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SOME EXAMPLES OF GLOBAL INSTABILITY 
OF THE COMPETITIVE EQUILIBRIUM* 

BY HERBERT SCARF' 

IN THIS PAPER wE shall consider the problem of stability of the 
competitive equilibrium. The market demand functions are sums of 
individual demand functions obtained directly by utility maximization. 
The rate of change of the price of each commodity is assumed to be 
proportional to the excess market demand for that commodity. A 
number of examples are given for which the motion of the prices is 
globally unstable in the sense that starting from any set of prices 
other than equilibrium, the prices oscillate without tending towards 
equilibrium. 

1. INTRODUCTION 

The problem of stability of the competitive equilibrium is described 
in [3], and we shall content ourselves with a review2. Several individ- 
uals with utility functions U,(xl, ..., x") for the same commodities 
are engaged in the trade of these commodities. Each individual begins 
the trading with an initial endowment of goods, say Ii, It, ..., 1,, for 
the ith individual. An initial vector of prices pi, p, is announced, 
and each consumer then determines his demand for all of the com- 
modities by the usual procedure of maximizing his utility function, 
subject to the constraint that his expenditure shall not exceed the 
value of his initial endowment of goods at the stated price vector. 

For each commodity the sum of the individuals' demand functions 
* Manuscript received January 21, 1960. 
1 Research undertaken by Stanford University under Contract Nonr-225(28), NR 047-019 

with the Office of Naval Research and completed at the Cowles Foundation for Research 
in Economics under Contract Nonr-358(01), NR 047-066 with the Office of Naval Research. 
I would like to thank K. J. Arrow, L. Hurwicz, and H. Uzawa for a number of stim- 
ulating conversations. 

2 The reader may wish to consult the excellent bibliography given in [3] and also in [11. 
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158 HERBERT SCARF 

minus the sum of the initial endowments of that commodity is called 
the market excess demand for the commodity; in this paper. it will be 
denoted by f,(p,, * e ?, p,) where the subscript refers to the commodity 
in question. (These functions are homogeneous of degree zero and 
satisfy the Walras Law E pJa; 0.) Excess demand functions for 
individuals will always be denoted by x,. 

An equilibrium price vector is, of course, a vector of prices for 
which all of thn excess demand functions vanish, and recent work in 
this area [2, 8] has shown that under suitable regularity conditions 
equilibrium prices will always exist. (Because of the homogeneity of 
the demand functions, any positive multiple of an equilibrium is again 
an equilibrium, and in this sense we should speak of an equilibrium 
ray. There may be several such rays.) The stability problem, on the 
other hand, is less concerned with the existence of equilibrium and 
more with the question of what happens to the prices if initially they 
are different from the equilibrium. 

There is nothing in the model described so far which enables us to 
compute the motion of prices if we are not at an equilibrium point. 
For this we need some specific assumptions on the price adjustment 
process, that is, the procedure by which prices may be expected to 
change if we are away from an equilibrium price. The intuitive no- 
tion that an excess of supply over demand should result in a decrease 
in price, and an excess of demand should result in an increase in price, 
has been formalized mathematically in [7] and [3] by the statement 
that 

dpt = Hj[ft(pi ***, pn)] 
. 

dt 

where H, is a sufficiently regular sign-preserving function of its argu- 
ment. (These equations are to hold if all pi 2 0.) In order to be 
concrete, in this paper we shall generally take the functions H to be 
equal to their respective arguments, so that for each commodity the 
rate of change of price is equal to the excess demand. 

Now let us turn our attention to the problem of stability with this 
type of adjustment process. Early work in this area [5, 6] tends to 
emphasize what might be called "local" stability; the initial prices are 
assumed to be close to some equilibrium point, and an analysis is made 
of whether there is a tendency to converge to the equilibrium point, 
depart from the equilibrium point, or perhaps even a tendency to more 
complex types of behavior. The "local" analysis proceeds by means 
of the linear terms of the Taylor series expansion about the equilibrium 
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point, thus converting the problem to a linear differential system with 
constant coefficients. It is possible in this type of analysis to obtain 
many examples of completely unstable equilibria (though it should be 
mentioned that there is an uncomfortable tendency for examples to be 
produced without any consideration of their origins as market demand 
functions derived by the summation of individual demand functions). 
The local analysis, however, is somewhat unsatisfactory, in that it is 
quite possible for other equilibrium points to exist, and the system 
cannot be said to be unstable without examining whether the prices 
tend to another equilibrium point. 

This consideration leads naturally to the problem of stability in the 
"global" sense [3], which is concerned with the solution of the differ- 
ential equations based on the price adjustment mechanism for an 
arbitrary initial set of prices. If the solution of the differential equa- 
tions approaches some equilibrium point as time becomes infinite, then 
we have global stability. Clearly it is quite possible for there to be 
several equilibrium points, none of which is completely stable from the 
local point of view (that is, attracts all neighboring points) and where 
the system, in its entirety, is globally stable. 

The problem of global stability, as it has been described above, has 
been discussed by several authors. Though alternate methods of proof 
have been found, the results do not go essentially beyond those ob- 
tained in [1]. There are, first of all, several special cases which can 
be mentioned: global stability is known if there is a single consumer, 
or if there are only two goods, or if it happens that at some equi- 
librium point there is no trade. There is also an unpublished result 
of the author's showing that global stability is known if all of the 
consumers have the same homogeneous utility function, but with 
different initial distributions of stock. Aside from these very special 
cases, the most important result is that global stability will occur if 
all of the goods are gross substitutes; mathematically, this means 
afdap, > 0 if i * j. Apart from this, very little else has been found; 
no assumptions substantially different from gross substitutability have 
been shown to imply stability, and up to the present no examples of 
instability have been produced. 

This paper presents a series. of examples, all derived from utility 
maximization, which are globally unstable. The examples given here 
involve three consumers and three goods, but the techniques may be 
extended to either more consumers or more goods. The examples all 
involve a rather simple relationship between the utility functions of 
the three consumers, namely 
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U2(x1, x2, X3) = UJ(X2, x3, XI) 

( 1 ) Us,(x1, 92, x3) = U2(X2, x3, X1) 

and a corresponding cyclic permutation of the initial endowments. 
Specifically, we will assume that if the initial endowments of the first 
consumer are (I, J, K) for the first, second, and third goods respec- 
tively, then those of the second consumer are (K, I, J) and those of 
the third consumer (J, K, I). This relationship is introduced to simplify 
the calculations, and, as the method will show, it may be relaxed. 

It is an easy consequence of utility maximization that for the price 
adjustment process we have selected (rate of change of price equal to 
excess demand) the motion of the prices will always be constrained to 
the sphere pl + p2 + p2 = constant. In all of our examples there will 
be an equilibrium point at (p1 p2 = p3), which, except for the first 
example, will be locally completely unstable (there is a small region 
around this equilibrium point such that if the initial price is in the 
region, the prices will eventually leave this region and stay out). In 
the first example the motion of the prices will be in concentric curves 
about the equilibrium point, whereas the more complex examples will 
give rise to limit cycles. 

As we shall see from the examples of Section 3, instability does not 
depend on a delicate assignment of values of initial stocks or parame- 
ters in the utility functions. Though it is difficult to characterize 
precisely those markets which are unstable, it seems clear that in- 
stability is a relatively common phenomenon. 

What are the implications of these examples? It seems to me that 
there are several possible interpretations that might be made. 

1. One possible interpretation is that the model is substantially re- 
alistic and that instabilities of the type described in this paper could 
possibly occur. An even more presumptuous interpretation along these 
lines is that instability is responsible for some aspects of the business 
cycle, though for this sort of interpretation it would seem advisable 
to produce examples of instability with a model of a complete economy 
rather than a pure trade model alone, and this may be more difficult 
to do. 

2. Another possible interpretation is that the price adjustment pro- 
cess postulated above is not correct. This view can, of course, be held 
without any reference to the question of stability. An argument for 
this position is that in one sense or another we are considering a 
dynamic process, and yet nowhere do the simplest dynamic considera- 
tions such as saving, interest, etc. appear in the model. 

3. As a final interpretation it might be argued that the types and 
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diversities of complementarities exhibited in this paper do not appear 
in reality, and that only relatively similar utility functions should be 
postulated, and also that some restrictions should be placed on the 
distribution of initial holdings. This view may be substantiated by 
the known fact that if all of the individuals are identical in both 
their utility functions and initial holdings, then global stability obtains. 

2. A VERY SIMPLE EXAMPLE OF INSTABILITY 

In this section we shall describe a very simple example which leads 
to instability. It will be seen that this example is quite an extreme 
one. In the next section we shall describe a number of additional 
examples which, while somewhat more complex, do not have the dis- 
agreeable features of the present one. 

Let the utility function of the first consumer be U1(xI, x2, x3) 

min (x1, x2) and his initial endowments (1, 0, 0). This consumer has no 
desire for the third good and his indifference curves for the first two 
goods are of the form: 

)2 

xl~~~~~~x 
//~~~ 

FIGURE I 

For any income M the same quantity will be demanded of goods one 
and two and therefore the demand functions are 

Y1(P}, P2. Ay, M) = M i 
PI + P.~ 

YA(P1, P2) At, M) =_ M , 
Pi + As 

Y3(P1, N2 P3, M) = 0 . 
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Now the income of the first consumer is derived from his endow- 
ment of a single unit of good one, so that M = p1 and therefore the 
excess demand functions or the first consumer (supply is being sub- 
tracted off now) are given by 

XI I 

P1 + pA 

X2B 
Pi 

p1 + P2 

X3 = 0. 

The excess demand functions of the second consumer are obtained 
by a cyclic permutation of all subscripts, 1 - 2, 2 2 3, 3 -- 1, and once 
more for the third consumer. If we add these together, the market 
excess demand functions are given by 

A - A + Ps 
PI + A2 P + PI 

P + P3 Pi+ P2 

3e3 = NPi + +P2 

P +PI PI + AP 

and of course the price adjustment process leads to the differential 
equations 

(2) dp - f=(Plf P2P P' dt 

It is a trivial matter to verify that P1 = p2 = p3 is the only equilibrium 
point. The fact that E p2 = constant follows from E pfdp1/dt = 0, 
which is the Walras Law. In order to show that the solutions are 
unstable we shall demonstrate that plp2p3 = constant for any solution 
of (2). This would follow if we could show that 

(3) fAp2p3 + f2PAP3 + fAPAPA 

equals zero, but (3) is equal to 

p3(p2 p2) (p2 _PI-) p1(p2 p2) P3 -2 + A - 1 + - - 

P +p2 p3 + P1 A + X 
= P3(P1 - P2) + P2A - P1) + P(P2 - p3) = 0. 

That this implies instability is clear. Let the initial prices be chosen 
such that p2 + pl + pa = 3, so that the intersection of the equilibrium 
ray and this sphere is (1, 1, 1). The value of p1p.p. at equilibrium is 
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one, and therefore if the initial price gives a value different from one 
to PIp2P3 we never reach equilibrium. It should be remarked that the 
maximum of PIPAp3 subject to the constraint E pt = 3 is actually one, 
so that if the initial position is anything other than (1, 1, 1), the path 
is completely unstable. 

Occasionally the following price adjustment process is discussed. 
One of the goods is singled out and its price kept constant; the re- 
maining goods are meant to vary according to the differential equa- 
tions given above. If, in our case, we put p3 1, then we are led 
to the system 

dp _ A + 1 
dt P1 + P2 1 + P 

dp2 _ -1 + Pi 
dt pA 1 P1 + p 

Routine calculations show that for this system 

Plp2e-2( 2 = const., 

and this is again sufficient to show instability. 

3. A CLASS OF EXAMPLES 

The example of the previous section has a number of special prop- 
erties. All of the Slutsky terms [&yjap, + y/yi8y/&M)] are zero, the 
indifference surfaces are not strictly convex, and certainly not differ- 
entiable, and, finally, the initial holdings are of a rather extreme type. 
It might be thought that one, or several, of these properties is re- 
sponsible for the instability of the previous example, and that stability 
would return if these properties were removed. The examples of the 
present section show, however, that it is quite easy to obtain instabil- 
ity with none of the objectionable properties mentioned above. 

We shall make an attempt to keep the reasoning relatively general 
in this section. Some conditions will be described which imply in- 
stability, and we shall demonstrate by specific examples that these 
conditions may be satisfied. 

As was mentioned in the introduction [see equation (1)], the utility 
functions of the three consumers will be obtained by a cyclic permuta- 
tion of the goods and the initial endowments. This means that if the 
excess demand functions of the first consumer are represented by 

X1(P1, P2, p3), X2(P1, P2, P) x3(p1 P2, P3), 

then the excess demand functions of the second consumer for the 
first, second. and third goods respectively will be given by 



164 HERBERT SCARF 

X3(P2. pA P1), x1(p2, P3, P), X2(P2, P3, P1) 

and those of the third consumer by 

X2(P3, PI, p), x3(P3, PI, P2), x1(P3, P1, P2) 

(Continuity and differentiability properties of these functions will be 
assumed whenever necessary.) 

The market excess demand functions are obtained by the summation 
of individual demands and are therefore given by: 

fP(pA, P2, P3) = x1(p1, P2, P3) + x3(p2, P3, P1) + x2(P3, P1, P2), 

(4) f2(PA, P2, P3) = X2(p1, P2, P3) + X1(P2, P3, P1) + X3(P3, P1, P2) 

f3(PA, P2, P3) = X3(P1, P2, P3) + X2(P2, P3, P1) + X1(P3, PI, P2). 

The differential equations of stability are, of course, given by dpsldt = 

PA(P, p2 P3), when all prices are non-negative. 
As we mentioned previously, the Walras Law (E pfx, 0 for each 

consumer, and its consequence, E pg ,- 0) implies that d( pt)Idt = 0, 
so that the motion of the prices will always be on that sphere with 
center at the origin which passes through the initial price vector. Let 
us assume that the initial prices have been selected such that E p2 = 3. 
When we speak of equilibrium prices we shall mean the intersection 
of the equilibrium ray and this sphere. 

LEMMA 1. The price vector (1, 1, 1) is an equilibrium price. 

This is immediately obvious by an application of the Walras Law to 
equations (4), when all of the prices are set equal to one. 

It is not at all correct, for a general selection of the individual 
demand functions X1, x2, x3, that the market demand functions f1, J2, f3 

(4) must have a unique equilibrium point at (1, 1, 1). There are a 
number of very simple conditions, however, which imply that this 
equilibrium is unique. We shall give only one such set of conditions. 

LEMMA 2. Let 

A = Of1l/p2 < 0, and B= &f1/0p3 > 0, 

everywhere in the orthant P 2 O. P0 2 0, p3 2 0. Then the equilibrium 
point (1, 1, 1) is unique (aside from positive multiples). 

In order to demonstrate this lemma, let us first make the observa- 
tion that 

f(Pl P21 P2 3)= Pf(p2Y p3 P1) . 
fS(P1, P2, P3) = f2(P2 P3 P1) I 

fA(Pr, P2, P3) = f3(P2, p3 P1) - 
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This implies that if (a,,1, -y) is an equilibrium point, then so is 
(3, 7, a), and also (y, a, ). Therefore, if we have an equilibrium point 
different from (1, 1, 1), then we may find an equilibrium point (a,,1, ry), 

perhaps by permutation, with either 

(5) a>13?7 

(at least one of the inqualities is strict), or else 

(6) a?13?7 

(again the same remark). 
Let us assume that the former holds. An argument similar to the 

one we are about to give works if instead of (5) we have (6). 
We shall show that f2(a, 3,y 7) must be different from zero. Now 

f2(a,, A, 7) = X2(a, 8, 7) + xl(13, 7, a) + X3(7, a, 3) . 

The assumptions of this lemma imply that as a function of a, f, is 
strictly increasing, and as a function of 7, f2 is strictly decreasing. 
Since a > 13 > 7 (with inequality somewhere), we have 

f2(a, 1, y) > X2(, 13, 13) + X1(13, 13, 13) + X3(, 13 1) = 0 , 

by the Walras Law. This completes the proof of the lemma. 
Subsequently, in this paper, we shall have occasion to consider 

specific examples of demand functions for which the conditions of 
Lemma 2 do not hold for all prices in the orthant p1 ?0, p2 ?0 , p3 , O. 
but rather for certain subsets. We shall then have recourse to the 
following lemma, which involves a type of subset convenient for us. 
The lemma is demonstrated in the same manner as Lemma 2. It 
should be noted that the operations involved in the proof of Lemma 2 
do not take us out of the set described in Lemma 3. 

LEMMA 3. Let the conditions of Lemma 2 hold for the set of prices 
(p1fp3 > s, P2/P1 > 6, p3/pJ > e), where s is a small positive number. 
Then there are no equilibrium points in this set other than (1, 1, 1) 
and its multiples. 

We shall now give a condition on the demand functions which 
implies that the equilibrium point (1, 1, 1) is unstable. 

LEMMA 4. If C = Of,/1p, is positive, at the point (1, 1, 1), then this 
equilibrium point is locally unstable in the following sense: there is 
a region (on the sphere A pi = 3) about the point (1, 1, 1) such that 
any point in this region (other than the equilibrium point) will 
move away from the point (1, 1, 1). 
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The Jacobian of the functions f1, f2, f3, at the point (1, 1, 1) is given by 

/C A B\ 
B C A, 
A B C 

all evaluated at that particular point. Moreover, the functions fs f2, f3 

are homogeneous of degree zero, and therefore the Euler relationship, 
at the point (1, 1, 1), tells us that 

(7) A + B + C = O. 

The Jacobian, therefore, has one characteristic root equal to zero. 
The other characteristic roots may be shown to have positive real 
parts, because of the assumption C > 0. It is then possible to apply 
standard theorems of differential equations (see [4], chap. 13), in order 
to deduce local instability. However, the various properties of demand 
functions permit a simple independent proof of this fact, which we 
shall reproduce here. 

Let 

V(P1 9 P3) = PJ (Pi _ 1)2, 
2 

so that 

dt) dt 

We shall show that E. f < 0 in a small region on the sphere E p2= 3 
about (1, 1, 1), (except for this point itself), and this will demonstrate 
the lemma. Of course at (1, 1, 1), Egf = 0. Using the Taylor series 
expansion, we obtain 

(8) =E (PJ - ic Off 

+ I 
E (P - 1)(pt - 1)C aaf + 0(V3/2), 

where all of the partial derivatives are evaluated at the point (1, 1, 1). 
Let us simplify some of the terms. The Walras Law reads E pnf.- 0, 
so that differentiating with respect to p,, we obtain 

( 9) fj + FP, - 
Oaf-'- 0 

At (1, 1, 1) this implies E, Oft/Opj = 0, and therefore the linear terms 
of the Taylor series vanish. Differentiating (9) once more with respect 
to pk, we obtain, at the point (1, 1, 1), 
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(10) a - - + 

From (7), (8), and (10) we see that 

E ---s (pPj- 1)(Pk - 1)Cjk + ?(l/') 2Jk 

where 

/2CP -C, - C 

(cow) = -c C CY -c 

-C, IC s 2C 
Therefore 

= 
=-2{(P1 - p2)2 + (P2 -p3)2 + (p3 _ p1)2} + 0(V3'2) 

2 

But I claim that on the surface E pl = 3, with all pi ? 0, we always 
have 

(11) (p1 - p2)2 + (p2 2p)+ (p3 - p)2 3 E (pi-1)2 

Accepting this as correct for the moment, we see that 

EAg < 2 C V + o( V3/2) 2 

and therefore Ef, is negative for V sufficiently small. 
Equation (11) is demonstrated as follows. First of all, on this sphere 

3? 2 pt 

Multiplying by J p, and expanding, we obtain 

3 E pi ? p2 + p2 + p2 + 2(PlP3 + PAp2 + P2p3), 

and by subtracting 9 from each side we obtain 

2 + 2Epj - 3) 2 -2(p2 + p2 ? p3) + 2(plp3 + P1pA + p2p3A , 

which is the same as (11). This finishes the proof of Lemma 4. 
We shall shortly exhibit some excess demand functions, derivable 

from a utility function, which satisfy the hypothesis of both Lemmas 
2 and 4. They will provide us with examples of a unique equilibrium 
point, which is unstable locally. Does this imply global instability? 
In a certain sense this becomes a matter of definition, the problem 
being that it is possible that one of the prices might become zero. 
In this event, some care should be taken, since the differential equa- 
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tions (2) no longer describe the motion of the prices. In our examples, 
we shall use special techniques to demonstrate that the paths actually 
stay away from the boundary of the positive orthant. 

Now let us consider utility functions for the first consumer of the 
form 

U(x1, x2, x3) = X (v) + + 2 a ) 

where (a1, a2, a3) is an arbitrary non-negative vector, and a is a positive 
constant. Let the initial endowment of the first consumer, be repre- 
sented by (Ii, '2, I3). As before, we permute the utility function cycli- 
cally for the second and third consumers, and also permute the initial 
holdings. 

We shall show that instability arises whenever a > 1, (a,, a2, a3) is 

close to (b, 1, 0) with b>(a+1)/(a-1), and (I1, I2, I3) is close to (1, 0, 0). 
(The specific meaning of "close" will be clarified.) This will give us ex- 
amples with none of the disagreeable features of the simple examples 
in Section 2. Let us first examine in detail the case 

(a,, a2, a3) = (b, 1, 0) p 

(Ii, I1 13) = (1, 0, 0) , 

with 

b> a+1 
a -1 

A routine calculation shows us that the excess demand functions 
for the first individual are given by 

bpL/(l+a) 

6pa/(l+a) + pa/(l+a) 

(12) X2= 1 Pi 
pli (+a) bpa/(l+la) + pa/(i+a) 

1 

X3 = 0 . 

The reader should notice that if b = 1, and a -0, these excess 
demand functions tend to those of Section 2. 

Let us show that the conditions of Lemma 2 are verified. We have 

A X1(P1, P2, p3) < 
Op2 

B - 0X2(P3, PA, P2) > o 
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Therefore the system of market demand functions (4) has a unique 
equilibrium point given by (1, 1, 1). In order to show that it is un- 
stable we compute 

C= Of1 
Op1 

at (1, 1, 1), or 

C_ ab - (b + 1)-aa 
(b + 1)2(a + 1) 

which is positive if b > (a + 1)/(a - 1). It follows from Lemma 4 that 
for this relationship between a and b the unique equilibrium point is 
also locally unstable. 

The next step will be to show that for this example the prices stay 
away from the boundary of the positive orthant. This will be a con- 
sequence of the following lemma. 

LEMMA 5. Let 

<X =Min(P2, p2 
P 

PA P) 

There is a small positive constant K, such that if 

qi< K, then ? > O. 

Let us assume that the minimizing value above is pi/p3 = c, say. 
The other cases are handled by a cyclic permutation. We want to 
show that d(pl/p3)/dt > 0 or p3f - p)]f3 > 0, if c is sufficiently small. 
If fi and f3 are computed according to (4), we see that p3f1- pf3 

has the sign of 

(P)2 1p3 p 

P1 Pi A_ 
(13) (J P ll) + 1 - b(YL ) + 1 - a+a) 

P1 3P2 
b+1 

+1 

The first term of (13) is equal to 

(12 
+1 

b(-L) a/(1+G) 

and since pAp3 < 1/c, we have 
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FP 

Ap 1 

* a/ p 1 ~+a) > (- a/ 
(ba) + 1 

Also we have 

_p3 
Pi 

b( 1 +a(l a) > 
__ ~~~~C 

P2 

Adding these terms together we see that (13) will be positive if 

( 1 )2 + I _2 _ b( 1 f+a/ (1+a) 

and this is certainly correct for small c. This demonstrates Lemma 5. 
These observations, taken together, show us that the system of 

demand functions defined by (12) gives rise to global instability of the 
price adjustment mechanism. 

FIGURE 2 
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One more remark is in order. I claim that if we take an excess 
demand which is close to (12) on a large proper subset of the positive 
orthant (and which has derivatives which are close) and form the 
market demand functions using the above method of cyclic permuta- 
tion, then this will also give rise to global instability. (Such an ex- 
ample may be obtained by taking (a1, a,2 a3) close to (b, 1, 0) and 
(I,, I2, I) close to (1, 0, 0), or in other ways.) 

In order to see this let us interpret Lemma 5 geometrically. 
Figure 2 represents the surface of the sphere Api = 3, and the 

shaded region the set of points with 

Min A , A , P,)> K, 

for a small value of K. Lemma 5 tells us that a path which begins 
in this region, with K sufficiently small, will never leave the region. 
This is true because on the boundary of this region expressions such 
as P3f- pjf3 are strictly positive. But this later fact will also be 
true for market demand functions based on individual demand functions 
close to (12). 

It will also be true that inside this region there will be no equi- 
librium points other than (1, 1, 1). For if the new demand functions 
and their derivatives are close to the corresponding quantities for (12) 
inside the shaded region, then A for the new demand functions will 
be negative, and since it is homogeneous of degree -1 (being a de- 
rivative), A will be everywhere negative in the region defined by 

-P2 >K, 23L >lK, PI > K. 
p1 p2 p3 

A similar statement with a reversed inequality holds for B, and there- 
fore Lemma 3 may be applied to show that there are no equilibrium 
points other than (1, 1, 1) in the shaded region. 

A similar argument convinces us of the local instability of the equi 
librium point (1, 1, 1). It should be rermarked that even though we 
have said nothing about possible equilibrium points outside the shaded- 
region for the new demand functions, a path beginning inside the 
shaded region will not leave this region. 

Stanford University and 
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