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Abstract-The power consumption of state of the art supercom­
puters, because of their complexity and unpredictable workloads, 
is extremely difficult to estimate. Accurate and precise results, as 
are now possible with the latest generation of supercomputers, 
are therefore a welcome addition to the landscape. Only recently 
have end users been afforded the ability to access the power 
consumption of their applications. However, just because it's 
possible for end users to obtain this data does not mean it's 
a trivial task. This emergence of new data is therefore not only 
understudied, but also not fully understood. 

In this paper, we provide detailed power consumption analysis 
of microbenchmarks running on Argonne's latest generation of 
ffiM Blue Gene supercomputers, Mira, a Blue Gene/Q system. 
The analysis is done utilizing our power monitoring library, 
MonEQ, built on the ffiM provided Environmental Monitoring 
(EMON) API. We describe the importance of sub-second polling 
of various power domains and the implications they present. To 
this end, previously well understood applications will now have 
new facets of potential analysis. 

Index Terms-Power Profiling, Energy Efficiency, Blue Gene/Q 

I. INT RODUCTION 

As the field of computational science continues to push 

towards the exascale era of supercomputing, power consump­

tion has emerged as an increasingly vital area of research. 

The leading system on the November 2012 TopSOO list [1], 

Titan, achieves l7.S PFlops Rmax while consuming 8.2 MW 

of power. It is projected that exascale systems will be capped 

at 20 MW [2]. This implies that to achieve exascale, current 

supercomputers will need to scale their performance by �60X 

while increasing their power consumption by just �2X - a 

challenging task. 

Hardware manufacturers already recognize this problem, 

and, by leveraging better design choices and tradeoffs, have 

made significant strides toward mitigating it. Software too will 

play an important role in ensuring power is not wasted, by 

dynamically managing power consumption across the system. 

The majority of performance studies conducted on large­

scale high performance computing (HPC) systems (including 

those published by the GreenSOO [3]) focus on the Flop­

slWatt metric. While this metric is useful for measuring the 

energy consumption of a particular architecture, it fails to 

convey much information about the individual components 

and how they affect the system on the whole. Moreover, it 

is also recognized that a different metric to measure energy 

consumption, namely time to solution, would likely result 
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in different rankings[4]. Therefore, the analysis of power 

consumption on state-of-the-art supercomputers is imperative 

to better understand how these new systems differ from their 

predecessors and in which direction key characteristics are 

heading. 

Fortunately, hardware manufacturers have begun deploying 

various sensors on HPC systems to collect power-related data 

and provide relatively easy access to the data store. In this 

work, we will describe two power monitoring capabilities 

deployed on the Blue Gene/Q (BG/Q): one is an environ­

mental database and the other is vendor-supplied application 

programming interfaces (APIs) to profile power usage through 

the code of jobs actually running on the system. They provide 

information about the power consumption at two different 

scales. 

The environmental database is maintained primarily to help 

identify and eliminate insufficient cooling as well as inad­

equate distribution of power. The power profiling APIs, on 

the other hand, provide power consumption data directly to 

the running process across more power domains with respect 

to components and at much finer granularity with respect to 

time. Unfortunately, these APIs only provide the total power 

consumption of all domains and are quite complicated for 

application developers to use. 

In this work, we present the use of these vendor-deployed 

power-monitoring mechanisms on IBM Blue Gene/Q systems. 

In particular, we first provide analysis of six months of 

environmental data collected from the production 48-rack 

Blue Gene/Q at Argonne National Laboratory. This detailed 

power data analysis enables us to get a better idea of what 

trends this latest generation of supercomputer exhibits. Next, 

we describe our development of our power profiling library 

called MonEQ, currently in development. MonEQ is designed 

to address the aforementioned issues of the vendor-supplied 

APIs. Using MonEQ, application developers can easily obtain 

the individual voltage and current data points of all domains 

by inserting as few as two lines of code. MonEQ is available 

to developers and distributed as open source to the community. 

Finally, we demonstrate the use of this library for power 

profiling by integrating it into several proxy applications on 

Mira and provide detailed analysis of the power data statistics 

collected by the library. 

The remainder of this paper is as follows: A review of 

the IBM Blue Gene architecture as well as the environmental 



data collection of the system is presented in Section ll. A 

detailed environmental analysis from our experiences with 

BG/Q is presented in Section III. Section IV provides a 

detailed description of our profiling library, MonEQ. Section 

V presents case studies of benchmarks obtained from our 

profiling code. The related work is provided in Section VI. 

Finally, we will provide our conclusions and future work in 

Section VII. 

II. BLUE GENE/Q ARCHIT ECTURE AND ENV IRONMENTAL 

DATA COLLECTION 

The Blue Gene/Q architecture is described in detail in [5]. 

Our analysis of power usage on BG/Q is based on Argonne 

National Laboratory's 48-rack BG/Q system, Mira. A rack of a 

BG/Q system consists of two midplanes, eight link cards, and 

two service cards. A midplane contains 16 node boards. Each 

node board holds 32 compute cards, for a total of 1,024 nodes 

per rack. Each compute card has a single 18-core PowerPC A2 

processor [6] (16 cores for applications, one core for system 

software, and one core inactive) with four hardware threads 

per core, with DDR3 memory. BG/Q thus has 16,384 cores 

per rack. 

In each BG/Q rack, bulk power modules (BPMs) convert AC 

power to 48 V DC power, which is then distributed to the two 

midplanes. Blue Gene systems have environmental monitoring 

capabilities that periodically sample and gather environmental 

data from various sensors and store this collected information 

together with the timestamp and location information in an 

IBM DB2 relational database - commonly referred to as 

the environmental database [7]. These sensors are found in 

locations such as service cards, node boards, compute nodes, 

link chips, BPMs, and the coolant environment. Depending 

on the sensor, the information collected ranges from various 

physical attributes such as temperature, coolant flow and 

pressure, fan speed, voltage, and current. This sensor data is 

collected at relatively long polling intervals (about 4 minutes 

on average but can be configured anywhere within a range of 

60-1,800 seconds), and while a shorter polling interval would 

be ideal, the resulting volume of data alone would exceed the 

server's processing capacity. 

The Blue Gene environmental database stores power con­

sumption information (in watts and amperes) in both the input 

and output directions of the BPM. 

Figure 1 depicts how power is distributed from the power 

substation to the Mira BG/Q system. It shows the various 

measurement points along this path where we can monitor 

the power consumption. 

III. ANALY SIS OF ENVIRONMENTAL POWER USAGE ON 

BLUE GENE/Q 

We analyzed six months of data starting in December 2012 

and ending in May 2013. The number and rack utilization 

breakdown of this data is presented in Figure 2. All of the 

results in this section are presented from the point of view of 

an "average" job. That is, for a given metric, the average across 

all jobs was used for analysis. For the results that present 
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Fig. I. Mira 480V compute power distribution system. 

energy usage as a function of percentage of time, all of the 

jobs were normalized on their respective wall time. 
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Fig. 2. Number of jobs run on n number of racks. 

Figure 3 shows a boxplot of input power consumption per 

rack for an average job. The results show there is not a 

significant difference in power consumption between smaller 

system runs and larger ones. 

Figure 4 shows the distribution of average kW/rack power 

consumption for the 21,778 jobs that were run during the span 

of six months. The histogram displays percentages partitioned 

separately by size ranging from single-rack jobs to full-system 

runs. Most jobs fall into the 60-74 kW per rack range, and very 

few jobs are at or above 80 kW per rack. The data shows that 

larger jobs (at or above 24 racks) tend to be in the 52 kW 

per rack bin. It is not yet known why larger jobs tend to use 

less power. One theory is that larger jobs are generally more 

prone to load imbalances and wait times due to communication 

which tends to decrease power consumption. 

Note that this is the sum of the 48 V DC output of the 

BPMs so it does not include AC/DC conversion loss within 

the BPMs. Given our measured BPM conversion efficiency of 

about 94% over the six month span, the total average AC input 
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Fig. 3. Boxplot of kilowatt usage per rack. Shows no significant difference in 
jobs running on small or large number of racks. Average power consumption 
is 66.91 kW per rack. 

per rack would be roughly 71 kW. 

These results are different from those presented in our last 

work [8]. Average per-rack power consumption has dropped 

about 5% for all jobs measured and about 35% in the case 

of large jobs. In the case of the larger jobs, these results 

need to be put into context; in our previous work we had 

very few large run jobs to analyze. However, the reduction in 

energy consumption across the board is an interesting point. 

But, given the diversity of jobs run during this period, it's 

impossible to say without further analysis why the average 

power consumption might be lower. 
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Fig. 4. Frequency distribution of average per-rack power consumption. Figure 
indicates most jobs fall into the 60-74 kW bins and all jobs are between 40 
and 90 kW. 

IV. MONEQ: A USER-LEV EL POWER PROFILING LIBRARY 

FOR ApPLIC ATION DEV ELOPERS 

For BG/Q, IBM provides new interfaces in the form of 

an environmental monitoring API called EMON that allows 

one to access power consumption data from code running on 

compute nodes, with a relatively short response time. However, 

EMON by itself is insufficient for our needs. The power 

information obtained using EMON total power consumption 

from the oldest generation. Furthermore, the underlying power 

measurement infrastructure does not measure all domains at 

the exact same time. This may result in some inconsistent 

cases, such as the case when a piece of code begins to stress 

both the CPU and memory at the same time. In this case, we 

might not see an increase in power for both domains in the 

same generation of data if there is a gap in time between when 

the CPU and memory power are measured. There is active 

research by IBM to improve the power monitoring systems, 

so this problem may change in the future. 

To get past this limitation, we designed, MonEQ [9], a 

"power profiling library" that allows us to read the individual 

voltage and current data points. The exact domains and their 

corresponding BG/Q IDs are displayed in Table I. 

In its default mode, MonEQ will pull data from the EMON 

API every 560 ms, which is currently the lowest polling 

interval possible; however users have the ability to set this 

interval to whatever valid value is desired. With the value of 

the polling interval set, MonEQ then registers to receive a 

S IGALRM signal at that polling interval. When the signal is 

delivered, MonEQ calls down to the EMON API and records 

the latest generation of power data available in an array local 

to agent rank of the node card. 

Listing I. Simple MonEQ Example 
i nt s t a t u s . myrank . n u mtasks , i t r; 

s t a t u s  = MPI_I n i t(& ar g c , &ar g v ); 

MP,-Comm_size (MPCCOMM_WO RLO ,  &n u m t a sks)  ; 
MPl_Comm_rank(MPCCO MM_WORLO , &myrank); 

/* S e t u p  P ower */ 

status = MonE�Initialize(); 

/* F i n a l i ze P ower */ 

status = MonE�Finalize(); 

MPI_F i n a l i z e  (); 

One limitation of the EMON API is that it can only collect 

data at the node card level (every 32 nodes). At first this might 

seem rather significant, however given the scale at which most 

applications are run (i.e., some number of racks) and the nature 

of large scale jobs, having 32 data points per rack is usually 



sufficient. This limitation is part of the design of the system; 

as such, it is not possible to change the number of nodes for 

which data is collectible in software. 

If the "automatic" mode of MonEQ has not been disabled, 

the collection will continue on in this fashion collecting 

power data for all of the domains from the initialization call 

(usually called shortly after MP I_I nit) to the finalize call 

(usually called shortly before MPI_Finalize). If desired, 

the MPI Init and MPI_Finalize calls can be overloaded 

to include automatic calls to MonEQ making integration 

completely automatic. 

Listing 2. Simple MonEQ Example With Tags 
i nt s t a t u s , myrank , numtasks , i t  r; 

s t a t u s  = MPCln i t(& a r g c , & a r g v ); 

MPCComm_size(MPCmMM_WORLD, &numtasks); 
MPCComm_rank(MPCmMM_WORLD, &myrank); 

/* S e t u p  P ower */ 

status = MonE�Initialize(); 

status = MonEQ_StartPowerTag ("work_loop") ; 

status = MonEQ_EndPowerTag("work_loop"); 

/* F i n a l ize P ower */ 

status = MonEQ_Finalize(); 

MPI_Fi n a l i z e  (); 

As soon as finalize is called on MonEQ, it proceeds to dump 

311 of the data it has collected in its working array to CSV files. 

A simple example of how MonEQ is implemented is shown 

in Listing 1. Before collecting data the user can specify how 

the output files should be partitioned according to two modes. 

In the first mode, the number of CSV files will depend on 

the number of node cards utilized by the application (i.e., one 

per node card). In the second, the user can specify to have 
output files generated based on the ranks of the MPI program. 

Thus, if it was desirable to have the power data from ranks 

1-10 reported in one file and ranks 11-32 in another, that is 

possible with MonEQ. It should be noted this does not get 

around the "one data point per node card per unit of time" 

limitation. If this feature is utilized, MonEQ will bunch ranks 

running on a node card together just the same as it always 

would, but upon call of the finalize method data is aggregated 

for the appropriate ranks into a single file. That is, if ranks 

1-32 are running on a node card and the user wants files for 

ranks 1-10 and 11-32, both files will contain the same data. 

If automatic collection is disabled, power data is no longer 

dumped to a flat file at the finalize call. Instead, the application 

being profiled by MonEQ can access the data being collected 

through a set of abstracted calls. As one might expect, this 

data is now available to the running application during the 

execution of the program. Thus, if desired, a program could 

31ter itself during execution based on its power profile. While 

this is possible, we have not performed any experimentation 

of this nature in this work. 

Oftentimes application developers have logically and func­

tionally distinct portions of their software which is of primary 

interest for profiling. To address this, we have implemented a 

tagging feature. An example of how tagging is implemented is 

shown in Listing 2. This feature 31lows for sections of code to 

be wrapped in start/end tags which inject special markers in the 

output files for later processing. In this way, if an application 

had three "work loops" and a user wanted to have separate 

profiles for each, all that is necessary is a tot31 of 6 lines 

of code. Better yet, because the injection happens after the 

program has completed, the overhead of tagging is almost 

negligible. 

Regardless if tagging is utilized, it's possible to end up with 

a substantial amount of data (a full system run for 5 minutes 

at the default polling interval will produce 1,536 files and a 

total of about 830,000 data points). To address this we wrote 

two more pieces of software: a reducer and an an31yzer. The 

reducer, as the name suggests, takes as input the output files 

generated by MonEQ and reduces them into a single CSV file. 

If tags are utilized, this is when they are parsed; the reducer 

will create a CSV file for each tag, an overall file containing 

311 of the data points, and an "untagged" file containing all 

of the data points that did not fall between tags. Once the 

output has been reduced it can then be more easily analyzed. 

Because the data is still in its original form, if a user wishes 

to analyze the data themselves, they may do so. However, if 

the user has no desire to analyze the data themselves, they can 

utilize our analyzer. Utilizing gnuplot and R, it will produce 

power utilization graphs as a function of time for all of the 

reduced files as well as descriptive statistics. Examples of this 

output can be found in the following subsections. 

TABLE I 
NODE BOARD POWER DOMAINS 

Domain ID Description 
I Chip Core Voltage 
2 Chip Memory Interface and DRAM Voltage 
6 HSS Network Transceiver Voltage Compute+Link Chip 
7 Chip SRAM Voltage 
3 Optics 
4 Optics + PCIExpress 
8 Link Chip Core 

V. CASE STUDIES 

Benchmarks are a cruci31 part of understanding the capa­

bilities of a supercomputing system. The Argonne Leadership 

Computing Facility (ALCF) staff have a variety of benchmarks 



designed to test both the capabilities and limitations of each 

system they deploy. Some of these benchmarks are designed 

based on real science applications that are commonly run 

on the system while others are designed simply to push 

components to their maximum capability. 

In this work we will provide detailed analysis of three 

benchmarks: MPI bisection, DGEMM, and XSBench. Each are 

intended to test a very specific portion of the system and as 

such serve as excellent test platforms for profiling. For each 

we will show two figures: the first will be a breakdown of the 

various domains and how much they contributed to the total 

power consumption; the second a power profile from MonEQ 

from beginning to end of execution. 

A. MPI Bisection 

The bisection bandwidth benchmark [10] studies the mini­
mum bisection bandwidth, defined as the minimum delivered 

MPI bidirectional bandwidth over all possible bisections. The 

minimum bisection is constructed by cutting a partition of 

nodes into two equally-sized, non-overlapping sections in such 

a way that the resulting cut yields the smallest number of links 

connecting both sections. This benchmark measures the total 

bi-directional bandwidth by sending and receiving messages 

using non-blocking communication between pairs of nodes in 

different sections. 

This benchmark was run on 4 racks with 16 ranks per node 

and produced an aggregate bandwidth of 35.48 GB/s. 
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Fig. 5. Power profile of MPI bisection benchmark run for about 8 minutes. 
Shows consistent power usage for across ail domains for the duration of the 
run. 

Figure 5 shows a complete run of the bisection benchmark. 

As a consequence of only providing intense network activ­

ity, most of the domains are relatively close to idle power 

consumption for the duration of the run. Even despite this 

network activity, the domains that contribute the most to the 

power consumption of the network are very close to what 

they are at idle. Based on this result it is fair to say that the 

domains which contribute the most to communication power 

consumption have low variance in their power profiles. Despite 

this, it can be seen in Figure 6 that certain domains, such 

Domain 
.ChipCore 
o DRAM 
DlinkChipCore 
• Network 
DOptics 
.PCIExpress 
OSRAM 

Fig. 6. Domain breakdown of MP! bisection benchmark. Shows slightly 
elevated consumption in optics and network domains. 
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Fig. 7. Power profile of DGEMM benchmark run for about 5 minutes. 
Shows increased chip core and DRAM power usage for duration of execution 
tapering off as program cleans up at end of execution. 

as the optics and network, contribute enough extra power 

consumption to cause a noticeable difference in percentage. 

B. DGEMM 
While the MPI bisection benchmark provides an excellent 

example of intense network activity, it does not provide a 

good picture of the power consumption of the memory in 

the system. A very well known memory intensive benchmark, 

DGEMM [Il], was therefore chosen for profiling. DGEMM, a 

matrix multiplication microbenchmark, is designed to overload 

the caches present on the CPU and randomly access data in 

very large matrices therefore causing massive DRAM activity. 

This benchmark was run on 4 racks with 16 ranks per node 

with an aggregate of 426.203 TFlops. 

In contrast to the MPI bisection benchmark, DGEMM pro­

vides a more interesting overall picture in Figure 7. Immedi­

ately it can be seen that both the chip core and DRAM domains 

are using more power in DGEMM, which is also reflected in the 

domain breakdowns in Figures 6 and 8. It can also be seen that 
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Fig. 8. Domain breakdown of DGEMM benchmark. Shows more significant 
power consumption in both the chip core and DRAM domains. 

towards the end of execution of DGEMM both the chip core and 

DRAM taper off back to a level closer to idle. This is because 

the last thing this benchmark does before terminating is free 

any resources it used during simulation. 

C. XSBench 

XSBench [12] is a simple application that executes only the 

most computationally expensive steps of Monte Carlo particle 

transport, the calculation of macroscopic cross sections, in an 

effort to expose bottlenecks within multi-core, shared memory 

architectures. 

In a particle transport simulation, every time a particle 

changes energy or crosses a material boundary, a new macro­

scopic cross section must be calculated. The time spent look­

ing up and calculating the required cross section information 

often accounts for well over half of the total active runtime of 

the simulation. XSBench uses a unionized energy grid to fa­

cilitate cross section lookups for randomized particle energies. 

There are a similar number of energy grid points, material 

types, and nuclides as are used in the Hoogenboom-Martin 

benchmark. The probability of particles residing in any given 

material is weighted based on that material's commonality 

inside the Hoogenboom-Martin benchmark geometry. 

The end result is that the essential computational conditions 

and tasks of fully featured Monte Carlo transport codes are 

retained in XSBench, without the additional complexity and 

overhead inherent in a fully featured code. This provides 

a much simpler and clearer platform for stressing different 

architectures, and ultimately for making determinations as to 

where hardware bottlenecks occur as cores are added. 

This benchmark was run on 4 racks with 16 OpenMP 

threads per MPI rank. The result of the benchmark was an 

average of 513,749 lookups per MPI rank per second. 

As with the bisection and DGEMM benchmarks, an overview 

of XSBench is presented in Figure 9 and the breakdown of 

the domains and their respective power usage is provided in 
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Fig. 9. Power profile of XSBench benchmark run for about 2 minutes. Shows 
two points of interest at 30 seconds when program starts generating data and 
90 seconds when it switches from generation to random table lookups. 
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Fig. 10. Domain breakdown of XSBench benchmark. Shows elevated 
percentages in both chip core and DRAM domains. 

Figure 10. As can be seen clearly, XSBench has two points of 

interest. The first 30 seconds are spent setting up the program, 

at which point data generation starts. This is expressed as an 

uptick in both the chip core and DRAM domains. The second 

point of interest, at about 90 seconds into the execution, is 

when XSBench switches from generating the data in the 

matrices to performing the random table lookups described 

above. These lookups result in a decrease in chip core power 

usage and an increase in the DRAM power usage, as expected. 

As discussed in our previous works, one feature we wanted 

to add to MonEQ was the ability to tag specific portions 

of code that we have since implemented in this work. In 

Figure 11 we show the result of placing tags around the "work 

loop" which is the portion of the benchmark that performs the 

random table lookups. 

Because of the nature and design of these benchmarks, it's 

not difficult to look at the code and figure out why there 

might be a significant change in the power profile of a given 
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Fig. II. Tagged "work loop" section of XSBench benchmark. Shows greater 
detail for portion of profiled code. 

domain at a certain point in time. However, the ability to wrap 

tags around newly profiled applications can provide an easy 

way to determine which portions of the application constitute 

dramatic shifts in power usage. 

VI. REL ATED W ORK 

Research in energy-aware HPC has been active in recent 

years, and existing studies have mainly focused on the fol­

lowing topics: power monitoring and profiling energy-efficient 

or energy-proportional hardware, dynamic voltage and fre­

quency scaling (DVFS) techniques, shutting down hardware 

components at low system utilizations, power capping, and 

thermal management. These studies however focus on evalu­

ating power consumption of individual hardware components 

and neglect to consider the system as a whole [13], [14], [15], 

[16], [17], [IS], [19], [20], [21], [22], [23]. 

From the system-level perspective, power consumption of 

HPC systems has increasingly become a limiting factor as 

running and cooling large computing systems comes with 

significant cost [24], [25], [26]. 

Hennecke et al. [27] provided an overview of the power 

measuring capabilities of Blue Gene/P (BGP). The measured 

power consumption a production workload of HPC appli­

cations and presented the integration of power and energy. 

However, no in-depth analysis on the accuracy was presented 

in that study. 

Alam et al. [2S] measured power and performance results of 

different kernels and scientific applications on BGP. They also 

compared these results to other large-scale supercomputers 

such as Cray's XT4. They concluded that while BGP has good 

scalability and better performance-per-watt characteristics for 

certain scientific applications, XT4 offers higher performance 

per processor. 

Yoshii et al. [29] evaluated early access power monitoring 

capabilities on IBM BGIQ utilizing the EM ON API. While 

they did provide an in-depth analysis of the monitoring ca­

pabilities of BGIQ, they did not analyze data from actual 

jobs that had run on the system as at the time only access 

to a single rack of BGIQ was available. This work also was 

limited to profiling only one MPI rank per node. We have 

overcome this in our monitoring mechanism and can profile 

any number of MPI ranks per node. Typical applications use 

S-16 MPI ranks per node and MonEQ can now be used 

to profile applications on the BGIQ system. We have also 

defined an API for applications to use. Additionally, features 

include tagging to profile selective code fragments. Our earlier 

work didn't provide any of these features. Previously no tools 

were available for analysis and the task of dealing with the 

numerous output files was left up to the user. Our current 

work includes several utilities to analyze and plot the profiled 

data. Finally, the current work has demonstrated scalable 

performance up to 12SK cores of BGIQ. 

In our previous work [S] we further evaluated the power 

monitoring capabilities on BGIQ by providing an in depth 

comparison between the environmental data and data obtain­

able from the EMON API. We seek to further our experiments 

in this work by providing both updated analysis of the envi­

ronmental data (now that actual science applications have been 

running for a few months) and further analysis of the EMON 

API on more benchmarks. 

VII. CONCLUSIONS AND FUTURE W ORK 

In this paper we provided an updated analysis of the power 

monitoring capabilities of an IBM Blue Gene/Q supercom­

puter. While these capabilities were designed primarily for 

monitoring of system health and environmental monitoring, 

they are also incredibly useful for profiling applications and 

helping to make better design decisions. We found that com­

pared to our previous results, average power usage per job has 

decreased, though it is not possible to say exactly why. 

We also profiled, using our power monitoring library 

MonEQ, several well understood benchmarks to better under­

stand what power profiles they exhibit. As expected, these 

benchmarks, which are designed to stress very specific por­

tions of the system, had power profiles to match. In this 

work we looked at three benchmarks: MPI bisection, DGEMM, 
and XSBench, which are designed to stress communication, 

memory, and computation abilities of the system. Our profiling 

mechanism, MonEQ, was easily integrated into these bench­

marks and able to provide sub-second, accurate, and precise 

power profiles, which have not been studied before. 

Looking forward, we will continue to work with and im­

prove our power-profiling code. Given enough power profiles, 

it might be eventually possible to match real science appli­

cations to well understood benchmarks allowing for potential 

improvement in both efficiency as well as performance. 
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