power consumption on IBM Blue Gene/P,"
Comput. Sci., vol. 27, no. 4, pp. 329-336, Nov. 2012. [Online].
Available: http://dx.doi.org/IO.1007/s00450-011-0192-y

[28] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy,
J. Rogers, P. Roth, R. Sankaran, J. S. Vetter, P. Worley, and W. Yu,
"Early evaluation of IBM BlueGenelP," in Proceedings of the 2008

ACMIIEEE cof((erence on Supercomputing, ser. SC '08. Piscataway,
NJ, USA: IEEE Press, 2008, pp. 23: 1-23: 12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413394

[29] K. Yoshii, K. Iskra, R. Gupta, P. Beckman, Y. Vishwanath, C. Yu, and
S. Coghlan, "Evaluating power-monitoring capabilities on IBM Blue
GeneIP and Blue Gene/Q," in Cluster Computing (CLUSTER), 2012

IEEE International Conference on, sept. 2012, pp. 36 -44.

