
WS-Net: A Petri-net Based Specification Model for Web Services

Jia Zhang Carl K. Chang
Department of Computer Science Department of Computer Science

Northern Illinois University Iowa State University
DeKalb, IL 60115 Ames, IA 50011

jiazhang@cs.niu.edu chang@cs.iastate.edu

Jen-Yao Chung Seong W. Kim
IBM T.J. Watson Research Samsung Advanced Institute of Technology

Yorktown Heights, New York 10598 P.O. Box 111, Suwon 440-600 Korea
jychung@us.ibm.com seongwoon.kim@samsung.com

Abstract

The emerging paradigm of web services opens a new
way of web application design and development to
quickly develop and deploy web applications by
integrating independently published web services
components to conduct new business transactions. As
research aiming at facilitating web services integration
and verification, WS-Net is an executable architectural
description language incorporating the semantics of
Colored Petri-net with the style and understandability of
object-oriented concepts. WS-Net describes each web
services component in three layers: interface net declares
the services that the component provides to other
components; interconnection net specifies the services
that the component acquires to accomplish its mission;
and interoperation net describes the internal operational
behaviors of the component. As an architectural model
that formalizes the architectural topology and behaviors
of each web services component as well as the entire
system, WS-Net facilitates the verification and monitoring
of web services integration.

1. Introduction
The emerging paradigm of web services opens a new

way of web application design and development to
quickly develop and deploy web applications by
integrating independently published web services
components to conduct new business transactions.
Accordingly, a web services-oriented system refers to a
system that integrates multiple web services components.
Just as other software systems, software architecture is
critical to decide the success of a web services-oriented
system. According to the American Heritage Dictionary,
architecture is “the art and science of designing and
erecting buildings, a structure of structures collectively, a
style and method of design and construction” [4]. In other
words, software architecture plays an essential role in
providing the right insights, triggering the right questions,
and offering general tools for thoughts. Because software

architecture is normally used as a vehicle for
communications between different stakeholders, the
architecture specification that represents a complex web
services-oriented system at a high level abstraction should
capture: (1) the structural properties and web services
component interactions, (2) the behavioral functionality of
each major high level web services component, and (3)
the behavioral functionality of the entire system. In recent
years, researchers from both industry and academia have
been developing a number of web services-oriented
Architecture Description Languages (ADL), typically
Web Services Description Language (WSDL) [17], Web
Services Flow Language (WSFL) [8], Business Process
Execution Language for Web Services (BPEL4WS) [6],
Web Service Choreography Interface (WSCI) [13],
XLANG [14], etc. However, these ADLs either merely
focus on static functional descriptions of web services
component as a whole, or concentrate only on the
behavioral integration between web services components.
Furthermore, none of these current ADLs support
dynamic verification and monitoring of the integrated
system.

As research aiming at facilitating web services
integration, this paper presents an architectural description
language called Web Service Net (WS-Net) to overcome
the drawbacks of current web services-oriented ADLs.
WS-Net is an executable specification language based on
the Colored Petri Net (CPN) [7] semantics with the style
and understandability of the object-oriented paradigm.
Supporting modern software engineering philosophies
equipped with component-based notations, WS-Net
provides an approach to verify and monitor the dynamic
integration of a web services-oriented software system.
The remainder of this paper is organized as follows. In
Section 2, related work is discussed. In Section 3, we
review CPN for high-level design. In Section 4, we
present three-layer WS-Net specification. In Section 5, we
draw conclusions and describe future work.

2. Related Work

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



In recent years, researchers have been doing much
work on modeling web services-oriented system
architecture. Generally, all of the proliferating work is
built upon eXtensible Markup Language (XML) [18]
technology. Among them, Web Services Description
Language (WSDL) [17] is the basis of other work.
Intending to formally and precisely define a web service,
WSDL from W3C (http://www.w3c.org) is becoming the
ad hoc standard for web service publication. However,
WSDL can only specify limited information of a web
service, such as the function names and limited input and
output information [3]. In recognition of this problem,
researchers from both academia and industry have been
developing other description languages to extend the
power of WSDL to depict system architecture. The
following are some outstanding examples:

• Web Services Flow Language (WSFL) [8] is a
WSDL-based language focusing on describing the
interactions between web services components.
WSFL defines the interaction pattern of a collection
of web services, as well as the usage pattern of a
collection of web services in order to achieve a
specific business goal.

• The Business Process Execution Language for Web
Services (BPEL4WS) [6] specifies an interoperable
integration model aiming at facilitating the automatic
integration of web services components. BPEL4WS
formally defines a business process and process
integration.

• Web Service Choreography Interface (WSCI) [13]
utilizes the flow of messages to define the
relationship and interactions between web services
components. According to WSCI, a web services
component has both a static interface and a dynamic
interface when it participates in a message exchange
with other web services components.

• XLANG [14] considers the behavior of a system as
an aggregation of the behavior of each web services
component. Therefore, XLANG specifies the
behavior of each web services component
independently. The interactions between web services
are conducted via message passing, which is
expressed as the operations in WSDL.

• Web Service Capability Description Language
(SCDL) is built upon the method of an abstract finite-
state machine, aiming at precisely describing,
advertising, requesting, and matching web service
capabilities. Defining four types of atomic web
service capability matches as exact match, plug-in
match, relaxed match, and not relevant, SCDL
provides a theoretical basis to define web service
capability matching.

However, these ADLs focus on the topological
description and concentrate on describing interactions
between web services components. They lack the
capability to describe the hierarchical functionality of the
components. There is little concern about expressing
dynamic behaviors of the defined system. SCDL and its
previous version SDL [5] are still at early development
stages [16]. Therefore, the usage of SCDL in web service
applications is still unclear. Furthermore, none of these
current ADLs support dynamic verification and
monitoring of the system integrated.

3. Petri Nets for High-Level Architectural
Design

Petri nets [7] is a well-known and tested abstract and
formal model of data and control flow in a system that
exhibits synchronous and asynchronous behaviors. With a
strong theoretical foundation, the mature hierarchical Petri
nets is able to manage the complexity of large-scale
systems, and possesses powerful analysis capability.
Colored Petri Net (CPN) [7] extends the Petri nets to
model both the static and dynamic properties of a system.
The graphical part of CPN depicts the static architectural
structure of a system. Combined with other powerful
elements such as colored tokens and simulation rules,
CPN is very powerful in modeling dynamic behaviors of a
system.Earlier researchers have conducted a large amount
of work to utilize CPN to model the system architecture.
EDDA [15] combines Petri nets and SADT technology for
high-level system specifications. Although EDDA
successfully combines the semantics of Petri-nets with the
syntax of SADT, it lacks the ability to specify modern
software systems, as EDDA does not embody the object-
oriented paradigm and the component-engineering
concept [1]. Pinci and Shapiro present an automatic
mechanism to translate SADT diagrams into Hierarchical
CP-nets (HCP-nets), and in turn to convert HCP-nets into
Standard ML executable code [9]. This similar SADT-like
Petri-net based system specification suffers the same
problems as faced by EDDA due to the rigid structural
nature of SADT and its lack of object-oriented concepts.

Our previous work released an I3 [1] layered executable
architectural model. However, I3 is based upon the
Structural Analysis and Design Technology (SADT) [10],
which is a traditional functional decomposition and data
flow-centered methodology. Here we aim at integrating
CPN with the style and understandability of the object-
oriented paradigm. In addition, I3 intends to present a
generic specification model oriented to generic
component-based software systems. Our work reported
here focuses on web services-oriented system architecture
and seamlessly integrates with WSDL and XML

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



technology.
In summary, although our work was strongly

influenced by EDDA and I3, we have enhanced the state
of the art by supporting modern software engineering
philosophies equipped with object-oriented and
component-based notations and applied to web services-
oriented systems, as well as integrated with WSDL and
XML.

4. WS-Net Specification

In order to specify both the static and dynamic
architectural features of a web services-oriented system,
we present Web Service Net (WS-Net) as an executable
architectural specification language. WS-Net specifies a
web services-oriented software architecture as a set of
connected architectural components described as nets.
The architectural components correspond to functional
units in the system, and one architectural component may
in turn be composed of several smaller architectural
components. The entire system can be viewed as a
highest-level architectural component. Each architectural
component is either statically or dynamically realized by a
web services component. Architectural components are
connected to each other via XML message passing
through Simple Object Access Protocol (SOAP) [12], the
ad hoc transportation standard in the realm of web
services. The message passing mediates the interactions
between architectural components via the rules that
regulate the component interactions. In our model, we will
use the concept of connector [11] in CPN to model the
message passing.

WS-Net defines each architectural component in a
three-layer specification: interface net, interconnection
net, and interoperation net. The interface net declares the
services to be provided by each web service component.
The interconnection net specifies the web services to be
acquired from other web service components to
accomplish its own mission. The interoperation net
describes the functionality of each web services
component and the entire system in terms of data flow.
Each component has an interface net definition and it is
accessed only via the interface. The definition of the
interface net follows that of WSDL. The interconnection
net specifies the operations to be acquired from other
components to perform its execution. In the
Interconnection net, each operation required is further
specified by a set of foreign transitions, which represents
the operations of other components. Therefore, the
interface net identifies each component in the system as a
unique functional object, and the interconnection net
specifies the relationships between components. As a
result, we can visualize the entire topological view of a
system by interconnecting each of the interconnection nets

according to our unique component-interconnection
technique, which will be discussed in the later sections.
The interoperation net describes the dynamic behaviors of
a component by focusing on its internal operational
nature. The goal of the interoperation net is to dissect each
operation into fundamental process units, which, taken
together, define the required functional content of the
operation. Each transition representing an operation of the
component will be decomposed into sub-transitions
representing fundamental process units. Control flow and
data flow are used for describing intercommunication
between process units.

A simplified user commit model is used as an example
to elucidate the fundamental idea of WS-Net throughout
this paper. This example illuminates a system whose
service is to provide a channel for users to communicate
with a central storage, that is, to commit data to the
storage and retrieve data from the storage. Three
distributed web services components are identified in the
system: a queue, a commit engine, and an integrator. The
queue component is the central storage place that accepts
user commitment and provides information requested; the
commit engine assists users to commit requests to the
queue; and the integrator conducts continuous integration
from the queue. We assume that different components
interact with each other via SOAP.

4.1 Interface Net

Constructing a WS-Net specification starts by
identifying the architectural components from the system
specification. The interface net defines expected
responsibilities, or features, of each architectural
component by specifying the interface of a set of
semantically related operations provided by a component.
The interface here denotes the name of the service
provided and the signature information in order to invoke
the service. An architectural component can be accessed
only through its interface. In the interface net, each service
is modeled as a transition of Petri net. Therefore a
transition is called a service transition. The name of the
service transition refers to the service to be provided by
the component. Each service transition has an input place
called input port, where the service received the
invocation, and an output place called output port, where
the result of a service is placed before being returned to
the service caller. The interface net can be implemented
via WSDL.

A WS-Net specification of an architectural component
can be denoted as Ci ∈ C, where C is the set of all web
services components identified in the software
architecture. The interface net of the component Ci can be
informally represented as:

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



Ci = U Sij, Sij ∈ Si

j
where Si is a set of services provided by Ci. Each service
Sij ∈ Si is represented by a tuple

Sij = (PIij, POij, Tij, Aij, c),
where PIij and POij are the input port and the output port
of Sij, respectively; Tij represents the service Sij as a
transition; Aij represents the input and out arcs for the
transition Tij, and the color inscriptions of the places
represent the signature information of the operation as in
CPN; and, c is a color function for the places.

The goal of the interface net is to define the services
that must be provided by the component. The names
attached to the service transition inscription represent the
names of the services. As in Design/CPN [2], names of
the places and transitions are the labels to identify the
places and transitions, and they are not considered as
semantic inscriptions of Petri net. In Colored Petri Nets
[2,7], they are used to help designers understand the
specification and to support hierarchical composition of
pages, such as transition substitution and place fusion. The
signature information of each service can be described by
color inscription on input and output ports (places).
However, it is unimportant to specify the detailed data
structure at this stage of the design. The main purpose of
coloring places is to help people understand the usage of a
component at the architectural level. Therefore, the only
imperative information here is what kind of information
needs to be provided to invoke the service of the
component. The interface net specification of the queue
component is illustrated in Figure 1.

As shown in Figure 1, queue provides two services
enqueue and dequeue, which accept user commitment and
reply to user requests respectively. In order for the
services to be invoked, the input ports of the services must
receive proper tokens. Enqueue receives an item token
and returns a Boolean result as either success or fail;
Dequeue receives a request as a unit token and returns a
dq_rslt in case of success, or err in case of failure caused
by empty buffer. The unit color set has no predefined
service that uses it, but is very useful as a placeholder [7].

In addition to the inscription for places, transitions, and
arcs as used in Colored Petri Nets, WS-Net provides
additional inscriptions for components and each service in
the components. For the component inscription,
component name is provided to identify the component.
For a service inscription, service name and connector type
information are provided. Connector type implies the
possible protocols to be used when the service is invoked.
Since multiple protocols are commonly used , connector
type can have multiple entries. In our example, both
enqueue and dequeue services are invoked via the SOAP
protocol. Similar to the name inscription for places and
transitions, these inscriptions for components and services

are not considered as Petri-Net inscriptions. These
inscriptions will be used to interconnect architectural
components.

In our example, the commit engine and the integrator
components will use the enqueue and dequeue services
from the queue component. Therefore, the commit engine
and integrator will be client components for the queue
component. Figure 2 shows the interface net of the commit
engine, which provides one service called commit. The
commit engine will send some data as parameters to the
queue and receive an acknowledgement msg. Similarly, as
shown in Figure 3, the integrator provides one service
called retrieve, and will send a request rqst to the queue
and receive some data as reply. As we explained
previously, the color of token is used here. We assume
that the SOAP protocol will be used when the commit
engine and the integrator components communicate with
the queue. Since an interface net specifies only the
services provided by the component, it does not specify
connections between the components.

4.2 Interconnection Net

Figure 1. Interface net for component queue

Component Name : Queue

Service Name : Enqueue
Connector : SOAP

iport Enqueue oport
item result

Service Name : Dequeue
Connector : SOAP

iport Dequeue oport
request dq rslt

color item = int;
color request = unit;
color result with success | fail;
color dq result = record result * int;

Figure 2. Interface net for Commit Engine

Component Name : Commit Engine

Service Name : Commit
Connector : SOAP

iport Commit oport
data msg

color data = Data_Type;
color msg = String;

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



In order to describe the relationships between
architectural components, we need to specify both the
provided services (i.e. via interface net specification) and
required services of the components. By specifying all the
required services of the components, the interconnection
net describes all the possible dependencies upon other
components. The interconnection net is not mandatory
however; instead, it is imperative only when a component
requires foreign services to perform its own commission.
For instance, in our example, the queue component does
not require any other services as support; therefore, there
will be no interconnection net associated with the queue
component. The interconnection net depicts a client/server
relationship between components. If component Ci

requests a service from component Cj, Ci is called the
client component, and Cj is called a server component.
Therefore, a component can act as a client component
sometimes, and as a server component at other times.

WS-Net chooses to define the required services as
foreign services since the services need to be performed
by other components. Conforming to the definitions in
CPN, in the interconnection net, the required services are
specified as a special kind of transition called a foreign
transition. As in the interface net, the interconnection net
specifies an architectural component as a set of provided
services. Each provided service containing foreign
transitions are in turn decomposed into a set of required
foreign services. A service Sij requiring foreign services is
represented as a tuple

Sij = (PIij, POij, QIij, QOij, TSij, TEij, TFij, Aij, c),
where PIij and POij are the input port and the output port
for Sij respectively, as in the interface net. TSij and TEij

represent the start and end of the service Sij; therefore, the
input place of TSij is always the input port PIij, and the
output place of TEij is always the output port POij. TFij is a
set of foreign transitions. A foreign transition is an
abstract view of the service provided by the server
component. The input and output places of a foreign
transition are called input sockets and output sockets,
respectively. QIij is a set of input sockets, and QOij is a set
of output sockets. Aij is a set of input and output arcs for
the transitions. As in the interface net, c represents a color

function.
A component may require multiple foreign services

before it can perform its execution. Figure 4 illustrates a
service that requires n foreign transitions. For services that
do not require any foreign transitions, the same service
specification of the interface net will suffice. Foreign
transitions also have inscriptions similar to the provided
services of the component. However, as shown in Figure
4, inscriptions of foreign transitions contain names of the
server components, names of the services required from
the server components, and the type of connector to be
used to invoke each foreign transition. These service
names and component names are used to identify the
services of server components represented by foreign
transitions. In addition to the inscriptions, the color set of
the sockets of the foreign services in the client component
and its corresponding color set for the services of the
server component must be compatible.

Figure 5 and Figure 6 show the interconnection nets of
the component commit engine and integrator,
respectively. The commit service needs to invoke the
enqueue service of the component queue, and the retrieve
service needs to invoke the dequeue service. Therefore,
enqueue and dequeue services are represented as foreign
services. Inscriptions for the foreign transitions show that
they are calling enqueue and dequeue services from the
component queue via SOAP.

After specifying individual components in terms of the
interface nets and the interconnection nets, we are ready to
visualize the entire topological view of the system by
interconnecting all of these WS-Net components. Firing a
foreign transition means executing the corresponding

Figure 3. Interface net for Integrator

Component Name : Integrator

Service Name : Retrieve
Connector : SOAP

iport Retrieve oport
rqst data

color rqst = unit;
color data = Data_Type;

Figure 4. A service with n foreign transitions

Service Name : Service with n foreign transitions
Connector: connector type

Server Name: Server
Service: Service 1

iplugin Foreign
Transition 1

oplugin

Server Name: Server
Service: Service 2

iplugin Foreign
Transition 2

oplugin

Server Name: Server
Service: Service n

iplugin Foreign
Transition n

oplugin

Start End oportiport

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



service transition of the server component. Therefore,
connecting WS-Net components can be achieved by
merging the ports of the client components with the ports
of the server component, after removing foreign
transitions from the client components. In our WS-Net, a
special kind of transitions is used to connect ports. This
transition is called a connector transition, and it is named
by a connector type. Figure 7 shows the connected
interconnection nets that describe the entire information-
communication model by interconnecting the commit
engine and the integrator with the queue using SOAP
connectors.

4.3 Interoperation Net

The interoperation net describes the dynamic behaviors
of a component by focusing on the operational nature of
the component. The goal of the interoperation net is to
dissect each service into fundamental process units which,
taken together, define the required functional contents of
the service. This is similar to the SADT functional
decomposition, where each transition representing the
operations of the component to be decomposed into sub-
transitions to represent fundamental operational state. One
of the most important differences between the
decomposition in our interoperation net and SADT is that,
the interoperation net uses the decomposition as a means
of expressing the behaviors of the services provided by an
architectural component, rather than functional
decomposition for modularization used in SADT. As in
SADT, the control and data flow are used to describe
interactions between process units. It is very important to
distinguish foreign transitions from the detailed processes.
These foreign transitions along with plugin places will be
used to interconnect the interoperation nets to form the
entire system view. Like other Petri net-based high level
design representations, places are used to represent the
control or data; and transitions are used to represent the
processes.

Our previous research reveals that the straightforward
techniques converting functional data flow to Petri nets
have a potential problem in repeated (persistent)
simulations of the nets [1]. To solve this problem, our
WS-Net distinguishes the persistent data from the

Figure 5. Interconnection net for commit engine

Component name: commit engine

Server Name:
Commit
Connector: SOAP

Server Name: queue
Service: enqueue
Connector: SOAP

ite resul

iplugin
enqueue

oplugiStart End oportiport

data msg

color data = Data_Type
color msg = string

Figure 6. Interconnection net for integrator

Component name: integrator

Server Name: retrieve
Connector: SOAP

Server Name: queue
Service: dequeue
Connector: SOAP

request Dq_rslt

iplugin
dequeue

oplugiStart End oportiport

request msg

color request = unit
color msg = string

Figure 7. Unfolding Interconnection net

Component name: commit engine

p dataq awk
oplugiStart End oportiport

data msg

data awk
iport

enqueue
oport

request result
iport

dequeue
oport

Component:
queue

request result
oplugiStart End oportiport

request msg

SOAP

SOAP

iplugin

SOAP

iplugin

SOAP

Component name: integrator

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



transient data. Persistent data items are similar to the data
attributes of a class in the object-oriented paradigm. These
persistent data items represent the state of the component,
and they should exist throughout the lifetime of the
component. On the other hand, transient data items are
produced by one process and will be immediately
consumed by another process. Therefore, transient data
items are created only when they are needed and
destroyed upon the completion of the service. Since all
transient tokens are created by the local transitions and all
persistent tokens are restored before the completion of the
service, repeated simulation of the net is possible. In
converting functional data flow models to Petri nets, we
also face the concurrency and choice problems [15].
Those problems need to be addressed properly by a
system engineer who builds the system architecture by
using WS-Net.

A service Sij ∈ Si of component Ci is represented as
follows:

Sij = (PIij, POij, PTij, PPij, QIij, QOij, TLij, TFij, Aij, c, G,
E, IN),
where PIij and POij are the input ports, and PTij and PPij,
are a set of transient data places and a set of persistent
data places respectively. Persistent places are represented
as boldface circles. TLij is a set of local transitions; and
TFij is a set of foreign transitions. QIij is a set of input
socket places serving as input places for the foreign
transitions,;and QOij is a set of output socket places
serving as output places for the foreign transitions. Aij is a
set of input and output arcs of the transitions. To describe
the functional behaviors of a component, we can use all
the inscriptions used in Colored Petri Net [7]. As before, c
is a color function to represent the color sets for the
places. G is a guard function for the transitions. E is an arc
expression function, and IN is an initialization function
for the tokens.

In our example, the queue component has enqueue and
dequeue services. The control and data are represented by
places; and processes are represented by transitions.
Figure 8 shows the first phase of the interoperation
description of the queue component. Count and storage
places are defined as persistent data and represented with
boldface circles. Since the persistent data may exist
throughout the lifetime of a component, we need to
initialize the persistent places with proper tokens for later
simulations. Tokens in the transient places will be
produced as a result of firing transitions. It is very
common for persistent data items to be shared by other
services in the same component. If different services use
the same persistent data, they need to be merged using the
place-fusion technique in high level Petri nets. As shown
in Figure 8, count and storage are persistent places of
both the enqueue and dequeue services. By merging those
persistent places of two services, the interoperation net for
the queue component can be completed.

As we further decompose the functional behaviors of
each service, we can get a further complex interoperation
net. Figure 9 shows a more detailed interoperation net of
the service enqueue of the queue component. After all the
interoperation nets of the architectural components are
specified, we can again visualize the entire system
topology by connecting plugins of the client components
with the ports of the server components using connector
transitions. WS-Net provides an interconnection
mechanism across different levels of component diagrams.
Interconnections can be visualized by: (1) interoperation
nets of sender and receiver components, and (2) the
interface net of the sender, receiver, and channel
components. We believe that this is a very important
feature to visualize very large systems. By applying such
visual abstractions, such as replacing large interoperation
nets with simpler interconnection nets or even with
interface nets, complicated nets can be effectively
visualized at various levels of abstraction.

Connected interoperation nets can be executed under
different input scenarios to simulate the behaviors of a
system. The execution proceeds by assigning initial tokens
to the input ports. The execution traces need to be
visualized to analyze the runtime quality attributes and to
enhance communication with the user communities by
providing an executable model of the system early in the
development process.

5. Conclusions and Future Work

We have presented the basic idea of WS-Net. Software
architecture of a web services-oriented system can be
described by building an executable WS-Net model. The
behaviors of such a model can be simulated to allow
corrections and further refinements. As a result, our

Figure 8. First phase of Interoperation net for queue

Component Name : Queue

Service Name : Enqueue
Connector : SOAP

iport Enqueue oport
item result

Service Name : Dequeue
Connector : SOAP

iport
Dequeue

oport
request dq rslt

count

store

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 



approach helps enhance the reliability of web services-
oriented applications. Furthermore, it supports the object-
oriented paradigm and component-based concepts.
Specification formalism in WS-Net is object-oriented,
executable, expressive, comprehensive, and yet easy to
use. Thus a wide body of theories available for Petri nets
is available for analyzing a system design.

However, manually transferring the WSDL
specifications into the WS-Net specifications is not a
trivial job. That is why currently we have only built some
simple experiments, e.g. the example described in the
paper. In order for our WS-Net to monitor and verify real-
life applications, the translation from WSDL into WS-Net
must be automated.

Our future work includes establishing an automation
engine that translates web services written in WSDL into
WS-Net, and building WS-Net models over real-life
applications.

6. References

[1] C.K. Chang and S. Kim, “I3: A Petri-Net Based
Specification Method for Architectural Components”,
Proceedings of IEEE 23th Annual International Computer
Software and Applications Conference (COMPSAC’99),
Phoenix, AR, USA, Oct. 25-26, 1999, pp. 396-402.
[2] Design/CPN Reference Manual for X-Windows Version 2.0,
Meta Software Corporation, 1993.
[3] X. Gao, J. Yang, and M.P. Papazoglou, “The Capability
Matching of Web Services”, Proceedings of the IEEE
International Symposium on Multimedia Software Engineering
(MSE’02), Newport Beach, CA, USA, Dec. 11-13, 2002, pp. 56-
63.
[4] The American Heritage Dictionary of the English Language,
4th edition, Houghton Mifflin Company, 2000.
[5] W.J. van den Heuvel, J. Yang, and M. Papazoglou, “Service

Representation, Discovery and Composition for E-
marketplaces”, Proceedings of the 6th International Conference
on Cooperative Information Systems (COOPIS’01), Trento,
Italy, Sep. 5-7, 2001.
[6] IBM Corporation, “Business Process Execution Language
for Web Services (BPEL4WS),” Version 1.0, 2002.
[7] K. Jensen, “Coloured Petri Nets: A High Level language for
System Design and Analysis”, Lecture Notes in Computer
Science, Advances in Petri Nets, 1990.
[8] F. Leymann, “Web Services Flow Language (WSFL 1.0),”
IBM Corporation, 2001.
[9] V. Pinci and R. Shapiro, “An Integrated Software
Development Methodology based on Hierarchical Colored Petri
Nets”, Lecture Nets in Computer Science, Advances in Petri
Nets, 1990, pp. 227-252.
[10] D. Ross, “Application and extensions of SADT”, IEEE
Computer, 18(4), Apr. 1984, pp. 25-35.
[11] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young,
and G. Zelesnik, “Abstractions for Software Architecture and
Tools to Support Them”, IEEE Transactions on Software
Engineering, Special Issue on Software Architecture, 21(4),
Apr. 1995.
[12] http://www.w3.org/TR/SOAP, accessed on Oct. 25, 2003.
[13] Sun Microsystems, “Web Service Choreography Interface
(WSCI),” Version 1.0, 2002.
[14] S. Thatte, “XLANG - Web Services for Business Process
Design,” Microsoft Corporation, 2001.
[15] W. Trattnig and H. Kerner, “EDDA-A Very High-level
Programming and Specification Language in the Style of
SADT”, Proceedings of IEEE Annual InternationalComputer
Software and Applications Conference (COMPSAC’80), Oct.
1980, pp. 436-443.
[16] A. Tsalgatidou and T. Pilioura, “An Overview of Standards
and Related Technology in Web Services”, Distributed and
Parallel Databases, 12, 2002, pp. 135-162.
[17] http://www.w3.org/TR/wsdl, accessed on Oct. 25, 2003.
[18] .B. McLaughlin and M. Loukides, Java and XML, O’Reilly
Java Tools, 2001.

request

request

Figure 9. Interoperation net of enqueue

Service name: enqueue
Connector: SOAP

l’i value

l’flag

l’flag

iport
item

l’flag

l’ivalue

item

l’array

l’index

storage

Check
Full

count

l’ivalue

l’index

l’array

request

result

item

Get
Insert

R t

l’flagRet
False

oport

Ret
True

l’flagCheck
Full result

l’flag

l’index

l’index

Proceedings of the IEEE International Conference on Web Services (ICWS’04) 
0-7695-2167-3/04 $ 20.00 IEEE 


