
LINEAR SYSTEM SOLVERS:

SPARSE ITERATIVE METHODS

Henk A. Van der Vorst

Mathematical Institute
University of Utrecht

Utrecht, the Netherlands
e-mail: vorst@math.ruu.nl

Tony F. Chan1

Department of Mathematics
University of California at Los Angeles

Los Angeles, CA
e-mail: chan@math.ucla.edu

ABSTRACT

In this chapter we will present an overview of a number of related
iterative methods for the solution of linear systems of equations.
These methods are so-called Krylov projection type methods and
they include popular methods as Conjugate Gradients, Bi-Conjugate
Gradients, LSQR and GMRES. We will sketch how these methods
can be derived from simple basic iteration formulas, and how they
are interrelated.
Iterative schemes are usually considered as an alternative for the solu-
tion of linear sparse systems, like those arising in, e.g., �nite element
or �nite di�erence approximation of (systems of) partial di�erential
equations. The structure of the operators plays no explicit role in
any of these schemes, and the operator may be given even as a rule
or a subroutine.
Although these methods seem to be almost trivially parallellizable
at �rst glance, this is sometimes a point of concern because of the
inner products involved. We will consider this point in some detail.
Iterative methods are usually applied in combination with so-called
preconditioning operators in order to further improve convergence
properties. This aspect will receive more attention in a separate
chapter in the same volume.
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1 Iterative methods versus direct methods

The present state of the art in numerical methods is that direct
methods can be used as black boxes. This is by far not the case
for iterative methods, at least not if we do not know about speci�c
properties of the matrix of the linear system to be solved. And
even then it is no trivial matter to decide when to stop the iteration
process and to obtain a reasonable estimate of the approximation
error in the result. Therefore, we start with some very global analysis
of the complexity of Gaussian elimination and an iterative solution
method for a model problem. This may serve as a motivation for the
further study of iterative methods.
Gaussian elimination leads to �ll-in, this makes the method often
expensive. Usually large sparse matrices are related to some grid or
network. In a 3D situation this leads typically to a bandwidth � n

2
3

(= m2 and m3 = n, 1=m the gridsize).

The number of 
ops is then typically O(nm4) � n2
1

3 (Golub and
Van Loan, 1989) (Note: we assume that the sparsity structure is not
particularly regular so that special computational variants can not
be employed). If one has to solve many systems with di�erent right-

hand sides, then the costs for solving each system will vary like n
5
3 .

If we assume that the matrix is symmetric positive de�nite then the
Conjugate Gradient (CG) iteration method (which we will describe
in more detail later on) can be used safely. The error reduction per

iteration step of CG is �
p
��1p
�+1

, with � = kAk2kA�1k2 (Golub and

van Loan, 1989).
For discretized second order pde's, over grids with gridsize 1

m
we

typically see � � m2. Hence, for such 3D problems we have that
� � n

2
3 . For an error reduction of � we must have that0
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where j is the number of iteration steps to be carried out. Hence, it
follows for j that
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3 :

If we assume the number of 
ops per iteration to be � fn (f stands
for the number of nonzeros per row of the matrix and the overhead



per unknown introduced by the iterative scheme) then the number

of 
ops necessary to achieve an error reduction by � is � �fn 4
3 log �.

Conclusion: If we have to solve one system at a time, then for large
n, or small f , or modest �, Iterative methods may be preferable.
If we have to solve many similar systems with di�erent right-hand
side, and if we assume their number to be so large that the costs for
constructing the decomposition of A is relatively small per system,
then it seems likely that for 2D problems direct methods may be more
e�cient, whereas for 3D problems this is still doubtful, since the 
ops
count for a direct solution method varies like n

7
3 , and the number of


ops for the iterative solver (for the model situation) varies like n
4

3 .

Example: The above given arguments are quite nicely illustrated
by observations made by Simon (Simon, 1989). He expects that
by the end of this century we will have to solve repeatedly linear
problems with some 5 � 109 unknowns. For what he believes to
be a model problem at that time, he has estimated the CPU time
required by the most economic direct method, available at present, as
520; 040 years, provided that the computation can be carried out at
a speed of 1 TFLOP. On the other hand, he estimates the CPU time
for preconditioned conjugate gradients, assuming still a processing
speed of 1 TFLOPS, as 575 seconds. Though we should not take it
for granted that in particular a very sparse preconditioning part can
be carried out at that high processing speed (for the direct solver this
is more likely), we see that the di�erences in CPU time requirements
are gigantic, indeed (we will come to this point in more detail).
Also the requirements for memory space for the iterative methods are
typically smaller by orders of magnitude. This is often the argument
for the usage of iterative methods in 2D situations, when 
op counts
for both classes of methods are more or less comparable.
Finally it should be noted that iterative methods can exploit good
initial guesses, e.g., in time dependent problems. The preconditioner
can often be chosen to adapt to the machine architecture.

Remarks:

� For special problems special methods may be faster: multigrid,
fast poisson solvers.

� Storage considerations are often in favour of iterative methods.



� For matrices that are not positive de�nite symmetric the situ-
ation can be more problematic: it is often di�cult to �nd the
proper iterative method or a suitable preconditioner. However,
for projection type methods, like GMRES, Bi-CG, CGS, and
Bi-CGSTAB we often see that the 
ops counts vary as for CG.

The question remains how well iterative methods can take ad-
vantage of modern computer architectures. From Dongarra's linpack
benchmark (Dongarra, 1990) it may be concluded that the solution
of a dense linear system can (in principle) be computed with com-
putational speeds close to peak speeds on most computers. This is
already the case for systems of, say, order 50000 on parallel machines
with as many as 1024 processors.
In sharp contrast with the dense case are the computational speeds
reported for the preconditioned as well as the unpreconditioned con-
jugate gradient method: ICCG and CG, respectively (Dongarra and
Van der Vorst, 1992). A test problem was taken, generated by dis-
cretizing a three-dimensional elliptic partial di�erential equation by
the standard 7-point central di�erence scheme over a three-dimensio-
nal rectangular grid, with 100 unknowns in each direction (m = 100,
n = 1; 000; 000). The observed computational speeds for several ma-
chines (1 processor in each case) are given in Table 1, and we see that
the actual speeds are often modest compared with the peak speeds.
The reason for this is mainly that only few 
ops can be carried out
per data that has to be moved from memory to, e.g., the fast vector
registers, and therefore, considerable time is spent relatively in data
movement.

2 A basic iterative method

A very basic idea, that leads to many e�ective iterative solvers, is
to to split the matrix of a given linear system as the sum of two
matrices, one of which is a matrix that would have led to a system
that can easily be solved. The most simple splitting we can think of
is A = I � (I � A). Given the linear system Ax = b, this splitting
leads to the well-known Richardson iteration:

xi+1 = b+ (I �A)xi = xi + ri:



Table 1: Speed in Mega
ops for 50 Iterations of the Iterative Tech-
niques

Machine optimized Scaled Peak
ICCG CG Performance
M
ops M
ops M
ops

NEC SX-3/22 (2.9 ns) 607 1124 2750
CRAY Y-MP C90 (4.2 ns) 444 737 952
CRAY 2 (4.1 ns) 96.0 149 500
IBM 9000 Model 820 39.6 74.6 444
IBM 9121 (15 ns) 10.6 25.4 133
DEC Vax/9000 (16 ns) 9.48 17.1 125
IBM RS/6000-550 (24 ns) 18.3 21.1 81
CONVEX C3210 15.8 19.1 50
Alliant FX2800 2.18 2.98 40

Multiplication by �A and adding b gives

b� Axi+1 = b� Axi � Ari

or
ri+1 = (I �A)ri = (I �A)i+1r0 = Pi+1(A)r0;

or, in terms of the error

A(x� xi+1) = Pi+1(A)A(x� x0)

) x� xi+1 = Pi+1(A)(x� x0):

In these expressions Pi+1 is a (special) polynomial of degree i + 1.
Note that Pi+1(0) = 1.
Results obtained for the standard splitting can be easily generalized
to other splittings, since the more general splitting A = M � N =
M�(M�A) can be rewritten as the standard splitting B = I�(I�B)
for the preconditioned matrix B = M�1A. The theory of matrix
splittings, and the analysis of the convergence of the corresponding
iterative methods, is treated in depth in (Varga, 1962). We will not
discuss this aspect here, since it is not relevant for our purposes at
this stage. Instead of studying the basic iterative methods we will
show how other more powerful iteration methods can be viewed as



accelerated versions of the basic iteration methods. In the context of
these accelarated methods, the matrix splittings become important
in another way, since the matrix M of the splitting is often used
to precondition the given system. That is, the iterative method is
applied to, e.g., M�1Ax = M�1b.

From now on we will assume that x0 = 0. This too does not mean
a loss of generality, for the situation x0 6= 0 can through a simple
linear transformation z = x� x0 be transformed to the system

Az = b�Ax0 = ~b

for which obviously z0 = 0.

For the simple Richardson iteration it follows that

xi+1 = r0 + r1 + r2 + � � �+ ri =
iX

j=0

(I �A)jr0

2 fr0; Ar0; : : : ; Air0g � Ki+1(A; r0):

Ki+1(A; r0) is a subspace of dimension i + 1, generated by r0 and
A and is called the Krylov subspace for A and r0. Apparently, the
Richardson iteration delivers elements of Krylov subspaces of increas-
ing dimension Note that the Richardson iteration generates a basis
for the Krylov suspace, and this basis can be used to construct other
approximations for the solution of Ax = b as well.

3 The conjugate gradient method

In this section we will discuss various aspects of the popular conjugate
gradient method. This method can be viewed as the archetype of
various so-called Krylov subspace methods.

3.1 Sketch of the background

Of course, it would be desirable to have a method that could generate
at low costs the xi in the Krylov subspace for wich kxi � xk2 is
mimimal, but this is not possible. However, if A is symmetric positive
de�nite then (x; y)A � (x;Ay) de�nes a proper innerproduct, and we
may use this innerproduct for the mimimization: kxk2A = (x;Ax). So
our aim is to �nd the xi 2 Ki(A; r0) for which kxi� xkA is minimal:

) xi � x ?A Ki(A; r0)



) ri ? Ki(A; r0):

In particular r1 2 fr0; Ar0g. Assuming that r1 6= 
r0 (it is easy to
check that in that case r0 is an eigenvector of A and the process could
be stopped since the exact solution has then be obtained after only
one iteration step), we see that fr0; r1g form an orthogonal basis for
K2(A; r0).
By an induction argument we conclude that when the process does
not �nd the exact solution at or before step i then

fr0; r1; : : : ; rig is an orthogonal basis for Ki+1(A; r0):

This leads to the idea to construct an orthogonal basis for the Krylov
subspace, a basis of which is generated implicitly by the standard
iteration anyway, and then to project xi � x, with respect to the
A-innerproduct, onto the Krylov subspace and to determine xi from
that.

We have seen that the rj form an orthogonal basis for Ki(A; r0),
but the next remarkable property is that they satisfy a 3-term recur-
rence relation when A is symmetric:

�j+1rj+1 = Arj � �jrj � 
jrj�1: (1)

The proof is by induction.
The values of �j and 
j follow from the orthogonality of the residual
vectors:

�j = (rj ; Arj)=(rj; rj); and 
j = (rj�1; Arj)=(rj�1; rj�1):

The value of �j+1 determines the proper length of the new residual
vector. From the relation rj+1 = b�Axj+1 and xj+1 2 Kj+1(A; r0)
it follows that each residual can be written as r0 plus powers of A
times r0. Comparing the coe�cient for r0 in the recurrence relation
(1) leads to

�j+1 + �j + 
j = 0:

We can view this 3-term recurrence relation slightly di�erent as

Arj = 
jrj�1 + �jrj + �j+1rj+1 ;

and if we consider rj as being the j-th column of the matrix

Ri = (r0; : : : ; ri�1)



then the recurrence relation says that A applied to a column of Ri

results in the combination of three successive columns, or

ARi = Ri

0
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j
. . . �j

. . .

�j+1
. . .

. . .
. . .

. . .
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CCCCCCCCCCA
+ �i

0
B@ 0; 0; : : : ; ri

1
CA

or
ARi = RiTi + �irie

T
i ; (2)

in which Ti is an i by i tridiagonal matrix and ei is the ith canonical
unit vector in IRi.

Since we are looking for a solution xi in Ki(A; r0), that vector
can be written as a combination of the basis vectors of the Krylov
subspace, and hence

xi = Riy

(note that y has i components).
Furthermore, we have for xi, for which the error in A-norm is mini-
mal, that

RT
i (Axi � b) = 0

) RT
i ARiy � RT

i b = 0:

Using equation (2) and the fact that ri is orthogonal with respect to
the columns of Ri we obtain

RT
i RiTiy = kr0k22e1

Since RT
i Ri is a diagonal matrix with diagonal elements kr0k22, � � �,

kri�1k22, we �nd the desired solution from

Tiy = e1 ) y ) xi = Riy:

Note that so far we have only used the fact that A is symmetric and
we have assumed that the matrix Ti is not singular. We will see later
that this opens the possibility for several suitable iterative methods,
among which the conjugate gradients method. The Krylov subspace
method that has been derived here is known as the Lanczos method
for symmetric systems (Lanczos, 1952).



The conjugate gradients method (Hestenes and Stiefel, 1954) is
merely a variant on the above approach, which saves storage and
computational e�ort. For, when solving the projected equations in
the above way, we see that we have to save all columns of Ri through-
out the process in order to recover the current iteration vector xi.
This can be done much more e�ciently. If we assume that the matrix
A is in addition positive de�nite then, because of the relation

RT
i ARi = RT

i RiTi;

we conclude that Ti can be transformed by a rowscaling matrix
RT

i Ri into a positive de�nite symmetric tridiagonal matrix (note that
RT

i ARi is positive de�nite for y 2 IRi+1). This implies that Ti can
be LU decomposed without any pivoting:

Ti = LiUi;

with Li lower unit bidiagonal and Ui upper bidiagonal, and this leads
to the elegant short recurrences in the CG method. We omit the de-
tails of the precise derivation.
Note that the positive de�niteness ofA is only exploited as to guaran-
tee the 
awless decomposition of the implictly generated tridiagonal
matrix Ti. Of course, one can construct a di�erent decomposition of
Ti when A is not positive de�nite. In SYMMLQ (Paige and Saun-
ders, 1975) this is accomplished by an LQ decomposition, which also
leads to an elegant method.
Still another possibillity is to minimize kAxi�bk2 for xi in the Krylov
subspace. In the above approach this leads to a low dimensional least
squares problem in which Ti is involved. The resulting method is
known as MINRES (Paige and Saunders, 1975).

3.2 Computational notes

CG is most often used in combination with a suitable splitting A =
M �N , and then M�1 is called the preconditioner. We will assume
that M is also positive de�nite.
The following computational scheme represents preconditioned CG,
for the solution of Ax = b with preconditioner M�1:

x0= initial guess; r0 = b� Ax0;
p�1 = 0; ��1 = 0;



Solve w0 from Mw0 = r0;
�0 = (r0; w0)
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
qi = Api;
�i =

�i
(pi;qi)

xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
Solve wi+1 from Mwi+1 = ri+1;
�i+1 = (ri+1; wi+1);
�i =

�i+1
�i

;

end;

This formulation, which is quite popular, has the advantage that
the preconditioner needs not be represented as the product of two
factors, and it is also avoided to backtransform solutions and resid-
uals, as is necessary when one applies CG to L�1AL�T y = L�1b.

A very well-known upperbound for the iteration error is given by

kxi � xk2A � 2

 p
� � 1p
� + 1

!2i

kx0 � xk2A; (3)

where � is the condition number (the ratio of the largest and the
smallest eigenvalue) of the matrix M�1A.
A more formal presentation of CG can be found in (Golub and Van
Loan, 1989).

3.3 Parallelism and data locality in CG

Most often, the conjugate gradients method is used in combination
with some kind of preconditioning. Unfortunately, a popular class
of preconditioners, based upon incomplete factorization of A, is not
very well-suited for parallel implementation. We will discuss this
aspect in a di�erent chapter. Here we will assume that the precon-
ditioner is chosen such that the parallelism in solving My = z is
comparable with the parallelism in computing Ap, for given p.
For CG it is also required that the preconditioner M�1 is symmet-
ric positive de�nite. This aspect will play a role in our discussions
since it shows how some properties of the preconditioner can be used
sometimes to our advantage for an e�cient implementation.



The scheme for preconditioned CG is given in Section 3.2. Note
that in that scheme the updating of x and r can only start after
the completion of the innerproduct required for �i. Therefore, this
innerproduct is a so-called synchronization point: all computation
has to wait for completion of this operation. One can try to avoid
such synchronization points as much as possible, or formulate CG in
such a way that synchronization points can be taken together.
Since on a distributed memory machine communication is required
to assemble the innerproduct, it would be nice if we could proceed
with other useful computation while the communication takes place.
However, as we see from our CG scheme, there is no possibility to
overlap this communication time with useful computation. The same
observation can be made for the updating of p, which can only take
place after the completion of the innerproduct for �i.
In our formulation of CG there are two such synchronization points,
namely the computation of both innerproducts.
We consider here a variant of CG (Demmel et al, 1993), in which
there is possibility to overlap all of the communication time with
useful computations. This variant is just a rescheduled version of
the original CG scheme, and is therefore precisely as stable. The key
trick in this approach is to delay the updating of the solution vector
by one iteration step.
It is assumed that M�1 can be written as M�1 = (LLT )�1.

x0= initial guess; r0 = b� Ax0;
p�1 = 0; ��1 = 0;��1 = 0;
s = L�1r0;
�0 = (s; s);
for i = 0; 1; 2; ::::

wi = L�Ts; (0)
pi = wi + �i�1pi�1; (1)
qi = Api; (2)

 = (pi; qi); (3)
xi = xi�1 + �i�1pi�1; (4)
�i =

�i


; (5)

ri+1 = ri � �iqi; (6)
s = L�1ri+1; (7)
�i+1 = (s; s); (8)
if ri+1 small enough then (9)

xi+1 = xi + �ipi



quit;
�i =

�i+1
�i

;

end i;

The advantage of this scheme is that all communication for the
inner products can be overlapped with other useful computation:

1. The communication required for the assembly of the innerprod-
uct in (3) can be overlapped with the update for x (which could
have been done in the previous iteration step).

2. The assembly of the innerproduct in (8) can be overlapped
with the computation in (0). Also step (9) usually requires
information such as the norm of the residual, which can be
overlapped with (0).

For a further discussion on the above scheme, as well as on other
approaches, see (Demmel et al, 1993). Vector processing and parallel
computing aspects of CG are discussed in more depth in (Dongarra
et al, 1991) and (Ortega, 1988).

4 Nonsymmetric problems

There are essentially three di�erent ways to solve unsymmetric linear
systems, while maintaining some kind of orthogonality between the
residuals:

1. Solve the normal equations ATAx = ATb with conjugate gra-
dients

2. Make all the residuals explicitly orthogonal in order to have an
orthogonal basis for the Krylov subspace

3. Construct a basis for the Krylov subspace by a 3-term biorthog-
onality relation

4.1 Normal equations

The �rst solution seems rather obvious. However, it may have severe
disadvantages because of the squaring of the condition number. This
has as e�ects that the solution is more susceptible to errors in the
right-hand side and that the rate of convergence of the CG procedure



is much slower as for a comparable symmetric system with a matrix
with the same condition number as A. Moreover, the amount of
work per iteration step, necessary for the matrix vector product, is
doubled.
Several proposals have been made to improve the numerical stability
of this rather robust approach. The most well-known is by Paige and
Saunders (Paige and Saunders, 1982) and is based upon applying the
Lanczos method to the auxiliary system 

I A
AT 0

! 
r
x

!
=

 
b
0

!
:

Clever execution of this delivers in fact the factors L and U of the
LU -decomposition of the tridiagonal matrix that would have been
delivered when carrying out the Lanczos procedure with ATA. The
resulting method is known as LSQR.

4.2 GMRES

The second approach is to form explicitly an orthonormal basis for
the Krylov subspace. Since A is not symmetric we have no longer a
3-term recurrence relation for that purpose and the new basis vector
has to be made explicitly orthonormal with respect to all the previous
vectors:

v1 =
1

kr0k2r0;

hi+1;ivi+1 = Avi �
iX

j=1

hj;ivj :

As in the symmetric case this can be exploited in two di�erent ways.
The orthogonality relation can either be written as

AVi = ViHi + hi+1;ivi+1e
T
i ; (4)

after which the projected system, with a Hessenberg matrix instead
of a tridiagonal matrix as in the symmetric case, can be solved (non-
symmetric CG, GENCG, FOM, Arnoldi's method), or it can be writ-
ten as

AVi = Vi+1 �Hi; (5)

after which the projected system, with an i+1 by i upper Hessenberg
matrix can be solved as a least squares system. In GMRES (Saad



and Schultz, 1986) this is done by the QR method using Givens ro-
tations in order to annihilate the subdiagonal elements in the upper
Hessenberg matrix �Hi.
The �rst approach (based upon (4)) is similar to the conjugate gradi-
ent approach (or SYMMLQ), the second approach (based upon (5))
is similar to the conjugate directions method (or MINRES).

In order to avoid excessive storage requirements and computa-
tional costs for the orthogonalization, GMRES is usually restarted
after each m iteration steps: GMRES(m). The costs for the orthog-
onalization in GMRES(m) are O(m2). The proper choice of m is a
very delicate problem which we will not discuss here.
Below we give a scheme for GMRES(m) for solving Ax = b, with a
given preconditioner M :

x0 is an initial guess;
for j = 1; 2; ::::

Solve r from Mr = b�Ax0;
v1 = r=krk2;
s := krk2e1;
for i = 1; 2; :::;m

Solve w from Kw = Avi;
for k = 1; :::; i orthogonalization of w

hk;i = (w; vk); against v's, by modi�ed
w = w � hk;ivk; Gram-Schmidt process

end k;
hi+1;i = kwk2;
vi+1 = w=hi+1;i;
apply J1; :::; Ji�1 on (h1;i; :::; hi+1;i);
construct Ji, acting on i{th and (i+ 1){st component
of h:;i, such that (i+ 1){st component of Jih:;i is 0;
s := Jis;
if s(i+ 1) is small enough then (UPDATE(~x; i); quit);

end i;
UPDATE(~x;m);

end j;

In this scheme UPDATE(~x; i) replaces the following computa-
tions:

Compute y as the solution of Hy = ~s, in which
the upper i by i triangular part of H has hi;j as



its elements (in least squares sense if H is singular),
~s represents the �rst i components of s;
~x = x0 + y1 � v1 + y2v2 + :::+ yivi;
si+1 equals kb�A~xk2;
if this component is not small enough
then x0 = ~x;
else quit;

4.2.1 Parallel aspects of GMRES

Similar to CG, and other iterative schemes, the major computation
intensive kernels are matrix-vection computations (with A and M),
innerproducts and vector updates. All of these operations are almost
trivially parallelizable, but, again, on distributed memory machines
problems are likely to come from the innerproducts in the orthog-
onalization procedure (they act as synchronization points). In this
part of the algorithm, one new vector: Avj , is orthogonalized against
the previously built orthogonal set v1, v2, ... , vj . This leads typi-
cally to vector vector operations (BLAS1), and therefore we do not
expect optimal performance on machines with distributed memory
or memory hierarchy.
The obvious way to obtain more possibilities for improved parallelism
and data locality is to generate a basis for the Krylov subspace �rst:
v1, Av1, ..., Amv1, and to orthogonalize this set afterwards: m-step
GMRES(m) (Chronopoulos and Kim, 1990). This approach does not
lead to an increase in computational work, and the numerical insta-
bility due to the generation of a possibly near-dependent set is not
necessarily a drawback. In any case, the resulting set, after orthog-
onalization, is the basis of some subspace, and the residual is then
minimized over that subspace. However, if one wants to get results
as close as possible to standard GMRES(m), one may try to gener-
ate a better starting set of basis vectors (i.e., more independent) by
computing v1, y2 = p1(A)v1, ..., ym+1 = pm(A)v1, in which the pj
are suitable chosen j-th degree polynomials. In (De Sturler, 1991)
it is claimed that Chebyshev polynomials led to satisfactory results.
Anyhow, the m-step approach does not seem to lead to serious in-
stability problems, since the method is restarted after each cycle of
m steps.

After having generated a suitable starting set, we still have to



Table 2: Speed-ups for GMRES

Processor speed-up Speed-up
grid standard GMRES with comb. innerp.

10 ? 10 77 98
14 ? 14 100 181
17 ? 17 114 213
20 ? 20 108 223

orthogonalize it. Now that the basis for the Krylov subspace is avail-
able, the orthogonalization is restructured as:

for k = 2; :::; m+ 1
for j = k; :::;m+ 1 orthogonalize yk ; :::; ym+1

yj = yj � (yj ; vk�1)vk�1; w.r.t. vk�1
end j;
vk = yk=kykk2;

end k

Note that all the innerproducts in the inner loop can be done in-
dependent of each other, and that all message passing for these inner
products can be combined (leading to less overhead). In (De Sturler,
1991) it is shown how this can be done with modi�ed Gram-Schmidt,
whilst avoiding communication times that cannot be overlapped.
In Table 2 we see some speed-ups as observed on a Parsytec Ma-
chine for GMRES(50). The linear system of order 60; 000 came from
5-point discretization of a second order partial di�erential equation
over a rectangular grid in 2D.

4.2.2 GMRES in combination with other schemes

In (Van der Vorst and Vuik, 1994) it is shown how GMRES can be
combined (or rather preconditioned) with other iterative schemes.
The iteration steps of GMRES (or GCR) are called outer itera-
tion steps, while the iteration steps of the preconditioning iterative
method are referred to as inner iterations. The combined method
is called GMRES?, where ? stands for any given iterative scheme;
in the case of GMRES as the inner iteration method, the combined
scheme is called GMRESR.



Similar schemes have been proposed recently. In FGMRES (Saad,
1993) the update directions for the approximate solution are precon-
ditioned, whereas in GMRES? the residuals are preconditioned. The
latter approach o�ers more control over the reduction in the resid-
ual, in particular break-down situations can be easily detected and
remedied.
The GMRES? algorithm can be described by the following compu-
tational scheme:

x0 is an initial guess; r0 = b� Ax0;
for i = 0; 1; 2; 3; :::

Let z(m) be the approximate solution of Az = ri
obtained after m steps of an iterative method.

c = Az(m) (often available from the iterative method)
for k = 0; :::; i� 1

� = (ck; c)
c = c� �ck
z(m) = z(m) � �uk

ci = c=kck2; ui = z(m)=kck2
xi+1 = xi + (ci; ri)ui
ri+1 = ri � (ci; ri)ci
if xi+1 is accurate enough then quit

end

A su�cient condition to avoid break-down in this method (kck2 =
0) is that the norm of the residual at the end of an inner iteration
is smaller than the right-hand residual: kAz(m) � rik2 < krik2. This
can easily be controlled during the inner iteration process.
The idea behind this combined iteration scheme is that we explore
parts of high-dimensional Krylov subspaces, hopefully localizing the
same approximate solution that full GMRES would �nd over the en-
tire subspace, but now at much lower computational costs. Alterna-
tives for the inner iteration could be either one cycle of GMRES(m),
since then we have also locally an optimal method, or some other
iteration scheme, like for instance BiCGSTAB (Section 4.3.2).
It may seem questionable whether a method like BiCGSTAB should
lead to success in the inner iteration. This method does not satisfy a
useful global minimization property and large part of its e�ectiveness
comes from the underlying BiCG algorithm, which is based on bi-
orthogonality relations. This means that for each outer iteration the



inner iteration process has to build a bi-orthogonality relation again.
By the nature of these kind of Krylov processes the largest eigenval-
ues and their corresponding eigenvector components quickly do enter
the process after each restart, and hence it may be expected that
much of the work is lost in rediscovering the same eigenvector com-
ponents in the error over and over again, whereas these components
may already be so small that further reduction in those directions in
the outer iteration is waste of time, since it hardly contributes to a
smaller norm of the residual.
This heuristic way of reasoning may explain in part our rather dis-
appointing experiences with, e.g., BiCGSTAB as the inner iteration
process for GMRES?.

In (De Sturler and Fokkema, 1993) it is proposed to prevent the
outer search directions explicitly to enter again in the inner process.
This is done by keeping the Krylov subspace that is built in the inner
iteration orthogonal with respect to the Krylov basis vectors gener-
ated in the outer iteration. The procedure works as follows.
In the outer iteration process the vectors c0, ..., ci�1 build an or-
thogonal basis for the Krylov subspace. Let Ci be the n by i matrix
with columns c0, ..., ci�1. Then the inner iteration process at outer
iteration i is carried out with the operator Ai instead of A, and Ai

is de�ned as
Ai = (I � CiC

T
i )A: (6)

It is easily veri�ed that Aiz ? c0; :::; ci�1 for all z, so that the inner it-
eration process takes place in a subspace orthogonal to these vectors.
The additional costs, per iteration of the inner iteration process, are
i innerproducts and i vector updates. In order to save on these costs,
one should realize that it is not necessary to orthogonalize with re-
spect to all previous c-vectors, and that "less e�ective" directions
may be dropped, or combined with others. Suggestions have been
made for such strategies. Of course, this orthogonalization approach
should only be considered in cases where we see too little residual
reducing e�ect in the inner iteration process in comparison with the
outer iterations of GMRES?.

4.3 Bi-conjugate gradients

The third class of methods arises from the attempt to construct a
suitable set of basis vectors for the Krylov subspace by a three-term



recurrence relation as in the symmetric case:

�j+1rj+1 = Arj � �jrj � 
jrj�1: (7)

When A is symmetric then this recurrence relation can be used to
create an orthogonal set of vectors. By similar arguments as in the
symmetric case we conclude that (7) can be used to generate a set of
basis vectors r0,...,ri�1 for Ki(A; r0), such that rj ? Kj�1(AT ; r0),
or even more general,

rj ? Kj�1(AT ; r̂0);

since there is no explicit need to generate the Krylov subspace for
AT with r0 as the starting vector.
If we let the basis vectors r̂j for K

i(AT ; r̂0) satisfy the same recur-
rence relation as the vectors rj , i.e., with identical recurrence coe�-
cients, then we see that

(rk; r̂j) = 0 for k 6= j

(by a simple symmetry argument).
Hence, the sets frjg and fr̂jg satisfy a biorthogonality relation. Now
we can proceed in a similar way as in the symmetric case:

ARi = RiTi + �irie
T
i ; (8)

but now we use the matrix R̂i = [r̂0; r̂1; :::; r̂i�1] for the projection of
the system

R̂T
i (Axi � b) = 0;

or
R̂T

i ARiy � R̂T
i b = 0:

Using (8) we �nd that yi satis�es

R̂T
i RiTiy = (r0; r̂0)e1:

Since R̂T
i Ri is a diagonal matrix with diagonal elements (rj ; r̂j), we

�nd, if all these diagonal elements are nonzero, that

Tiy = e1 ) xi = Riy:

This method is known as the Bi-Lanczos method (Lanczos, 1952).
We see that we get problems when a diagonal element of R̂T

i Ri be-
comes (near) zero, this is referred to in literature as a serious (near)



breakdown. The way to get around this di�culty is the so-called
Look-ahead strategy (Parlett et al, 1985), which comes down to tak-
ing a number of successive basis vectors for the Krylov subspace
together and to make them blockwise bi-orthogonal.
Another way to avoid break-down is to restart as soon as a diagonal
element gets small. Of course, this strategy looks surprisingly simple,
but one should realise that at a restart the Krylov subspace, that has
been built up so far, is thrown away, which destroys possibilities for
faster (i.e., superlinear) convergence.

As for Conjugate Gradients, the LU decomposition of the tridi-
agonal system can be used to obtain short recurrences for the search
direction and the residual vectors. This variant of Bi-Lanczos is usu-
ally called Bi-Conjugate Gradients (Bi-CG) (Fletcher, 1976).
Of course one can in general not be certain that an LU decomposi-
tion (without pivoting) of the tridiagonal matrix Ti exists, and this
may lead also to break-down of the Bi-CG algorithm. This problem
can be cured by the so-called composite step approach, which does
a block pivot step occasionally (Bank and Chan, 1993). The same
problem is also circumvented in the QMR variant.
The QMR method (Freund et al, 1992) relates to Bi-CG in a sim-
ilar way as MINRES relates to CG, in the sense that a small least
squares problem over the Krylov subspace is solved. The adjective
Quasi in QMR (Quasi Minimum Residual) stems from the fact that
in formulating the least squares problem one ignores the possible
non-orthogonality of the basis vectors rj . In its most robust form
the QMR method is carried out on top of a look-ahead variant of the
bi-orthogonal Lanczos method. Experiments show that QMR has
a much smoother convergence behaviour than Bi-CG, but it is not
essentially faster than Bi-CG (when the latter does not break down).

Note that for symmetric matrices Bi-Lanczos generates the same
solution as Lanczos, provided that r̂0 = r0, and under the same
condition Bi-CG delivers the same iterands as CG for positive de�nite
matrices. However, the Bi-orthogonal variants do so at the cost of
two matrix vector operations per iteration step.

It is di�cult to make a fair comparison between GMRES and Bi-
CG. GMRES really minimizes a residual, but at the cost of increasing
work for keeping all residuals orthogonal and increasing demands for
memory space. Bi-CG does not minimize a residual, but often it
has a comparable fast convergence as GMRES, at the cost of twice
the amount of matrix vector products per iteration step. However,



the generation of the basis vectors is relatively inexpensive and the
memory requirements are limited and modest. Several variants of
Bi-CG have been proposed which increase the e�ectiveness of this
class of methods in certain circumstances. These variants will be
discussed brie
y in coming subsections.
The algorithm for Bi-CG is, from the implementation point of view,
very similar to CG, and problems with respect to parallelism are
almost similar. For algorithms, other implementation issues, and
further references we refer to Barret et al (Barret et al, 1994,DDSV).

4.3.1 CGS

For the bi-conjugate gradient residual vectors it is well-known that
they can be written as rj = Pj(A)r0 and r̂j = Pj(AT )r̂0, and because
of the bi-orthogonality relation we have that

(rj; r̂i) = (Pj(A)r0; Pi(A
T )r̂0)

= (Pi(A)Pj(A)r0; r̂0) = 0;

for i < j.
The iteration parameters for bi-conjugate gradients are computed
from innerproducts like these ones. Sonneveld (Sonneveld, 1989)
observed that we can also construct the vectors ~rj = P 2

j (A)r0, us-
ing only the latter form of the innerproduct for recovering the bi-
conjugate gradients parameters (which implicitly de�ne the polyno-
mial Pj). By doing so, it can be avoided that the vectors r̂j have to
be formed, nor is there any multiplication with the matrix AT .
The resulting CGS method works in general very well for many un-
symmetric linear problems. It converges often much faster than BI-
CG (about twice as fast in some cases) and does not have the dis-
advantage of having to store extra vectors like in GMRES. However,
CGS usually shows a very irregular convergence behaviour. This be-
haviour can even lead to cancellation and a spoiled solution (Sleijpen
et al, 1994).
Some attempts have been made to improve the convergence behav-
ior of CGS. For instance, in (Freund, 1993) the QMR approach is
applied to CGS, which leads to TFQMR.
The break-down that may occur in Bi-CG due to a zero pivot in the
LU factorization occurs also in CGS. This problem is addressed in
(Chan and Szeto, 1994). The break-down situation in the underlying
Lanczos process is considered in (Brezinski and Redivo-Zaglia, 1994).



Bi-CGSTAB

Bi-CGSTAB (Van der Vorst, 1992) is based on the following ob-
servation. Instead of squaring the Bi-CG polynomial, we can also
construct other iteration methods, by which xi are generated so that
ri = ~Pi(A)Pi(A)r0 for other ith degree polynomials ~P . An obvious
possibility is to take for ~Pj a polynomial of the form

Qi(x) = (1� !1x)(1� !2x):::(1� !ix); (9)

and to select suitable constants !j . This expression leads to an al-
most trivial recurrence relation for the Qi.
In Bi-CGSTAB !j in the jth iteration step is chosen as to mini-
mize rj , with respect to !j , for residuals that can be written as
rj = Qj(A)Pj(A)r0.
Bi-CGSTAB can be viewed as the product of Bi-CG and repeated
GMRES(1). Of course, other product methods can be formulated
as well. Gutknecht (Gutknecht, 1993) has proposed BiCGSTAB2,
which is constructed as the product of Bi-CG and GMRES(2).

Bi-CGSTAB2 and variants

As soon as the GMRES(1) part of Bi-CGSTAB (nearly) stagnates,
then the Bi-CG part in the next iteration step cannot (or only poorly)
be constructed.
Another dubious aspect of Bi-CGSTAB is that the factorQk has only
real roots by construction. It is well-known that optimal reduction
polynomials for matrices with complex eigenvalues may have complex
roots as well. If, for instance, the matrix A is real skew-symmetric,
then GMRES(1) stagnates forever, whereas GMRES(2), in which we
minimize over two combined successive search directions, may lead
to convergence, and this is mainly due to the fact that then complex
eigenvalue components in the error can be e�ectively reduced.
This point of view was taken in (Gutknecht, 1992) for the construc-
tion of the BiCGSTAB2 method. In the odd-numbered iteration
steps the Q-polynomial is expanded by a linear factor, as in Bi-
CGSTAB, but in the even-numbered steps this linear factor is dis-
carded, and the Q-polynomial from the previous even-numbered step
is expanded by a quadratic 1 � �kA � �kA

2. For this construction
the information from the odd-numbered step is required. It was an-
ticipated that the introduction of quadratic factors in Q might help



to improve convergence for systems with complex eigenvalues, and,
indeed, some improvement was observed in practical situations (see
also (Pommerell, 1992)).
However, our presentation suggests a possible weakness in the con-
struction of Bi-CGSTAB2, namely in the odd-numbered steps the
same problems may occur as in Bi-CGSTAB. Since the results of
the odd-numbered steps are necessary for the completion of the
even-numbered steps, this may equally lead to unnecessary break-
downs or poor convergence. In (Sleijpen and Fokkema, 1993) an-
other, and even simpler approach was taken to arrive at the desired
even-numbered steps, without the necessity of the construction of
the intermediate Bi-CGSTAB-type step in the odd-numbered steps.
In this approach the polynomial Q is constructed straight-away as a
product of quadratic factors, without ever constructing any interme-
diate linear factor. As a result the new method BiCGSTAB(2) leads
only to signi�cant residuals in the even-numbered steps and the odd-
numbered steps do not lead necessarily to useful approximations.
In fact, it was shown that the polynomial Q can also be constructed
as the product of `-degree factors, without the construction of the
intermediate lower degree factors. The main idea is that ` succes-
sive Bi-CG steps are carried out, where for the sake of an AT -free
construction the already available part of Q is expanded by sim-
ple powers of A. This means that after the Bi-CG part of the al-
gorithm vectors from the Krylov subspace s; As; A2s; :::; A`s, with
s = Pk(A)Qk�`(A)r0 are available, and it is then relatively easy to
minimize the residual over that particular Krylov subspace. There
are variants of this approach in which more stable bases for the
Krylov subspaces are generated (Sleijpen et al, 1994), but for low
values of ` a standard basis satis�es, together with a minimum norm
solution obtained through solving the associated normal equations
(which requires the solution of an ` by ` system. In most cases
BiCGSTAB(2) will already give nice results for problems where Bi-
CGSTAB or BiCGSTAB2 may fail. Note, however, that in exact
arithmetic, if no break-down situation occurs, BiCGSTAB2 would
produce exactly the same results as BiCGSTAB(2) at the even-
numbered steps.
BiCGSTAB(2) can be represented by the following algorithm:

x0 is an initial guess; r0 = b� Ax0;
r̂0 is an arbitrary vector, such that (r; r̂0) 6= 0,



e.g., r̂0 = r;
�0 = 1; u = 0;� = 0;!2 = 1;
for i = 0; 2; 4; 6; :::

�0 = �!2�0
even Bi-CG step: �1 = (r̂0; ri); � = ��1=�0; �0 = �1

u = ri � �u;
v = Au

 = (v; r̂0);� = �0=
;
r = ri � �v;
s = Ar

x = xi + �u;
odd Bi-CG step: �1 = (r̂0; s); � = ��1=�0; �0 = �1

v = s� �v;
w = Av

 = (w; r̂0);� = �0=
;
u = r � �u
r = r � �v

s = s � �w
t = As

GCR(2)-part: !1 = (r; s);� = (s; s); � = (s; t); � = (t; t);
!2 = (r; t); � = � � �2=�;!2 = (!2 � �!1=�)=� ;
!1 = (!1 � �!2)=�
xi+2 = x+ !1r + !2s + �u

ri+2 = r � !1s � !2t
if xi+2 accurate enough then quit
u = u� !1v � !2w

end

For distributed memory machines the innerproducts may cause com-
munication overhead problems. We note that the BiCG steps are
very similar to conjugate gradient iteration steps, so that we may
consider similar tricks as for CG, to reduce the number of synchro-
nization points caused by the 4 innerproducts in the Bi-CG parts.
For an overview of these approaches see (Barret et al, 1994). If on a
speci�c computer it is possible to overlap communication with com-
munication, then the Bi-CG parts can be rescheduled as to create
overlap possibillities:
1. the computation of �1 in the even Bi-CG step may be done just
before the update of u at the end of the GCR part.
2. The update of xi+2 may be delayed until after the computation



of 
 in the even Bi-CG step.
3. The computation of �1 for the odd Bi-CG step can be done just
before the update for x at the end of the even Bi-CG step.
4. The computation of 
 in the odd Bi-CG step has already overlap
possibillities with the update for u.
For the GCR(2) part we note that the 5 innerproducts can be taken
together, in order to reduce start-up times for their global assembling.
This gives BiCGSTAB(2) a (slight) advantage over Bi-GSTAB. Fur-
thermore we note that the updates in the GCR(2) may lead to more
e�cient code than for Bi-CGSTAB.
Recently a composite step Bi-CGSTAB2 method was proposed in
(Chan and Szeto, 1994), which is very close to to BiCGSTAB(2),
but which has the additional advantage that it also overcomes the
`pivot break-down' in the underlying Bi-CG process.
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