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1. Introduction

Gregory Margulis is a mathematician of great depth and originality. Besides
his celebrated results on super-rigidity and arithmeticity of irreducible lattices of
higher rank semisimple Lie groups, and the solution of the Oppenheim conjecture
on values of irrational indefinite quadratic forms at integral points, he has also
initiated many other directions of research and solved a variety of famous open
problems. As Tits said in [Ti1, §5]:

“Margulis has completely or almost completely solved a number of important
problems in the theory of discrete subgroups of Lie groups, problems whose roots
lie deep in the past and whose relevance goes far beyond that theory itself. It is
not exaggerated to say that, on several occasions, he has bewildered the experts
by solving questions which appeared to be completely out of reach at the time.
He managed that through his mastery of a great variety of techniques used with
extraodinary resources of skill and ingenuity. The new and most powerful methods
he has invented have already had other important applications besides those for
which they were created and, considering their generality, I have no doubt that
they will have many more in the future.”

Indeed, in his solution to the Oppenheim conjecture, the approach of using
dynamics on homogeneous manifolds to study number theoretic questions has
had far-reaching and effective applications (see §40). This is another instance of
his ability of combining Lie group theory and ergodic theory and applying them
to seemly unrelated fields.1 As Howe pointed out in a survey titled “A century
of Lie theory” [Ho, p. 262] more than 10 years after the above article of Tits:

Received September 14, 2007.
1On more than one occasions, Borel mentioned that Margulis was the first person who caused

confusion between two Borels in the Borel measure and the Borel subgroups, by using both Lie
theory (or rather algebraic group theory) and ergodic theory simultaneously. He also declared
that he was not related to the other Borel.
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“The influence between Lie theory and ergodic theory has been mutual. A
particularly striking example of this was Margulis’s use of ergodic theory in the
proof of his Superrigity Theorem [Zi1], which was then reinterpreted as being
a result in ergodic theory by Zimmer. A very recent example of this mutual
interaction is the Margulis proof of the Oppenheim Conjecture, followed quickly
by Ratner’s broad generalization of the key ergodic-theoretic result underlying his
proof [Ra1-6].”

The impact of this important work of Margulis on the Oppenheim conjecture
was also confirmed by Borel [Bo3, p. 14]:

“G.A.Margulis ... proved the Oppenheim conjecture... This breakthrough opened
the way to an intense activity both on refinements of the Oppenheim conjecture,
on the Raghunathan conjecture and a related one by Dani.”

It is also well-known that the Margulis lemma is a basic tool in hyperbolic
geometry and more generally geometry of manifolds of nonpositive curvature and
convergence and collapsing of manifolds (see §6), and his result on the generalized
prime number theorem on lengths of closed geodesics has generated an active
theory covering several different fields (see §14). His explicit construction of
expander graphs and the solution of a long-standing problem of Banach-Ruziewicz
on the uniqueness of finitely additive, rotation invariant measure on the n-sphere
Sn are two other results of great originality (see §16 and §17).

In order to convey a sense of the width and depth of his work, this article tries
to summarize some major results of Margulis. For a very good summary of some
earlier results of Margulis, especially his work on arithmeticity and super-rigidity
of lattices of higher rank semisimple Lie groups, see the article [Ti1] by Tits,
written for the occasion when Margulis was awarded a Fields medal in 1978 in
Helsinki.

The current article is divided into topics which are arranged roughly according
to the times they were first considered by Margulis or according to the years of
publication in MathSciNet.2 3

Descriptions are usually brief for many obvious reasons, for example, due to
lack of knowledge of the author about many topics covered by the work of Mar-
gulis. But, whenever possible and appropriate, we will try to explain a bit of

2Another method to organize this artcle, which might be better, is to group papers according
to the topics under discussion. We have tried to do this to certain extent by putting several
papers into one section under a common title, for example, the sections on arithmeticity and
super-rigidity of higher rank lattices summarize many papers of Margulis. But the arrangement
according to the publication dates in this article might give a historic sense to the work of
Margulis. To help organize this paper and orient the reader, we have inserted a detailed table
of contents.

3The paper [67] is not listed in MathSciNet for some reason.
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history of the results under discussion, contributions of Margulis, and some later
developments.4

The references near the end of this article are divided into two parts: the first
part consists of papers and books by Margulis which are indexed by the years in
which they were published, and the second part consists of some publications by
others cited in this article, which are not meant to be comprehensive, and hence
some important references might not be cited.
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2. Results proved during the undergraduate years

Margulis wrote three papers [66] [67] [68] when he was an undergraduate stu-
dent at the Moscow State University. Even though it was not unusual for un-
dergraduate students of Moscow State University to do research, what he has
achieved was very significant. In fact, the paper [68] was reported by Borel [Bo2]
at the famed Bourbaki seminar.

He wrote his first paper [66] when he was a third year undergraduate student
and attended Dynkin’s seminar. At that time, structure of positive harmonic
functions was one of the problems studied by Dynkin.

Starting at the end of the third year, Sinai became his advisor. Margulis’
second paper [67] proved exponential growth of the fundamental group of a 3-
dimensional manifold admitting Anosov flows, and it was published as an appen-
dix to a survey by Anosov and Sinai [AS]. Participation in Sinai’s seminar and
discussions with him and his other students gave Margulis valuable experience in
ergodic theory and dynamical systems, and it played a very important role in his
mathematical career. In fact, his thesis is titled On some aspects of the theory of
Anosov flows [04-1], which includes the counting of closed geodesics and lattice
points in terms of the entropy and a construction of an important measure, now
called the Margulis measure (or Bowen-Margulis measure) (see §14). Ergodic
theory and dynamical systems are crucial in his celebrated later works such as
arithmeticity and super-rigidity of irreducible lattices in higher rank semisimple
Lie groups and the solution of the Oppenheim conjecture etc.

At the end of his undergraduate study, Margulis wrote a well-known paper
[68] with his classmate D.Kazhdan, which solved several outstanding problems,
including a conjecture of Selberg on the existence of unipotent elements in non-
uniform lattices. The well-known Margulis Lemma was also motivated by a result
proved in this paper (see §6).

After this paper [68], Margulis became very much involved in the theory of
discrete subgroups of Lie groups. In particular he started to work on the problem
of arithmeticity of nonuniform lattices. He succeeded after several years by using
the approach based on the study of unipotent elements in a nonuniform lattice and
on a nondivergence result for actions of unipotent groups on the space of lattices.
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It should be noted that the general strategy associated with this approach had
been introduced earlier by Piatetski-Shapiro and Selberg (see §7 and §9).

3. Positive harmonic functions on nilpotent groups

Harmonic functions on Rn are classical objects and have been studied from
various points of view. A famous result of Liouville says that every positive
harmonic function on Rn is constant. In particular, every bounded harmonic
function on Rn is constant too. (Note that constant functions are harmonic.)
The former corresponds to the fact that the Martin boundary of Rn is trivial,
and the latter corresponds to the fact that the Poisson boundary of Rn is trivial.

There are several natural ways to generalize these results. One important
problem is to consider harmonic functions on other homogeneous spaces, for
example, on nilpotent Lie groups, solvable Lie groups and symmetric spaces.
Since Rn is an abelian Lie group, a particularly natural class of groups consists
of nilpotent Lie groups.

Another problem is to consider discrete versions of these homogeneous spaces,
for example, uniform lattices acting on these spaces. In this sense, Zn corresponds
to Rn. The notion of harmonic functions on a finitely generated group Γ can be
defined in terms of a non-negative measure p on Γ whose support contains a set
of generators. Briefly, a function f is harmonic if the mean value equality holds,
i.e., for every point x ∈ Γ, the following equality is true:

f(x) =
∑

γ∈Γ

p(γ)f(γx).

If Γ is nilpotent and p is a probability measure, then every bounded harmonic
function is constant. See [Dy] for a survey on these results.

In [66], it is shown how to reduce a positive harmonic function f on a nilpotent
group Γ to its abelian quotient Γ/[Γ,Γ]. Briefly, such a function f is constant on
every coset of [Γ,Γ]. Hence, [66] is related to the Martin boundary of nilpotent
groups.

Determination of the Poisson boundary and the Martin boundary of nilpotent
and solvable groups are still actively pursued. See [DaH] [Bab] and the references
there.

4. Exponential growth of the fundamental group and Anosov flow

Given a finitely generated group Γ, we can define the notion of growth rates.
Briefly, for any finite set of generators S of Γ, there is an associated word metric
dS on Γ, which can be taken to be left invariant. Then the group Γ is said to be
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of exponential growth if the number of elements of Γ in a metric ball of radius R
with respect to dS grows exponentially in R.

Though the word metric dS and hence the exact sizes of metric balls depend
on the choice of the generating set S, the notion of exponential growth of Γ does
not depend on the choice, and the exponential growth rate is an important large
scale invariant of the group Γ.

The main result of the paper [67] says that if a three dimensional manifold M
admits an Anosov flow, then the fundamental group of M has exponential growth.

This puts an algebraic topological restriction on three dimensional manifolds
which admit Anosov flows.

It might be helpful to understand this result in the following context. It was
known (see [AS]) that if M is a compact Riemannian manifold with strictly
negative sectional curvature, then the geodesic flow of M is an Anosov flow.

On the other hand, shortly after the paper [67], Milnor [Mi] proved a well-
known result that if M is a compact Riemannian manifold with strictly negative
sectional curvature, then the fundamental group of M has exponential growth.

5. Volume of locally symmetric spaces and existence of unipotent
elements

If the volume of a Riemannian manifold (or orbifold) is finite, then it provides
an important basic geometric invariant of the manifold. It is a multiplicative in
the following sense. Let X is a Riemannian manifold, and Γ1, Γ2 two discrete
groups acting isometrically on X with finite volume quotients Γ1\X and Γ2\X.
Assume that Γ1 ⊂ Γ2. Then

vol(Γ1\X)/vol(Γ2\X) = [Γ2 : Γ1].

This implies that if Γ1 is small, the volume vol(Γ1\X) is big.

If X is a Riemannian symmetric space of noncompact type and Γ is a discrete
isometry group with vol(Γ\X) < +∞, i.e., Γ is a lattice, then in many cases,
it is easy to construct subgroups Γ′ with arbitrary large index [Γ : Γ′]. In other
words, there is no finite upper bound on volumes of locally symmetric spaces
Γ\X modeled on each given symmetric space X.

The first striking result in the joint paper of Margulis with Kazhdan [68] is
that there is a uniform positive lower bound for the volumes of all quotients Γ\X,
which only depends on the invariant Riemannian metric on X.

When X is equal to the Poincare upper half plane H2 = {x+iy | x ∈ R, y > 0},
this result was known before and is classical (see [Si] [Bea, Chap. 10]).
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This result on the lower bound is a consequence of the following result: Let G
be a connected linear semisimple Lie group without compact factor. Let ρ( , ) be
a right invariant metric on G. There exist a neighborhood Ṽ1 of e, and constants
C1 > 0 and c > 1 such that for any discrete subgroup Γ of G, one can find some
g ∈ G satisfying the two following conditions:

(1) ρ(e, g) ≤ C1,
(2) for any γ ∈ Γ ∩ Ṽ1, γ 6= e, the following inequality holds:

ρ(e, gγg−1) ≥ cρ(e, γ).

The proof of this result is based on the following result: For every connected
Lie group G, there exists a neighborhood U of the identity element such that for
every discrete subgroup Γ in G, the elements in the intersection Γ ∩ U generate
a nilpotent subgroup.

This latter result was the starting point of the Margulis lemma (see §6) and also
used to prove the second major result of [68]. In fact, it was used by Kazhdan and
Margulis [68] to prove a conjecture of Selberg [Se2, p. 180]: If G is a connected
linear semisimple Lie group, and Γ ⊂ G is a non-uniform lattice, i.e., Γ\G has
finite measure with respect to any Haar measure of G but is not compact, then Γ
contains a nontrivial unipotent element.

When G = SL(2,R), this conjecture was known earlier and unipotent ele-
ments correspond (or fix) the cuspidal (or infinite, or ideal) points of a Dirichlet
fundamental domain for the Γ-action on H2. This conjecture is also known for
arithmetic subgroups; in fact, it was the content of a conjecture of Godement
for arithmetic subgroups, proved independently by Borel and Harish-Chandra
[BoHC], and Mostow and Tamagawa [MoT]. (Non-uniform arithmetic subgroups
contain many unipotent elements. Their intersection with Q-parabolic subgroups
contains lattices of the real locus of the unipotent radical of the parabolic sub-
groups.)

Among all discrete groups Γ of G, lattices are particularly important for var-
ious reasons. First, arithmetic subgroups are lattices. Second, for the study of
automorphic functions, this assumption is often needed (see [Se1, p. 101]).

The presence of unipotent elements in non-uniform lattices has played an im-
portant role in the study of rigidity and arithmeticity of Γ. See [Se1, §7.4] for
one of the original motivations. Another motivation is that to study the Selberg
trace formula, a precise description of the cusps (i.e., noncompact parts) of a
good fundamental domain, for example a Dirichlet fundamental domain, is im-
portant [Se2]. If Γ is either an arithmetic subgroup or a lattice acting on H2,
the cusps are described by unipotent elements in Γ, and the above conjecture is
the first step towards such goals. As Borel explained in [Bo3, p. 8], “This latter
statement [on existence of unipotent elements] was also not unexpected, but it was
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an enormous surprise that both could be established so directly, using only basic
facts about semisimple Lie groups (but in an amazingly ingenious way.”

One consequence of the above uniform lower bound on vol(Γ\X) is that if
X = G/K and G does not contain any nontrivial compact factor, then every
lattice Γ ⊂ G is contained in some maximal lattice Γ̃, where by a maximal
lattice, it means that Γ̃ is not contained properly in another lattice.

There have been a lot of work on computing the volume spectrum of Γ\X when
Γ changes, in particular, the best lower bound on the volumes. Another question
concerns volumes of Γ\X when Γ are arithmetic subgroups. To show differences
of these two questions, one notes that when X = H2, or H3, the real hyperbolic
space of dimension 2 or 3, for every v, there are only finitely many arithmetic
locally symmetric spaces Γ\X with vol(Γ\X) ≤ v. On the other hand, there are
infinitely many Γ\X with vol(Γ\X) ≤ v when v À 0. For some references on
these topics, see §23 below (see also [Ji1] for more references).

6. Margulis Lemma

Another very important result, the so-called Margulis Lemma, was motivated
by a result in [68]. It have played a fundamental role in the study of manifolds
with non-positive curvature, in particular hyperbolic manifolds, discrete group
actions on them, and convergence of Riemannian manifolds.

The basic motivation is as follows. Recall that on a complete Riemannian
manifold M , the injectivity radius at a point x is the maximum radius of the ball
in the tangent space TxM with center at the origin which is mapped diffeomor-
phically into M under the exponential map expx. If M is compact, there is a
uniform lower bound for the injectivity radius for all points. This is not true in
general for a noncompact Riemannian manifold M . But for many applications,
it is important to understand local structures of manifolds on uniform sizes. For
this purpose, it is crucial to understand points of M where the injectivity radius
is small. Another reason is that when we consider an infinite family of Riemann-
ian manifolds Mj , to understand the convergence or collapsing properties of this
family, we need also to understand local structures of Mj on uniform sizes.

As stated in the previous section, one important result in [68] is as follows: For
every connected Lie group G, there exists a neighborhood U of the identity element
such that for every discrete subgroup Γ ⊂ G, the elements in Γ ∩ U generate a
nilpotent subgroup. The important point here is that the neighborhood U is
independent of the discrete subgroup Γ. 5

In an unwritten work (or rather a private communication to Gromov) (see
[Gr, p. 232]), Margulis proved the following result: For every n ∈ N, there is a

5It was later realized that this result was actually proved by Zassenhaus in 1938.
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constant ε > 0 depending only on n such that if V n is a compact Riemannian
manifold with sectional curvature strictly bounded between 0 and −1, and two
elements α, β ∈ π1(V, v0) can be represented by loops of length less than or equal
to ε, then there is a natural number m such that αm and βm generate a nilpotent
subgroup of π1(V, v0).

In [Gr1], Gromov called this result Margulis Lemma. There are also various
other versions of Margulis Lemma based on similar ideas. For applications to
group actions on Riemannian manifolds, one version of the Margulis Lemma
can be stated as follows [BaGS, p. 101, p. 107]: Let X be a simply connected
and nonpositively curved complete Riemannian manifold with sectional curvarure
bounded from below by −1 and Γ is a discrete group acting isometrically and
properly on X. For any µ > 0 and x ∈ X, define a subgroup

Γµ,x = 〈{γ ∈ Γ | d(x, γx) ≤ µ}〉.
Then there exist a constant µ0 and an integer I0 only depending on n such that
for every µ ≤ µ0 and x ∈ X, the subgroup Γµ,x is virtually nilpotent; in fact, it
contains a nilpotent subgroup of index bounded uniformly by I0.

As a consequence, if the sectional curvature of X is strictly negative, then
the thin part (Γ\X)≤µ of such a quotient Γ\X is basically either a cusp or a
neck, when the µ-thin part is by definition the set of points x̄ ∈ Γ\X where the
injectivity radius is less than µ. The reason is that for every point x ∈ X, the
injectivity radius of the image x̄ of x in Γ\X is equal to infγ∈Γ d(x, γx), and its
small neighborhoods are described by quotients of nilpotent subgroups (see [Fu,
Theorem 4.6, p. 206]).

As mentioned earlier, another type of applications of the Margulis Lemma con-
cern convergence and collapsing of families of Riemannian manifolds. They were
initiated by Gromov and carried out extensively by Cheeger, Fukaya and Gro-
mov et al. Basically, the presence of nilpotent structure is related to collapsing
of Riemannian manifolds to lower dimensional ones.6 See [Fu] for a survey on
generalizations of the Margulis Lemma in geometry and applications on conver-
gence of Riemannian manifolds under bounds on curvatures and diameters, or
other geometric conditions.

7. Arithmeticity of lattices

An important consequence of the uniformization theorem for Riemann surfaces
is that there are in general positive dimensional families of non-conjugate lattices
in SL(2,R) (or rather PSL(2,R)). For example, if Γ ⊂ SL(2,R) is a lattice

6This is closely related to the horospherical decomposition of symmetric spaces with respect
to parabolic subgroups, and the collapsing of the Borel-Serre compactification of arithmetic
locally symmetric spaces to the reductive Borel-Serre compactification.
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such that Γ\H2 is a closed surface of genus g ≥ 2, then Γ belongs to a (6g − 6)-
dimensional family of non-conjugate lattices, or equivalently their corresponding
hyperbolic surfaces are not isometric.

This deformation, or equivalently non-rigidity, of such lattices implies immedi-
ately that most of lattices in SL(2,R) are not arithmetic subgroups, since there
are only countably many arithmetic subgroups.

On the other hand, for other semisimple linear Lie groups, it is difficult to
construct non-arithmetic lattices. One reason is that there is no uniformization
theorem for higher dimensional manifolds which we can use as above. (To see
lack of any direct generalization of the uniformization theorem in one complex
variable, note that all simply connected domains in C are biholomorphic to each
other. But this is completely false for Cn, n ≥ 2; in fact, there are uncountably
infinitely many of non-biholomorphic simply connected (or even contractible)
domains in Cn.)

After success with several special cases, Selberg made the following conjectures
[Se1, p. 119] [Se3, §5]:

(1) Let G be a linear semisimple Lie group, and Γ ⊂ G an irreducible lattice.
Then Γ can be deformed into a group whose matrix representation has
entries from some number field, and the denominators of these entries
are uniformly bounded.

(2) If the real rank of G is at least 2 and Γ is a non-uniform lattice, then Γ
is an arithmetic subgroup of G with respect to a suitable Q-structure on
G.

The first conjecture implies that if a lattice Γ is (locally) rigid, i.e., does not
admit nontrivial deformations, then Γ has a matrix realization with entries given
by algebraic numbers [Se3, p. 159, p. 164].

Earlier, the assumption that the rank of G being at least 2 was not made for
Conjecture (2), but only the group SL(2,R) and its lattices were excluded. After
some non-arithmetic lattices acting on the real hyperbolic spaces Hn, n = 3, 4,
were discovered, the conjecture of Selberg was modified (see [PS1, p.3]).

The importance of these conjectures, in particular the second one, is that
the reduction theory for arithmetic subgroups can be used to understand the
structure of neighborhoods at infinity of Γ\G (or Γ\X), which is fundamental to
the theory of automorphic forms for Γ. Indeed, as Selberg pointed out in [Se2,
p. 180]:

“The most serious obstacle to carrying out of the idea sketched above is that,
with the exception of the case of a hyperbolic plane (and of course for the product
of a hyperbolic plane and euclidean or compact symmetric spaces) it is not known
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what conditions of the noncompactness but finite measure or volume of D imply
about Γ.”

He went on to say:

“The more general approach would be to make definite assumptions about the
nature of the cusps and the subgroups of Γ that describe them, namely that these be
of the same nature as those encountered for the arithmetic subgroups of algebraic
groups in the sense of Borel and Harish-Chandra. There are reasons to believe
that perhaps all groups Γ with finite volume of D would fall in this category.”

In fact, in the famous book of Langlands [Lan] (see also [OW]), several assump-
tions are made on lattices Γ of semisimple Lie groups G and their fundamental
domains D in the symmetric spaces X = G/K right from the beginning. These
assumptions are based on the reduction theory for arithmetic groups. Under-
standing structures of fundamental domains is also important for rigidity prop-
erties of locally symmetric spaces Γ\X (see [Se1, pp. 114-116]).

The first papers of Margulis towards the above conjecture of Selberg, i.e.,
arithmeticity of lattices, are in [69-1] [69-3]. One result states that if G is a
semisimple linear algebraic group defined over R, has no compact factors and
has R-rank at least two, and Γ ⊂ G is a non-uniform irreducible lattice, then G
admits a Q-structure so that the subgroup Γ∩GQ is of finite index in Γ, and there
exists a Q-parabolic subgroup P ⊂ G so that Γ ∩ P is an arithmetic subgroup of
PQ.

In his review of the paper [69-3], Garland wrote:

“This theorem represents a substantial contribution to a problem raised by
A.Selberg....The fundamental tools for the proof of the main theorem are (i) the
methods and results of an earlier paper of D.A.Kazhdan and the author [68], and
(ii) a result concerning the group SL(n,Z), which we decribe presently. .... Now
we describe the result concerning SL(n,Z). Let {u(t)} be a one-parameter unipo-
tent subgroup of SL(n,R) and let p be the natural projection from SL(n,R) to
X = SL(n,R)/SL(n,Z); then there exists a compact subset Ω of X so that for
every t0 > 0, there exists a t > t0 so that p(u(t)) belongs to Ω. Using (i) and
(ii) the author then proves the existence of “amply many” unipotent in Γ. In
particular, he proves that for a suitable parabolic subgroup P in G, with unipo-
tent radical U , one has that the quotient of U by the intersection of Γ and U is
compact. This is a key step in proving the theorem.”

According to Margulis, this result (ii) quoted in the above paragraph is one of
his best results. Indeed, as Tits wrote in [Ti1, p. 59], “the ... result ... was soon
realized by the experts as a crucial step for the proof of Selberg conjecture.” This
result was stated as a theorem by Piatetski-Shapiro in [PS1], also in connection
with the arithmeticity of nonuniform lattices, but he never gave a proof. The
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proof of (ii) is based on the phenomenon of polynomial divergence (applied to
actions of {u(t)} on the exterior products of Rn) and on a rather sophisticated
induction argument related to the geometry of numbers. The technique used in
the proof of (ii) was refined and quantified first by S.G.Dani in [Da1] (in the proof
of the quantitative recurrence of unipotent orbits to compact sets) and later in
a joint work of Margulis with Kleinbock [98-2] and by Eskin, Mozes and Shah in
their work on counting of integral points on homogeneous varieties [EMS].

Margulis’ work on the above result (ii) ([71] or [75-3]) provided him with some
intuition which played an important role in his much later work on unipotent
flows (this intuition was based on the understanding of the importance of the
polynomial divergence in the theory of unipotent flows).

The detailed proof of the main result announced in [69-3] was given in [74-2]
and [75-2] (actually the paper [75-2] was submitted for publication much earlier
than [74-2]). Another important ingredient in the proof is a construction from
representation theory. This construction was used later by Oh [Oh4] in her work
on discrete groups generated by lattices in horospherical subgroups. It should be
mentioned that Raghunathan obtained an independent proof of the main result
announced in [69-3].7

In [75-2] Margulis also proved the strong rigidity for non-uniform lattices in
higher rank groups using a totally different method (see the next section for more
detail).

Reduction of the proof of arithmeticity of non-uniform lattices in higher rank
groups to the main result announced in [69-3] was started in [74-2] and completed
in [75-1].

In [PS1, p. 3] (see also [PS2, p. 189]), Piatetski-Shapiro conjectured that
irreducible uniform lattices Γ in G of rank at least 2 are also arithmetic. This is a
big step from the conjecture of Selberg, since unipotent elements of non-uniform
lattices Γ play crucial roles in the proof of arithmeticity of Γ in the above papers.
He defined arithmetic subgroups of Lie groups which are not linear Lie groups.
Briefly, a lattice Γ in a semisimple Lie group G is called arithmetic if there is a
linear semisimple Lie group G′ defined over Q and a surjective homomorphism
ϕ : G′(R) → G with a compact kernel and an arithmetic subgroup Γ′ of G′(Q)
such that ϕ(Γ′) is commensurable with Γ.

In [PS1, pp. 4-5], Piatetski-Shapiro also introduced arithmetic subgroups of
linear p-adic Lie groups and products of both real Lie groups and linear p-adic
Lie groups, and formulated questions on rigidity and arithmeticity of lattices in
such locally compact groups.

7See the article [Bo3, pp. 7-10, §10] for a very good summary of Raghunathan’s contributions
to strong rigidity and arithmeticity of lattices and a history of related results.
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The paper [74-1] [75-4] outlined a proof of this conjecture of arithmeticity of
Piatetski-Shapiro on uniform irreducible lattices of semisimple Lie groups G when
the rank of the symmetric space associated with G is at least two. The full details
appeared in [77-2] [84-1].

A comprehensive discussion of these and other results is in the book [91-1].
Another account together with some generalizations on rigidity of group actions
is given in the book [Zi1]. For a vivid description of the proof of arithmeticity
theorem, see [Ti1] and also [Bo3, §7, pp. 7-10].

Besides non-arithmetic lattices acting on the real hyperbolic spaces [GPS],
there are also non-arithmetic lattices acting on the complex hyperbolic spaces of
low dimensions [DeM]. On the other hand, lattices acting on the two types of
other rank one symmetric spaces of noncompact type are arithmetic [Co] [GP].
Non-arithmetic lattices in rank 1 p-adic semi-simple Lie groups always exist [Lu1].

In the above discussions, we concentrated on lattices in semisimple Lie groups.
In fact, Margulis proved that if S is a finite set of primes and Gp is a semisimple p-
adic Lie group with trivial center, any irreducible lattice in the product

∏
p∈S Gp

is arithmetic if the sum of the ranks of Gp over p ∈ S is at least 2 (see [91-1]).

In his lecture at Yale in 1992, Selberg suggested that some of his work should
imply that any discrete subgroup containing lattices from the opposite horospher-
ical subgroups of a product of SL(2,R) is an arithmetic subgroup (or close to it).
This is stronger than the arithmeticity of such discrete subgroups, since they may
not be a priori lattices. Margulis raised this question for discrete subgroups Γ of
general higher rank semisimple Lie groups G such that Γ contain lattices from
opposite horospherical subgroups and intersect any normal subgroups trivially,
i.e., asked whether such groups Γ are arithmetic under the above assumption. If
G is a split higher rank simple Lie group and not equal to SL(3,R), then this
propblem of Selberg and Margulis was solved positively by Oh [Oh4]. As men-
tioned above, a construction from representation theory by Margulis in [74-2] and
[75-2] was used crucially here in [Oh4].

8. Local and strong rigidity of lattices and locally symmetric
spaces

Arithmeticity of lattices is closely related to rigidity of lattices. In fact, one
of the main motivations for Selberg is to use deformation rigidity to prove arith-
meticity of lattices. On the other hand, rigidity of lattices is also natural from
the point of view of geometry of locally symmetric spaces.

Besides [Se2] [Se3], the first papers on rigidity of lattices and locally symmetric
spaces include [Ca] [CaV] [We]. The motivation of [CaV] is to apply the general
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deformation theory of Kodaira-Spencer on complex structures to compact Her-
mitian locally symmetric spaces Γ\X. It gives vanishing results on cohomology
groups with coefficients in the sheaf Θ of germs of holomorphic tangent vector
fields. If X is an irreducible bounded symmetric domain different from the unit
disc in C, the first cohomology group vanish, and hence Γ\X is infinitesimally
rigid. The paper [CaV] also contains a result, related to [Se3, Theorem, p. 159],
which states that if Γ\X is a compact irreducible Hermitian locally symmetric
space and X 6= H2, and G is the group of all holomorphic isometries of X, then
under a suitable conjugation by elements of G, the matrix entries of elements of
Γ are contained in a number field.

[Ca] proves similar vanishing results on cohomology groups for compact locally
symmetric spaces of constant sectional curvature. The methods used in these
papers are of Bochner type, which have also been used in other geometric proofs
of rigidity results, for example in the super-rigidity in [Co] and [GS] for rank one
lattices acting on the quaternionic hyperbolic spaces and the hyperbolic Cayley
plane.

The paper [We] proves the local (or deformation) rigidity of irreducible uniform
lattices of semsimple Lie groups without simple factor of dimension 3 or compact
simple factors, which was conjectured by Selberg [Se3, p. 161]. It also uses
Bochner type arguments or rather arguments from [Ca].

After these local rigidity results on locally symmetric spaces, Mostow obtained
global (or strong) rigidity results of locally symmetric spaces [Mos1]. One version
of the Mostow strong rigidity states as follows:

Suppose that G,G′ are connected semisimple Lie groups with trivial center and
no compact factors, and Γ ⊂ G and Γ′ ⊂ G′ are two uniform lattices. If Γ
is irreducible and G is not isomorphic to PSL(2,R), then every isomorphism
π : Γ → Γ′ extends to an isomorphism π : G → G′.

If we take G = G′, this strong rigidity property of Γ implies the local (defor-
mation) rigidity of Γ in G.

Another version can be stated in terms of locally symmetric spaces. Let K ⊂ G
and K ′ ⊂ G′ be maximal compact subgroups, and X = G/K and X ′ = G′/K ′ be
their associated symmetric spaces of noncompact type, endowed with invariant
Riemannian metrics. Then the Mostow strong rigidity is equivalent the following
result:

Suppose that Γ\X is irreducible and X is not equal to the hyperbolic plane H2.
If Γ\X and Γ′\X ′ are homotopic, then they are isometric when the metrics on
X and X ′ are suitably scaled on their reducible factors.
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This formulation is closely related to the Borel conjecture in geometric topol-
ogy: If two closed aspherical manifolds M and N are homotopic, then they are
homeomorphic.

By definition, M is an aspherical manifold if πi(M) = {1} for all i ≥ 2. Locally
symmetric spaces of noncompact type are aspherical manifolds, and the Mostow
strong rigidity settles this conjecture when both M and N are locally symmetric
spaces.

The Borel conjecture is related to classification of manifolds and was directly
motivated by an earlier result of Mostow on solvmanifolds. Though many im-
portant cases have been proved, it is not completely solved yet and is a major
unsolved problem in geometric topology. See [Fa] and references there (also [Ji1]
for more references).

In the above version of the Mostow strong rigidity, the lattices Γ are assumed
to be co-compact. A natural problem is to remove this condition. This was
achieved by Margulis in [75-2] when the rank of G is at least two, and the proof
was totally different from the remarkable proof of Mostow of strong rigidity of
uniform lattices [Mos1] and was more in the style of the theory of automorphisms
of classical groups. The rank one case was proved by Prasad [Pr1] by generalizing
the method of [Mos1]. (See [Kos] and the introduction of [Pr1] for the history
of the Mostow strong rigidity for non-uniform lattices). Therefore the strong
rigidity holds for all irreducible lattices in semisimple Lie groups with trivial
centers which are not locally equal to SL(2,R) and have no compact factors.

In an earlier paper [Mos2, §12], Mostow proved the following result: Let G be
the group of isometries of a real hyperbolic space X of dimension n ≥ 3, and Γ, Γ′
be two lattice subgroups of G. Let θ : Γ → Γ′ be an isomorphism and ϕ : X → X
a quasi-conformal homeomorphism such that

ϕ(γx) = θ(γ)ϕ(x)

for all γ ∈ Γ and x ∈ X. Then θ extends to an inner automorphism of G. In
particular, Γ\X and Γ′\X are isometric.

A corollary of this result is the following: Assume that M and N are two com-
pact Riemannian n-manifolds with constant negative curvature and n > 2. If M
and N are diffeomorphic, then they conformally equivalent and hence isometric.

In [Mos2], the above assumption that M and N are diffeomorphic is impor-
tant. In [70-1], Margulis strengthened this latter result and proved the following
result: if two compact hyperbolic manifolds M and N of dimension at least 3 are
homotopic, then they are isometric.

The methods and ideas of this two pages long paper [70-1] are much more im-
portant, though many people might not be aware of this fact. As it is well-known
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to many people, the important notion of quasi-isometries and the method of push-
ing things, for example, an equivariant homotopy equivalence, to the boundary at
infinity of symmetric spaces of noncompact type are used crucially in the famous
proof of the Mostow strong rigidity by Mostow in [Mos1], and have motivated a
lot of recent developments in various subjects, in particular in geometric group
theory. It is also well-known that Gromov revolutionized the study of finitely
generated groups by putting on word metrics on them and approximating the
universal covering of a compact manifold by the fundamental group with a word
metric and using the idea of quasi-isometries. In this short paper [70-1], these
important notions and methods were introduced for real hyperbolic spaces and
discrete groups acting on them independently of [Mos1] (the methods used in
[Mos1] were outlined in an ICM talk by Mostow in 1970 [Mos3]) and ahead of
Gromov’s work, for example, the famous papers [Gr2] [Gr3].

9. Super-rigidity of lattices

There have been a lot of extension and generalizations of the Mostow strong
rigidity. One of the most significant is the super-rigidity of lattices by Margulis
[75-4] [84-1] [91-1]. Many results were announced in [75-4] and some proofs were
also outlined. The paper [84-1] was written in mid-1970s and appeared as an
appendix to the Russian translation of [Rag1].

The history and motivations of the superrigity of irreducible lattices of higher
rank semisimple Lie groups canbe best explained by a recollection of Margulis:

“In the late sixties I learnt about Mostow’s fundamental work on strong rigid-
ity. Thinking about it, I at some point realized that it would be possible to prove
the arithmeticity of uniform higher rank lattices if one could prove a statement
which is now called superrigidity. I believe (and this was confirmed by Mostow)
that the superrigidity was a new phenomenon which had not been discovered be-
fore. The first proof of superrigidity was based on combination of methods from
ergodic theory and algebraic group theory, and one of the important ingredients
was Oseledec multiplicative ergodic theorem.8

One of the consequences of superrigidity is the classification (in a certain sense)
of finite-dimensional representations of higher rank lattices and S-arithmetic groups.
The reduction of this classification to superrigidity is based on the argument which
is dual (again in a certain sense) to the famous “unitary trick” of H.Weyl. Let
me be a little bit more precise. Roughly speaking, the superrigidity describes rep-
resentations ρ of a lattice Γ with non-compact image. But in general this image

8Borel in his paper [Bo3, pp. 10, §7] wrote that “The work of Margulis [on arithmeticity of
irreducible lattices of higher rank semisimple Lie groups] was based on a new principle, soon
christened “superrigidity” by Mostow...”
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can be compact. In order to make it non-compact, one has to apply Galois auto-
morphisms of C over Q to matrix coefficients of elements from ρ(Γ); the desired
non-compactness can be achieved if ρ(Γ) is not finite.

It looks strange now, but when I worked on superrigidity I was not influenced
by Furstenberg’s work just because I was essentially not familiar with it. It is
indeed strange because many ideas and methods introduced by Furstenberg are very
similar in style to what I used. I learnt about Furstenberg’s work only around 1974
and his boundary theory influenced me very much. In particular my proof of the
normal subgroup thoerem could not exist without that theory. Another important
ingredient in the proof was the use of Kazhdan’s property (T). I should say that
I consider the proof of the normal subgroup theorem as my best proof.”

For simplicity, we only state one version of the super-rigidity for lattices in real
Lie groups: Let G be a connected semisimple linear algebraic Lie group defined
over R of R-rank at least 2. Assume that the real locus G(R) has no compact
factors. Denote the identity component of G(R) by G(R)0 and let Γ ⊂ G(R)0 be
an irreducible lattice. Suppose that k is a locally compact field of characteristic 0,
and G′ is a connected algebraic group defined over k, almost simple over k. For
every homomorphism π : Γ → G′(k) with the image π(Γ) being Zariski dense, the
following holds:

(1) If k = R and G′(R) is non-compact, then π extends to a rational homo-
morphism of algebraic groups π : G → G′ defined over R, in particular,
extends to a Lie group homomorphism π : G(R) → G′(R′).

(2) If k = C, then either the closure π(Γ) in the regular topology of the com-
plex variety G′ = G′(C) is compact, or the homomorphism π extends to
a homomorphism of algebraic groups π : G → G′.

(3) If k is a totally disconnected local field such as Qp, then the closure of
π(Γ) in the locally compact space G′(k) is compact.

In the above statement, the assumption that the image π(Γ) is Zariski dense in
G′ can be removed. In fact, it was shown by Margulis that the Zariski closure of
π(Γ) is a semisimple (or rather reductive) algebraic group, and hence projecting
to suitable factors reduces to the previous case. For the most general version of
the super-rigidity of lattices, see [75-3, Theorems 6, 8] [91-1, Theorem 6.15 of
Chapter IX].

The Mostow strong rigidity is a special case of the above Margulis super-
rigidity when k is required to be either R or C, and the image π(Γ) is a lattice
in G′(k). (Note that by the Borel density, lattices are Zariski dense). In a
sense, the Margulis super-rigidity classifies finite dimensional representations of
irreducible lattices Γ of G(R) in terms of finite dimensional representations of
algebraic groups G, which are understood quite well.
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A more important application of the Margulis super-rigidity is to prove arith-
meticity of such lattices Γ. In fact, as Selberg observed in [Se3, p. 159, p. 164],
if a lattice Γ in a linear semisimple Lie group G is locally rigid, then under a
suitable conjugation by elements of G, the matrix entries of elements of Γ belong
to a number field, hence belong to Q when embedded into a bigger general linear
group by applying the functor of restriction of scalars. By the local rigidity of
Weil [We] (or applying the stronger Mostow-Margulis-Prasad strong rigidity), an
irreducible lattice Γ in a connected semisimple Lie group G with trivial center
(hence linear) and no compact factors is locally rigid and thus admits a realiza-
tion by matrices with entries contained in Q. But this does not imply that Γ is
an arithmetic subgroup yet, though it is suggestive (see [PS2, p. 189, paragraph
5]). The remaining difficult step is to show that the denominators of the entries
for all the elements of Γ are uniformly bounded. This is equivalent to the fact
that they are bounded in the p-adic topology, which is settled by the Margulis
super-rigidity when k is taken to be a locally compact, totally disconnected field
such as Qp. (See [Zi, p. 120-121] [91-1, Chap. IX, §2] for details.)

Since there are non-arithmetic lattices acting on the real hyperbolic spaces of
all dimensions and complex hyperbolic spaces of dimensions less than or equal
to 3, the Margulis super-rigidity can not be true for these lattices in PSO(n, 1)
and PSU(n, 1). For the other two rank 1 symmetric spaces, the quaternionic
hyperbolic spaces and the hyperbolic Cayley plane, lattices acting on them do
satisfy super-rigidity properties. Over Archimedean fields R and C, it was proved
by Corlette [Co], and the super-rigidity over p-adic fields was proved by Gromov
and Schoen [GS]. In both cases, harmonic maps and Bochner type arguments are
used. Other references on geometric super-rigidity include [JoY1-2] [MSY], where
the super-rigidity is proved for uniform lattices and some non-uniform lattices.

See [Ji1-2] for more references on and some expositions of differential geometric
proofs of Mostow-Margulis rigidity of locally symmetric spaces and generaliza-
tions to Kähler manifolds, in particular, the Siu-Yau method of proving rigidity
results using harmonic maps.

10. Normal subgroups of lattices

As mentioned before, one of the motivations for Selberg to make the conjecture
on arithmeticity of lattices is to get a better understanding of the fundamental
domains of such lattices on symmetric spaces, in order to develop the spectral
theory of automorphic forms and the Selberg trace formula. Another is to obtain
group structures of such lattices.

The results of Margulis super-rigidity and arithmeticity of lattices and methods
developed to prove them have many other striking applications on understanding
intrinsic structures of such lattices.
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Let Γ be an irreducible lattice in a connected semisimple Lie group G with
finite center and no compact factors. Assume that the rank of G is at least 2.
Then a known theorem of Kazhdan implies that the quotient Γ/[Γ,Γ] is finite
(see [Zi, Corollary 7.1.10, p. 132]). Clearly, [Γ,Γ] is an infinite normal subgroup
of Γ. Motivated by this and a result of Vaserstein [Vas], Margulis asked [75-4, p.
Problem 3] if any infinite normal subgroup of Γ has finite index. This is completely
settled by him in [78-1] [78-2] [79-1]. Briefly, the results can be summarized as
follows: Let G be a connected semisimple Lie group with no compact factors and
finite center and of rank at least 2, and Γ ⊂ G an irreducible lattice. For every
normal subgroup N ⊂ Γ, the quotient N\Γ has property T of Kazhdan. If N\Γ
is amenable, then it is finite, i.e., N is of finite index; if N\Γ is not amenable,
then N is contained in the center Z(Γ) of Γ and hence is finite.

Roughly, this result says that such an irreducible lattice is simple modulo finite
groups. If the irreducible lattice can be realized as an arithmetic subgroup of a
linear semisimple algebraic group G defined over Q, then G is almost simple over
Q. This brings out another close relation (or similarity) between the algebraic
group G and its lattice subgroup Γ. It also reminds one of the famous construction
of finite simple groups of Lie type from Chevalley groups.

The normal subgroup theorem is extremely elegant and can stand alone as a
significant result. Naturally, there have been many applications of it. According
to Margulis,

“One of main applications of the normal subgroup theorem is the statement
about the finiteness of index of every non-central normal subgroup of a S-arithmetic
group (under certain conditions). When S is finite, this is a direct consequence
of the normal subgroup theorem (in combination with the Borel-Harish-Chandra
theorem). To go from finite S to infinite S, one has to use the strong approxi-
mation for semi-simple groups over global fields. This reduction was first noticed
by Gopal Prasad.”

Another unexpected deep result related to ideas of Margulis and this normal
subgroup theorem is the construction by Burger and Mozes [BuM1] of new ex-
amples of infinite simple groups satisfying the following conditions: (1) finitely
presented, (2) torsion-free, (3) equal to fundamental groups of finite, locally
CAT(0)-complexes, (4) of cohomological dimension 2, (5) biautomatic and (6)
equal to the free amalgams of two isomorphic free groups over a common finite
index subgroup.

These new groups are very different from all the known examples of finitely
presented simple groups and answer positively several questions posted by various
people. They arise as lattices in products of automorphism groups of regular trees,
which are new classes of locally compact groups, for example, are not Lie groups.
Briefly, they are given by certain lattices of Aut T1 × Aut T2 whose projections
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in each factor satisfy various transitivity conditions, in particular, the so-called
locally quasiprimitive condition [BuM2]. Another new feature of such lattices in
comparison with lattices in semisimple Lie groups is that that cocompact lattices
in Aut T1 ×Aut T2 never have dense projections in the two factors.

Briefly, Burger and Mozes give a criterion for non-residually finiteness of co-
compact irreducible lattices Γ of Aut T1×Aut T2, and also prove that irreducible
lattices in Aut T1×Aut T2 satisfies the analogue of the Margulis normal subgroup
theorem. Using these results, the new class of simple infinite groups can be con-
structed from non-residually finite cocompact lattices of Aut T1 ×Aut T2.

Another type of simple infinite groups are recently obtained from lattices in
minimal Kac-Moody groups by Caprace and Remy [CaR], where the analogue of
the Margulis normal subgroup theorem is also used crucially.

A further major application of the Margulis normal subgroup theorem is the
proof of the following result by Polterovich [Pol, Corollary 1.1.D]: Let Γ be irre-
ducible non-uniform lattice in a connected semisimple real Lie group G of real
rank at least two without compact factors and with finite center. Then every
homomorphism from Γ into the group of smooth symplectic diffeomorphisms of
a compact oriented surface of genus at least two has finite image.

In the proof of the Margulis normal subgroups, the theorem on factors of
boundary actions plays a crucial role (see [91-1, Theorems 4.5 and 4.8 of Chapter
IV] and [91-1, Theorem 4.3 of Chapter VI]). As mentioned in the previous section,
Margulis considered the proof of the normal subgroup theorem as his best proof.
For other developments on these results, see papers by Nevo and Zimmer [NeZ1-
2], Dani [Da4], and Bader and Shalom [BaS].

11. Normal subgroups of groups of rational points and
Margulis-Platonov conjectures

Let G be a simple simply connected algebraic group defined over a number
field k. Let G(k) be its group of k-rational points. A natural problem is to
understand normal subgroups of G(k).

One result in [78-2] says that every noncentral normal subgroup of G(k) has
finite index. In particular, the commutator subgroup [G(k),G(k)] has finite index
in G(k). This is also proved by Prasad in [Pr2, Theorem C, p. 569].

One basic question is to understand conditions under which G(k) has no non-
central proper normal subgroups, i.e., G(k) is projectively simple.

A conjecture of Platonov states that G(k) is projectively simple if and only if
for all places µ of k, the local groups G(kµ) are projectively simple.



22 Lizhen Ji

If G(k) is not projectively simple, a conjecture of Margulis in [78-2] describes
its noncentral normal subgroups. See [PlR, Chapter 9] for precise statements and
a survey of some results on these conjectures. For more recent results, see [Seg]
[RaSS].

In [80-1], Margulis proved a related conjecture of Kneser on noncentral normal
subgroups of multiplicative groups of a quaternion algebra over a global field.

12. Characterization of arithmetic groups

As mentioned earlier, one of the motivations of the Selberg conjecture on arith-
meticity of lattices is to get a better understanding of the geometry at infinity of
locally symmetric spaces. Another reason is that if Γ is an arithmetic subgroup of
a linear semisimple algebraic group G defined over Q, then the associated locally
symmetric space Γ\X has a lot of symmetry.

The isometry group of Γ\X as a Riemannian manifold is finite, as a special
case of finiteness of the isometry group of a complete nonpositively Riemannian
manifold of finite volume. But it admits many (Hecke) correspondences, which
are important for understanding various problems on Γ\X, for example, the Euler
product of automorphic functions, and the spectral theory of automorphic forms,
in particular a conjecture of Sarnak on abundance of cuspidal eigenfunctions (the
Weyl law of the counting function of the cuspidal eigenvalues, to be precise) for
noncompact arithmetic locally symmetric spaces [Sar1].

More specifically, define the commensurability subgroup of Γ in G by:

Comm(Γ) = {g ∈ G(R) | gΓg−1 and Γ are commensurable}.

Then every element g ∈ Comm(Γ) induces a correspondence on Γ\X. Clearly
Γ ⊂ Comm(Γ). It can be shown easily that G(Q) ⊂ Comm(Γ) (Note that Γ is
assumed to be arithmetic). If the algebraic group G has trivial center and the
real locus G(R) has no compact factors, then Comm(Γ) is dense in G(R), and
G(Q) = Comm(Γ).

In [75-4, Theorem 9], Margulis proved that if Γ is an irreducible lattice in a
connected semisimple Lie group with no compact factors and trivial center, then
Γ is arithmetic if and only if Comm(Γ) is dense in G. This characterization of
arithmetic subgroups was conjectured by Piateski-Shapiro and Shafarevich [PS1].
(For characterization of arithmetic Fuchsian groups, see the references in [Ji1]).
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13. Further developments on rigidity of lattices

There have been many extensions and generalizations of results related to
the themes discussed in the previous sections: arithmeticity, strong rigidity and
super-rigidity of lattices of semisimple (real and p-adic) Lie groups.9

Both semisimple real Lie groups and p-adic Lie groups are related to semisim-
ple algebraic groups over fields of characteristic 0, and a natural generalization
is to prove super-rigidity and arithmeticity of lattices in high rank semisimple
groups over local fields of arbitrary characteristic. Such results have been proved
by Venkataramana [Ve]. Another generalization is to consider arithemticity of
lattices in adelic groups, which was proved by Oh in [Oh3].

As discussed above, Margulis considered both real and p-adic semisimple Lie
groups of higher rank, and arithmeticity and super-rigidity of lattices in them.
For related results on characterization of rank one lattices of groups in positive
characteristic, see [Li1] (see also [Li2] for related results on super-rigidity of lat-
tices over positive characteristic).

Note that lattices of semisimple real Lie groups act on symmetric spaces of
non-compact type, and lattices of semisimple p-adic Lie groups act on Bruhat-
Tits buildings, and rigidity properties of lattices of semisimple Lie groups can be
studied in terms of these actions.

Both symmetric spaces of non-compact type and Bruhat-Tits buildings are
CAT(0)-spaces. But there are many other natural CAT(0)-spaces, for example,
products of trees. Therefore, it is natural to study discrete group actions on
CAT(0)-spaces and their rigidity properties analogous to the strong rigidity and
super-rigidity of irreducible lattices of semisimple (real and p-adic) Lie groups.
Similarly, it is also natural to study rigidity properties of group actions on CAT(-
1)-spaces, which correspond to rank 1 symmetric spaces of non-compact type and
include trees as important examples.

Furthermore, instead of replacing Lie groups by the automorphism groups of
CAT(0)-spaces and of CAT(-1)-spaces as in the previous paragraph, one could
also consider locally compact, non-discrete, compactly generated groups and their
products, and discrete subgroups contained in them, and try to generalize impor-
tant properties of irreducible lattices in semisimple Lie groups such as the normal
subgroup theorem etc..

9It should be emphasized that there have been many significant results in these directions,
and the rather incomplete and brief summary of literature in this short section only represents
the limited knowledge of the author of this article and includes those brought to his attention
by various experts.
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The paper [06-3] proves a quite general super-rigidity theorem for actions of
irreducible lattices in products of locally compact groups on Busemann non-
positively curved uniformly convex metric spaces and also includes a proof of an
unpublished result of Margulis on commensurability super-rigidity in a general
setting.

See also [Bur] [Moz1] [BaS] [Fur] [Mon] [Gao] for summaries and references on
these topics and related results.

Another important generalization of the Mostow and Margulis rigidity the-
ory is the Zimmer program on rigidity properties and classification of actions of
higher rank semisimple Lie groups, their irreducible lattices actions on compact
manifolds preserving various geometric structures, and orbit equivalence rigidity.
In certain sense, the Zimmer program is a non-linear generalization. A direct
analogue of the Margulis super-rigidity is the Zimmer cocycle super-rigidity. See
[Zi1] [Zi2] for details. See also the recent surveys [Pop] and [Sh] on related topics.

14. Counting lengths of geodesics and volume entropy, and
Margulis measure

If M is a compact Riemannian manifold with strictly negative sectional curva-
ture, then each homotopy class of closed curves contains a unique closed geodesic,
and the lengths of closed geodesics in M form an increasing sequence with finite
multiplicity and going to infinity. A natural problem is to understand asymptotic
behaviors of the counting function of this sequence.

One result of Margulis’ thesis, parts of which were published in [69-2] [70-2],
and an English translation in its entirety was recently published in [04-1], gives
the leading term of such asymptotics.

Specifically, denote the counting function of the lengths of closed (prime)
geodesics γ in M by π(T ):

π(T ) = |{γ | `(γ) ≤ T, where γ is a closed prime geodesic in M}|.
Let h be the volume entropy of M , i.e., the exponential growth rate of the volume
of balls BM̃ (R, x0) in the universal covering M̃ of M as the radius R → +∞.
Then as T → +∞,

π(T ) ∼ ehT

hT
.

This is similar to the prime number theorem counting prime integers and hence
is called the generalized prime number theorem. Briefly, the prime numbers can be
studied by the Riemann zeta function through the Euler product. For a compact
Riemann surface with hyperbolic metric Γ\H, there is also a Selberg zeta function,
which can also be expressed as products over prime closed geodesics of Γ\H. This
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Selberg zeta function can be used to obtain the asymptotic of π(T ), i.e., the
generalized prime number theorem in this case. Since the Poisson summation
formula is used to study the Riemann zeta function and the Selberg trace formula
for Γ\H is a non-abelian analogue of the Poisson summation formula and is used
to study the Selberg zeta function, the generalized prime number theorem for
geodesics is a non-abelian generalization of the usual prime number theorem
counting prime integers. For more discussions of the special case of Γ\H, see the
book [Hej].

Closed geodesics in M correspond to periodic orbits of the geodesic flow on
M (or rather tangent bundle, or its unit sphere). It is known that when the
sectional curvature is strictly negative, the geodesic flow is Anosov. Margulis’s
thesis also studies general Anosov systems and gives asymptotic properties of
lengths of periodic orbits and other invariants. An important tool in this study
is the so-called Margulis measure.

Indeed, the Margulis measure (also called the Bowen-Margulis measure) for an
Anosov flow is the unique flow-invariant probability measure of maximal entropy
and has played an important role in ergodic theory, and its construction by
Margulis is another major result of Margulis’ thesis. It was first published in
[70-2] before the full version [04-1]. For more details about this measure, relations
to different notions of entropy, and applications, see also the book [KaH].

This thesis of Margulis has motivated several active areas of research. Besides
counting length distribution of closed geodesics, another aspect of the thesis [04-
1] of Margulis concerns distribution (or counting) of orbits of discrete groups
acting co-compactly on a simply connected strictly negatively curved manifold, in
particular, a rank one symmetric space of non-compact type. Counting orbits of
discrete groups is an important and natural problem, for example, when the group
is Zn acting on Rn by the standard action or through a linear representation, then
it is the classical circle problem on integral points. For some generalization of
this result to higher rank symmetric spaces of non-compact type, see [GO].

There is also a zeta function which encodes the lengths of periodic orbits. See
the survey article by M.Sharp in [04-1] for developments after this marvelous
thesis. See also the review of [O4-1] by Parry [Par].

15. Long time behavior of unipotent group orbits

When a Riemannian manifold M is given by a rank 1 locally symmetric space
Γ\X, geodesics correspond to orbits of the Cartan subgroup A of G in the ho-
mogeneous space Γ\G.

If we replace the subgroup A by a one-parameter subgroup of unipotent ele-
ments {ut} of G, we get a unipotent flow on homogeneous spaces of G. Unipotent
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flows and actions of unipotent subgroups on homogeneous spaces have been stud-
ied in many papers of Margulis. They played an important role in his proof of the
arithmeticity of non-uniform lattices of higher rank semisimple Lie groups and
his solution of Oppenheim conjecture on values of irrational indefinite quadratic
forms at integral points.

In [71] [75-3], Margulis proved the following result: Let G = GL(n,R). For
any one-parameter group {ut} of unipotent linear transformations, the orbit of
every point in the homogeneous space GL(n,R)/GL(n,Z) under the semi-group
{ut}, t ≥ 0, does not diverge to infinity. This result was conjectured by Piateski-
Shapiro and was used by Margulis to prove arithmeticity of higher rank lattice
subgroups of semisimple Lie groups.

If an orbit does not diverge to infinity, a natural question is how often it returns
to compact regions. Such a result was proved by Dani and Margulis in [91-3],
following earlier work of Dani [Da1] [Da2]. Let G is a semisimple algebraic Q-
group and Γ ⊂ G(Q) be an arithmetic subgroup in G = G(R). Then there exists
a compact subset K of G/Γ such that, for any unipotent one-parameter subgroup
{ut} ⊂ G and any g ∈ G, the time spent in K by the ut-orbit of gΓ during the time
interval [0, T ] is asymptotic to T , unless {g−1utg} is contained in a Q-parabolic
subgroup of G.

See the paper [97-3, §3] for a summary of various improvements and related
results.

Further significant improvements were obtained in a joint paper with Kleinbock
[98-2] and the paper by Kleinbock [Kl], and generalizations to S-arithmetic cases
were obtained by Kleinbock and Tomanov [KlT].

16. Expander graphs and work in combinatorics

Probably most people have heard of the Margulis arithmeticity theorem of
irreducible lattices in higher rank semisimple Lie groups, but some may not know
that Margulis [73-2] was the first one who explicitly constructed expanders (or
expanding graphs). For a comprehensive discussion of the topics in this and the
next section, see the books [Lu3] [Sar2].

Roughly, an expander is a finite graph with few vertices but high connectivity
properties, i.e., many edges from all vertices. Specifically, let c > 0 and k, n be
positive integers. A k-regular graph X with n-vertices is called a c-expander if
for every subset A of X, the following isoperimetric type inequality holds:

(1) |∂A| ≥ c(1− |A|
n

)|A|,
where the boundary is ∂A = {y ∈ X | d(y, A) = 1}, d(·, ·) is the distance function
on X with every edge length equal to 1.



A Summary of the Work of Gregory Margulis 27

Clearly, every finite (k-regular) graph admits a positive c satisfying the above
condition. But the point is to find a uniform constant c which works for an
infinitely family of k-regular graphs.

Expanders are useful for many purposes and are sought after by people in sev-
eral fields. Random graphs are expanders, but it was not easy to construct them
explicitly, and hence they are difficult to implement for practical applications. In
[73-2], Margulis used groups with property T of Kazhdan to construct expanders.
Many other constructions followed.

On a connected compact manifold M without boundary, the constant functions
are eigenfunctions of the Laplace operator with eigenvalue equal to 0, which
has multiplicity 1. The next eigenvalue λ1(M) is positive and is related to an
isoperimetric invariant, called the Cheeger constant, of the manifold. In fact, it
basically follows from the characterization of eigenvalues in terms of the Rayleigh
quotients. These notions can be generalized to graphs.

For graphs, the Cheeger constant is comparable to the expanding constant c in
Equation (1). Therefore, the key point in constructing expander graphs is to find
graphs on which the eigenvalue of constant eigenfunctions is isolated by a definite
amount from other eigenvalues. This exactly corresponds to the property T of
Kazhdan, for which the trivial representation is isolated by a definite amount
from other unitary representations in the unitary dual of the group. See [Lu3,
§3.3] (also [Zi1]) for definition of property T and related results.

In [88-1], Margulis used the positive solution of Ramanujan conjecture for
modular forms or automorphic representations, which is also basically related
to a definite isolation of the trivial representation in a regular representation,
to construct expanders. This work is similar to the work of Lubotzky-Phillips-
Sarnak [LuPS].

Besides the above now well-known work on expanders by Margulis, his other
work in combinatorics are equally deep and beautiful.

For a connected graph, an important invariant is the girth, which is the shortest
length of cycles in it. The paper [82-1] constructs explicitly graphs with large
girths. For graphs whose vertices have degree greater than or equal to three, it
can be shown easily that the girth grows at most at the rate of the logarithm of
the number of vertices. It is not difficult either to prove the existence of such
graphs whose girth has the maximal growth rate, i.e., it is a logarithmic function
of the number of vertices. But it is difficult to explicitly construct them. A
basic result of [82-1] gives an explicit construction of such graphs with maximal
girth growth. It should be emphasized that these graphs are the first explicitly
constructed such graphs. As an application, it also gives an explicit construction
of a sequence of low density codes for which the probability of errors of decoding
tends to zero. The paper [84-4] contains related results.
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The paper [74-3] deals with a sharp transition behavior of the probability
f(p) = fG(p) such that a connected graph G becomes disconnected when every
edge is deleted with probability p.

Clearly, f(p) is an increasing function of p with f(0) = 0 and f(1) = 1. For
ε ∈ [0, 1], define

t1(ε) = inf{p | f(p) ≥ ε},
which is the cut-off point for f(p) lying below ε,

t2(ε) = sup{p | f(p) ≤ 1− ε},
which is the cut-off point for f(p) lying above 1− ε, and

t(ε) = t2(ε)− t1(ε),

which is the transition gap in p for f(p) to change from ε to 1 − ε. The main
result of this paper [74-3] states that for all ε, δ ∈ [0, 1], there exists an integer
n = n(ε, δ) such that

t(ε) < δ

for every n-connected graph. (Recall that a graph G is said to be n-connected
if there does not exist a set of (n − 1) vertices whose removal disconnects the
graph, i.e., its complement in G is disconnected. For example, a connected graph
is 1-connected, and a biconnected graph is 2-connected.)

This bound on t(ε) shows a sharp transition of f(p) from being almost surely
connected to being almost surely disconnected after edges are deleted with proba-
bility p. This reminds one of a similar sharp transition in the important pecolation
theory (see the article by Kesten [Ke] and references there for more detail about
percolation theory).

17. Invariant measures on spheres and Rn

Let Sn be the unit sphere in Rn+1 with the induced Riemannian metric. Then
its associated Lebesgue measure λ is countably additive and invariant under the
totation group O(n+1). It was shown by Lebesgue that λ is the unique countably
additive and rotation invariant measure on Sn up to a scalar multiple. Banach
showed that this uniqueness result fails for n = 1 if the countable additivity is re-
placed by finite additivity. The famous Banach-Ruziewicz problem asks whether
the uniqueness still holds for n ≥ 2 if the countable additivity is replaced by fi-
nite addivitity, i.e., whether the Lebesgue measure λ is the unique finitely additive
measure defined on Lebesgue measurable subsets of Sn which is invariant under
O(n + 1) when n ≥ 2.

It was finally solved positively for n ≥ 4 by Margulis [80-2] and Sullivan [Sul1]
by discrete groups having property T of Kazhdan, and for n = 2, 3 by Drinfeld
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[Dr] using the solution of the Ramanujan conjecture, all building on a crucial
reduction step by Rosenblatt [Ro].

The basic idea of the solution of the Banach-Ruziewicz problem is as follows.
First, any such finitely additive and invariant measure is absolutely continuous
with respect to the Lebesgue λ and hence can be used to integrate functions in
L∞(Sn), i.e., define a mean on L∞(Sn). Then the Banach-Ruziewicz problem is
equivalent to whether the Lebesgue integral on L∞(Sn) is the only SO(n + 1)-
invariant mean on L∞(Sn).

The subspace

L2
0(S

n) = {f ∈ L2(Sn) |
∫

Sn

fdλ = 0}

is clearly invariant under SO(n + 1) and hence every finitely generated subgroup
Γ. (It might be worthwhile to point out that this subspace is used to characterize
the first positive eigenvalue of Sn in terms of the Rayleigh quotients.)

The second step is that if the induced representation of Γ on L2
0(S

n) does not
weakly contain the trivial representation, then the Lebesgue mean (or integral)
is the unique invariant mean on L∞(Sn).

The third step is to find a finitely generated group Γ ⊂ SO(n + 1) which has
property T and is dense. In fact, the density of Γ implies that its action on Sn is
ergodic and hence does not have any invariant nonzero function in L2

0(S
n); and

property T implies that its representation does not weakly contain the trivial
representation.

The Lebesgue measure on Rn is also countably additive and invariant under the
isometry group. The Banach-Ruziewicz problem can also be formulated for Rn:
Is the Lebesgue measure the unique finitely additive isometry-invariant positive
measure on Rn up to a scalar multiple? The answer is no by Banach for n = 1, 2.
In [82-2], Margulis gave a positive answer for n ≥ 3.

A quantitive version of the Banach-Ruziewicz problem for measures on Sn has
also been obtained by Clozel [Cl] for even n and Oh [Oh5] for odd n. For a new
and elementary proof of the Ruziewicz problem on S2 and other related results,
see the paper by Gamburd, Jakobson and Sarnak [GaJS].

18. Strong approximation of algebraic groups

The strong approximation is an important arithmetic property of linear al-
gebraic groups defined over global fields. It is a generalization of the Chinese
remainder theorem and can be formulated for all varieties defined over global
fields.
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An important problem is to decide which varieties, or more restrictively linear
algebraic groups, satisfy the strong approximation property. For general varieties,
not much is known. On the other hand, for linear algebraic groups, it is settled.
Unipotent linear groups and affine spaces satisfy the strong approximation, and
the Levi decomposition reduces the problem to semisimple linear groups.

For semisimple and simply connected linear algebraic defined over number
fields, the strong approximation was established by Kneser and Platonov (see
[PlR, Chapter 7]). Over function fields, it was established for such algebraic
groups by Margulis [77-1] and Prasad [Pr2].

Briefly, the strong approximation for such algebraic groups is the following
statement: Let k be a global field of arbitrary characteristic, and let G be a con-
nected, simply connected, semi-simple linear algebraic group defined and almost
simple over k. Let A be the adele ring of k and let S be a finite set of places of
k. For each µ ∈ S, let kµ be the corresponding local field. Define

GS =
∏

µ∈S

G(kµ).

Assume that GS is noncompact. Then the subgroup G(k)GS is dense in G(A).

The strong approximation is derived from the validity of the Kneser-Tits con-
jecture for algebraic groups over local fields and the following result. Let K be
a local field of arbitrary characteristic. Let G be a connected semi-simple alge-
braic group defined over K. Assume that G is isotropic and almost simple over
K. Let G = G(K) be the group of K-rational points of G. Denote by G+ the
normal subgroup of G(K) generated by the K-rational points of the unipotent
radicals of K-parabolic subgroups of G. Then the main theorem in [77-1] [Pr2]
states: Let H be a closed non-discrete subgroup of G such that G/H carries a
finite G-invariant Borel measure. Then H ⊃ G+; in particular, G/H is compact.
If, moreover, G is simply connected, then H = G.

19. Maximal subgroups of lattices and linear groups

The arithmetic group SL(n,Z) is an important example of finitely generated
group, and understanding its subgroups is a natural and important problem.
The purpose of the joint papers of Margulis with Soifer [77-3] [79-2] [81-1] is to
answer several questions about maximal subgroups of SL(n,Z). One question of
Platonov asks if SL(n,Z) contains a maximal subgroup of infinite index.

To answer this question, the following general criterion is proved: Let Γ be
a finitely generated linear group over a field. Then all the maximal subgroups
of Γ have finite index if and only if Γ has a solvable subgroup of finite index.
This implies that for n ≥ 2, SL(n,Z) contains a maximal subgroup of infinite
index. Margulis and Soifer also prove that if a finitely generated group over a field
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does not contain a solvable subgroup of finite index, then the set of its maximal
subgroups of infinite index is uncountable.

The paper [79-2] [81-1] also answered negatively a question of Platonov and
Prasad which asks if such a maximal subgroup of SL(n,Z) of infinite index must
contain a free group of finite index by proving the following result: When n ≥ 4,
SL(n,Z) has a maximal subgroup of infinite index which contain a free abelian
group of rank 2 and hence does not contain a free subgroup of finite index.

20. Decomposition of lattice subgroups into amalgams

An amalgam decomposition of a group Γ is a free product with amalgamation.
This is a basic and important operation in group theory. For example, it is known
that every finitely generated infinite group has either 1, 2 or infinitely many ends.
A famous theorem of Stalling [St] says that a torsion-free finitely generated group
Γ which has infinitely many ends is a free product with amalgamation.

Serre proved in his book [Ser] that a group Γ acts on a tree without any common
fixed point if and only if it either admits an amalgam decomposition or is an HNN
extension, and every lattice of a rank-one simple algebraic group G over a local
compact, totally disconnected field such as Qp acts on the Bruhat-Tits building
of G, which is a tree, without common fixed points, and hence admits either an
amalgam decomposition or is an HNN extension. If such a lattice is torsion-free,
then it acts freely on the tree given by the Bruhat-Tits building, i.e., no point of
the tree is fixed by any nontrivial element, and hence the lattice is a free group
(see [Lu1] for more results on lattices in rank one Lie groups over local fields).
Similarly, lattices in R-rank-one simple real Lie groups such as SL2(R), SL2(C)
also tend to admit amalgam decompositions. On the other hand, Serre observed
that SL3(Z) is not an amalgam product and conjectured that the same holds for
higher rank irreducible lattices of semisimple Lie groups.

In [81-2], Margulis followed a suggestion of Serre and proved the following result
using the method of equivariant measurable maps: If Γ is an arithmetic subgroup
of a connected, simply connected almost Q-simple Q-linear algebraic group with
R-rank (G) ≥ 2, then Γ is not an amalgam product.

This conjecture is also proved by Watatani [Wa] and Alperin [Al]. In fact, they
proved that if a countable discrete group Γ has property T of Kazhdan, then Γ
has property FA of Serre, i.e., every action of Γ on a tree has a global fixed point,
which in turn implies that Γ is not an amalgam product. One consequence is
that such an arithmetic subgroup Γ has only one end.

But the paper [81-2] gives a more general result as well as information about
possible decompositions of Γ when Γ is an amalgam product. In fact, it proves
that if Γ is a lattice in a locally compact group G which is a product of finitely
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many groups of type Gα(kα), where kα is a local field and Gα a connected sim-
ply connected semisimple kα-linear algebraic group, then, under quite general
conditions, any decomposition of Γ as an amalgam product is induced by a de-
composition of G as an amalgam product of open subgroups. The proof is carried
out by proving that an amalgamated action of Γ on a tree can be extended to
an action of G, similar to the extension of representations in the super-rigidity
of irreducible higher rank lattices.

21. Actions of affine transformations, Milnor conjecture,
Auslander conjecture

The famous Auslander conjecture asks if every affine crystallographic group is
virtually solvable. A stronger conjecture by Milnor requires only that Γ ⊂ Aff(Rn)
acting properly on Rn, but without requiring compact quotients.

The papers [83-1] [84-2] disprove this conjecture of Milnor. Specifically, let G
be the product of O0(2, 1) and the translation group of R3, g1, g2 be two distinct
elements of G such that the linear component of each of them fixes exactly two
lines on the isotropic cone, and Γ = 〈g1, g2〉 be the subgroup generated by g1 and
g2. Sufficient conditions are given for each of the following properties to hold:

(1) Γ is freely generated by g1, g2,
(2) Γ acts properly discontinuously on R3,
(3) Γ does not act properly discontinuously on R3.

As a corollary, they show that G contains a free subgroup Γ on two free generators
that acts properly discontinuously on R3. Clearly such a group Γ is not virtually
solvable. This space gives a counterexample to the Milnor conjecture and is called
a Margulis space-time.

The joint paper with Grunewald [89-1] is also concerned with the Auslander
conjecture. Specifically, let A(n) be the group of affine motions on Rn, i.e.,
the semidirect product Rn o GLn(R), and ` : A(n) → GLn(R) be the canonical
projection. For any g ∈ A(n), the image `(g) is called the linear part of the affine
transformation of g. Suppose that G is a closed subgroup with finitely many
connected components in GLn(R). A group Γ is called G-linear if `(Γ) ⊂ G.
According to this definition, a subgroup of the Euclidean motion group E(n) is
then called O(n)-linear. Let rkR(G) be the real rank of G. One of the main results
in [89-1] states that if rkR(G) ≤ 1, then any G-linear subgroup of A(n) that acts
properly discontinuously on Rn with compact quotient is virtually polycyclic.

The joint paper with Abels and Soifer [97-1] proves the Auslander conjecture
for proper actions on RN for all dimensions up to 6, i.e., N ≤ 6, by considering
the algebraic hull (Zariski closure) of the linear holonomy group l(Γ) in GL(N,R),
which are described as follows.
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Suppose that Γ is a discrete group of affine transformations acting properly on
RN . Then the following holds:

(1) If N = 4m + 1, then l(Γ) is not Zariski dense in a conjugate of O(2m +
1, 2m);

(2) if N = 4m + 3, then there exists a free discrete group Γ of affine trans-
formations acting properly on RN whose linear part is Zariski dense in
O(2m + 2, 2m + 1);

(3) if N = p+q with |p−q| 6= 1, then l(Γ) is not Zariski dense in a conjugate
of O(p, q).

The joint paper with Abels and Soifer [02-1] considers the question when the
Zariski closure of the linear part is equal to the group SO(n + 1, n). The main
results are as follows:

(1) When n is even, there does not exist a properly discontinuous subgroup Γ
of Aff(R2n+1) whose linear part is Zariski dense in SO(n + 1, n).

(2) When n is odd, there exists a properly discontinuous free subgroup Γ of
Aff(R2n+1) whose linear part is Zariski dense in SO(n + 1, n).

The joint paper with Abels and Soifer [05-2] contains the following similar
result: Assume that B is a nondegenerate quadratic form of signature (n− 2, 2)
and let O(B) denote the orthogonal group of the form B. Then the Auslander
conjecture holds for all affine crystallographic groups satisfying l(Γ) ⊆ O(B).

Further related results on affine actions are contained in [06-1].

22. Absence of invariant analytic hypersurfaces.

For Γ a group acting on a complex space X, let H(X)Γ be the set of Γ-
invariant analytic hypersurfaces of X, where an analytic hypersurface is a pure 1-
codimensional closed complex analytic subset. In 1981, Ahiezer [Ah] proved that
if G is a connected semisimple linear algebraic group defined over Q, and Γ ⊂ GQ
is a Zariski dense discrete subgroup, then H(G)Γ = ∅. This is related to the
question that given a connected complex Lie group G, for which subgroups Γ ⊂ G,
the field of meromorphic functions on G invariant under the right translations
by elements of Γ contains only constants. In the joint paper with Huckleberry
[83-2], it is proved that the converse of the result of Akhiezer is also true, i.e., if
G is a connected complex semisimple Lie group, and Γ ⊂ G any subgroup, then
H(G)Γ = ∅ if and only if Γ is Zariski dense in G.



34 Lizhen Ji

23. Proportionality of covolume of lattices

Let G be a semisimple Lie group and Γ ⊂ G a lattice. Consider the set AΓ of
all lattice subgroups Γ′ of G commensurable with Γ. Fix a Haar measure on G.
Then the volumes of all Γ′\G, Γ′ ∈ AΓ, are rational multiples of the volume of
Γ\G.

Let X = G/K be the associated symmetric space with an invariant Riemannian
metric. Then the volumes of locally symmetric spaces Γ′\X are all rational
multiples of the volume of Γ\X for Γ′ ∈ AΓ. When X is the real three dimensional
hyperbolic space H3, Thurston raised a question whether there is a number v0

which depends on Γ such the volume of every Γ′\H3, Γ′ ∈ AΓ, is an integral
multiple of v0. This is clearly true if there exists a unique maximal lattice in AΓ.
But this assumption is often not true.

This problem of Thurston was solved by Borel [Bo1] for more general lattices
in G = PGL2(R)a × PGL2(C)b, a, b ∈ N, a + b ≥ 1. He also showed that when
Γ is arithmetic, there are infinitely many maximal lattices in AΓ.

In the joint paper with Rohlfs [86], a more general result is proved. Specifically,
let S be a finite set. For each ν in S, let kν be a nondiscrete locally compact
field of characteristic zero and Gν be a semisimple algebraic group defined over
kν . Define

GS =
∏

v∈S

Gv(kν).

Then GS is a locally compact unimodular group and hence admits invariant
measures. Let Γ be a lattice in GS . Define the set AΓ of commensurable lattices
Γ′ in GS as above. It is shown in [86] that if GS has no compact factors, then
there is an invariant measure ω on GS such that for every lattice Γ′ ∈ AΓ, the
volume of Γ′\GS , vol(Γ′\GS) =

∫
GS/Γ′ ω, is an integer. Equivalently, for any

invariant measure, the volumes of Γ′\GS , Γ′ ∈ AΓ, are integral multiple of a
common number.

24. The Oppenheim conjecture on values of quadratic forms

The Oppenheim conjecture on values of quadratic forms at integer points is
the following statement:

Let B be a nondegenerate real quadratic form in n ≥ 3 variables. Assume
that B is indefinite and irrational, i.e., not a multiple of a quadratic form with
rational coefficients. Then for every ε > 0, there exist integers x1, · · · , xn, not
all equal to zero, such that |B(x1, · · · , xn)| < ε.

Originally, the conjecture was made by Oppenheim in 1929 for n ≥ 5, moti-
vated by the following result of Mayer: If B is a nondegenerate, indefinite real
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quadratic form in n ≥ 5 variables and is a multiple of a quadratic form with ratio-
nal coefficients, then B represents 0 over Z nontrivially, i.e., there exist integers
x1, · · · , xn, not all equal to zero, such that B(x1, · · · , xn) = 0. This result does
not hold for n = 3, 4. The above the Oppenheim conjecture was extended for
n ≥ 3 by Davenport. (See [97-3] for more detail on the history of this conjecture.)

Later in 1952, Oppenheim strengthened the conjecture to the following one:
Under the same assumption as in the above conjecture, for every ε > 0, there
exist integers x1, · · · , xn, not all equal to zero, such that

0 < |B(x1, · · · , xn)| < ε.

Oppenheim also proved that this stronger conjecture implies that the values
B(Zn) form a dense subset of R.

Before this conjecture was completely proved by Margulis [87-1] [88-2] [89-
3] [89-6], it was extensively studied by methods from analytic number theory,
settling case-by-case mainly for quadratic forms in large number variables or
special quadratic forms. The pace was slow and the approach using circle methods
seems not sufficient to prove this conjecture for general quadratic forms in small
number of variables.

Margulis used methods of dynamical systems to prove this conjecture in com-
plete generality. The following recollection of Margulis explains well the history
of his involvment with this conjecture and ideas of the proof:

“In 1978 I won a Fields Medal which was of course very encouraging. Un-
fortunately I was not able to come to the Helsinki Congress to receive the award
because of the opposition of the top Soviet mathematical establishment (you can
read more about that in the book by Lehto titled Mathematics without borders10).
But apparently because I could not come to the Helsinki Congress I was allowed
to come to the West for the first time in 1979. It was a 3 month visit to Bonn
which was arranged by Hirzebruch. During that vist Jacques Tits came to Bonn
and at a small ceremony presented the [Fields] award.

During my 1979 visit to Bonn I met Gopal Prasad who told me about the
Raghunathan conjecture on closures of unipotent orbits. He also mentioned the
remarkable observation by Raghunathan that this conjecture would imply the Op-
penheim conjecture (actually at that time Raghunathan referred to the Oppenheim
conjecture as the Davenport conjecture). This conversation with Gopal Prasad
was quite inspiring and I started to think about the Oppenheim and Raghunathan
conjectures. My earlier work on nondivergence to infinity of orbits of unipotent

10The precise information about this book is: Mathematics without borders: A history of the
International Mathematical Union, Springer-Verlag, New York, 1998. xvi+399 pp.
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flows11 provided me with some intuition and enthusiasm (mostly because of the
understanding of the importance of the polynomial divergence in the theory of
unipotent flows). But it took quite a long time before I developed an approach to
the proof of the Raghunathan conjecture based on the study of minimal sets and
the behavior o orbits of unipotent flows near minimal sets. I eventually proved the
Oppenheim conjecture in 1986 but some preliminary announcements were made
before that. In particular, in August of 1984, I participated in a conference in
Hungary. The conference was on a subject completely unrelated to homogeneous
flows, but Katok, Kazhdan and Ratner were there. I gave a talk at the confer-
ence where I announced the proof of the Oppenheim conjecture and explained my
approach towards the proof of the Raghunathan conjecture.12 13

In the late eighties it became much easier to travel to the West from the Soviet
Union. In 1988 I spent 4 months at the Max Planck Institute in Bonn. There I
met S.G.Dani and we started our collaboration which continued for several years.
We proved first that the orbits of SO(2, 1) in SL(3,R)/SL(3,Z) are either closed
or dense and after that proved the Raghunathan conjecture for generic unipotent
subgroups in SL(3,R). These results have interesting number theoretic applica-
tions, and the latter result was the first instance when the Raghunathan conjecture
was proved for a non-horospherical subgroup of a semisimple Lie group. I am
certain that the methods of [87-1], [89-2], [89-3], [89-4], [89-6] and [90-1] can be
applied to prove the Raghunathan conjecture in many “small cases” such as the
product of two copies of SL(2,R) or, more generally, the product of two groups of
the type SL(2,K) where K is either R or Qp (it is worth mentioning that these
methods were applied by Nimish Shah in his thesis to prove the Raghunathan con-
jecture for SL(2,C)). It is apparently enough to consider such “small” cases for
some applications. Actually, as I mentioned on several occsions, the just men-
tioned methods can be most probably applied to prove the Raghunathan conjecture
in general (but in the general case there are many technical complications.) Of
course, now it is not necessary to that because M.Ratner proved the Raghunathan
conjecture by a different method.

11It is the result (ii) mentioned in the review of [69-3] by Garland quoted in §7.
12The Oppenheim conjecture certainly provided impetus to the theory of homogeneous flows

and, in particular, to the approach of using homogenous flows to study number theoretic ques-
tions. See the next section and §40, and also the quote of Howe [Ho, p.262] at the beginning of
this article.

13In [Bo3, p.14], Borel explained that “It is easily seen that it suffices to prove this conjecture
for n=3. Raghunathan’s remark, also made around 1975, was that it [the Oppenheim conjecture]
would follow from the following statement:

(*) any relatively compact orbit of SO(2, 1) in SL(3,R)/SL(3,Z) is compact.
G.A.Margulis heard about it, took the hint, proved the statement about SO(2, 1) and hence

the Oppenheim conjecture (see remark below) [89-3]. This breakthrough opened the way to
an intense activity both on refinements of the Oppenheim conjecture, on the Raghunathan
conjecture and a related one by Dani (see below).”
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After M.Ratner obtained around 1990 her fundamental results on unipotent
flows, it became possible to study the quantitative version of the Oppenheim con-
jecture. First S.G.Dani and myself obtained lower bounds using the just men-
tioned result of Ratner and the so-called “linearization method” and later Eskin,
Mozes and myself obtained upper bound and asymptotics. I should say that the
main new ingredient in the joint work with Eskin and Mozes are certain inte-
grability estimates. The proof of these estimates is based on some new methods.
Some of these methods were later used in [04-2] and [04-4].14 ”

First, the Oppenhiem conjecture in more than three variables can be easily
reduced to the case n = 3. In this case, the Oppenheim conjecture is equivalent to
a result on compactness of some orbits of orthogonal groups on the homogeneous
space of unimodular lattices.

More specifically, let B0 be an indefinite ternary quadratic form, and let H =
HB0 be the associated orthogonal group SO(B0) = {g ∈ SL(3,R) | g ·B0 = B0}.
For any point z ∈ SL(3,R)/SL(3,Z), denote its stabilizer in H by Hz.

Then the following two statements are equivalent:

(1) The Oppenheim conjecture is true, i.e., for every irrational indefinite
ternary quadratic form B, and for every ε > 0, there exists a non-zero
integral vector v ∈ Z3 such that |B(v)| < ε.

(2) If for a point z ∈ SL(3,R)/SL(3,Z), the orbit Hz is relatively compact in
SL(3,R)/SL(3,Z) (i.e., its closure is compact), then it is compact, i.e.,
the quotient space H/Hz is compact.

This relation between the Oppenheim conjecture and problems on dynamical
systems on homogeneous spaces was observed by Raghunathan in mid-seventies
and opened up a completely new way to attack the Oppenheim conjecture.

In fact, Raghunathan also made a more general conjecture on closures of unipo-
tent group actions on homogeneous spaces: Let G be a Lie group, Γ be a lattice
in G and {u(t)}, t ∈ R, be a Ad-unipotent one-parameter subgroup of G. Then
for any x ∈ G/Γ, there exists a closed connected subgroup F of G such that
the closure {u(t)x | t ∈ R} = Fx, and the orbit Fx admits a finite F -invariant
probability measure.

Closely related to the above conjecture of Raghunathan is a conjecture of Dani
(see [97-3, 3.8]): If G is a connected Lie group, Γ ⊂ G is a lattice, U is an Ad-
unipotent subgroup of G, and µ is a finite Borel U -invariant measure on G/Γ,
then there exists a closed subgroup F of G such that µ is F -invariant and Supp

14A basic result in the reduction theory of arithmetic subgroups is that the covolume of an
arithmetic subgroup of a semisimple Lie group is finite. This is reproved in these papers [04-2]
and [04-4] by using random walks on homogeneous spaces.
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(µ) = Fx for some x ∈ G/Γ. (In the above conjecture, a subgroup U of G is
Ad-unipotent if the linear transformation Id−AdG u is nilpotent for every u ∈ U .)

It should be stressed that the work of Dani on unipotent group actions has
played a crucial role in the insight of Raghunathan in formulating the above
conjectures. In fact, in an email message to Margulis in 1996, Raghunathan
explained that his interest in orbit closures of subgroups was triggered by some
early work of Dani (in collaboration with his wife J.S.Dani and S.Raghavan). He
could interpret the main result of their paper as the density of an orbit in G/Γ for
a subgroup Γ of G. Later Dani formally enrolled as a student for the Ph.D degree
and was interested in studying flows on homogeneous spaces, and Raghunathan
started learning with him some ergodic theory especially in the context of these
homogeneous spaces. Various results of Dani and others on horosphere flows
on homogeneous spaces led Raghunathan to formulate the above conjecture for
the closure of one parameter Ad-unipotent subgroups and later to more general
Ad-unipotent groups. Around the same time, Dani also formulated the stronger
conjecture on classification of measures invariant under Ad-unipotent subgroups,
which was finally proved by Ratner [Ra6] (See [Da6] and also [Da8], [97-3, §2.3,
§3.8]). In the late sixties and early seventies, some of colleagues of Raghunathan
were interested in the Oppenheim conjecture and he became interested in the
question after a talk given by one of them. Raghunathan was at that time trying
very hard to prove the result that unipotent 1-parameter groups can not have
closed non-compact orbits and the proof of Margulis appeared.15 Raghunathan
had realized that the Oppenheim conjecture was a statement about the non-
compactness of an orbit under the orthogonal group and it was evident that the
difference between dimension 2 and the higher ones was the presence of unipotents
in the orthogonal group. Raghunathan’s efforts at understanding Dani’s theorems
on horospheres and the proof of Margulis together with the above observation
about the Oppenheim conjecture led him to speculate more boldly. It was his
hope that one could use a downward induction on dimension starting with a
horosphere. The slow growth of the unipotent 1-parameter group in contrast to
the diagonal situation was at the back of his mind and made him hope that these
flows are likely to have managable behaviours.

See [Da6], [Da4] [Da7] for more details and summaries of some work of Dani,
and also [Bo3, pp. 13-15] for some complementary explanations of the history of
the Oppenheim conjecture.

As Margulis pointed out in [97-3, §2.3], such a relation was implicitly contained
and used in a paper of Cassels and Swinnerton-Dyer in 1955, though not in such
languages of dynamical systems.

15See the result (ii) in the quote by Garland in §7.
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After the initial breakthrough by Margulis, there have also been various im-
provements, for example, the stronger version of the conjecture requiring the
non-vanishing of the value |B(x1, · · · , xn)|. As pointed out before, this implies
that the values of B on integral points form a dense subset of R. In the joint pa-
pers with Dani [89-2] [89-4] [90-2], it was shown that the values of B on primitive
integral points also form a dense subset of R. A generalization of this result was
proved by Borel and Prasad in [BoP]. See [97-3] for a survey.

The earlier successes on the Raghunathan conjecture by Margulis also moti-
vated a lot of work on the more general Raghunathan conjecture. The papers
[90-1] [91-2] (joint with Dani) [90-3] are related to this conjecture. The papers
[88-2] [91-4] [97-3] give summaries and surveys of these and related results, and
[97-3] is probably the most comprehensive one. The article [00-3] contains many
open problems.

The conjectures of Dani and Raghunathan are proved in full generality by
Ratner. As Prasad pointed out in the review of Margulis’ paper [89-6]:

“With the impetus provided by these papers of the author ([87-1], [89-3], [89-
6]), there has recently been a very important development in the area: M. Ratner
has proved Raghunathan’s conjecture ....”

It should be pointed out that in [89-3] and [88-2], Margulis explicitly stated the
conjectures of Raghunathan and Dani, and also gave some generalizations of these
conjectures. Also in [88-2] Margulis, following S.G.Dani, stated the conjecture
about the uniform distribution of orbits of unipotent flows.

Three of main theorems of Ratner are the following [Ra2-6]:

(1) (Classification of invariant measures). Let U be a subgroup of G generated
by Ad-unipotent elements. If µ is any ergodic U -invariant probability
measure on G/Γ, then there is a closed subgroup H of G, such that the
support of µ is a single H-orbit, and µ is H-invariant.

(2) (Classification of orbit closures). Let U be a subgroup of G generated by
Ad-unipotent elements. The closure of each U -orbit on G/Γ is the support
of some ergodic U -invariant probability measure µ.

(3) (Uniform distribution). Let U = {u(t)} be a one-parameter Ad-unipotent
subgroup of G. For every x ∈ G/Γ, there is an ergodic U -invariant prob-
ability measure µ on G/Γ such that the U -orbit {u(t)x} is uniformly dis-
tributed with respect to µ.

These results play an important role in the quantitative version of the Op-
penheim conjecture to be discussed below and in many other applications, which
include on uniform distribution of Heegner points [Vat], sharp bounds on various
counting problems [Es1] [Es2], determination of the distribution of normalized
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gaps (or spacings) in the sequence of fractional parts of
√

n, n ∈ N [ElM] (see
also [Ra1] and [Mor] [Da7] for more details).

The joint papers of Margulis with Tomanov [92-2] [94] give a much shorter
proof of the crucial theorem on classification of invariant measures of Ratner
in the case where G is algebraic. These papers also give the generalization of
this result to the case where Γ are discrete subgroups and G are products of
real and p-adic algebraic Lie groups, which was also proved in a more general
context by Ratner in [Ra2]. The joint paper with Tomanov [96-2] gives a further
generalization of this result by eliminating the assumption that Γ is discrete.

25. Quantitative version of the Oppenheim conjecture

The Oppenheim conjecture formulated above is qualitative. A significant im-
provement on the solution of the Oppenheim conjecture is to give asymptotics of
integral points v ∈ Zn with small values B(v) and to prove a quantitative version
of the Oppenheim conjecture. Specifically, let B be a real irrational indefinite
quadratic form in n variables with n ≥ 3. For every open interval (a, b) ⊂ R, and
T > 0, define the counting function

NB
(a,b)(T ) = {v | v ∈ Zn, with |v| < T, a < B(v) < b}.

By the positive solution of the the stronger version of the Oppenheim conjecture,
which requires |B(x1, · · · , xn)| > 0 and implies that the values B(v), v ∈ Zn, are
dense in R, it follows that when T → +∞,

NB
(a,b)(T ) → +∞.

Since the number of integral points in a large ball in Rn is proportional to its
volume, it is natural to expect that NB

(a,b)(T ) is asymptotic to a similarly defined
volume, i.e., as T → +∞,

NB
(a,b)(T ) ∼ vol({v ∈ Rn | a < B(v) < b, |v| < T}) ∼ λ(b− a)Tn−2,

where λ = λ(B) is a positive constant depending on B. This result turns out to
be true if the signature (p, q) of the quadratic form B satisfies p ≥ 3 and q ≥ 1.

The joint paper with Dani [93] gives lower bounds on NB
(a,b)(T ) without any

restriction on the signature of B. For this purpose, they proved a strengthened
version, i.e., a uniform version, of the theorem of Ratner on equidistribution of
individual orbits of unipotent flows. This result was proved by a linearization
procedure.

The upper bound on and the asymptotics of NB
(a,b)(T ) as T → +∞ are much

more difficult and achieved in the joint papers with Eskin and Mozes [95-3] [98-
1] [05-1]. In fact, the method from [93] can not be applied, and without the
restriction on the signature mentioned above, i.e., p ≥ 3 and q ≥ 1, the sharp
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upper bound on NB
(a,b)(T ) as stated above does not hold. Briefly, as noticed

by P.Sarnak, for a quadratic form Bα(x) = x2
1 + x2

2 − α2x2
3, if α is too rapidly

approximated by rational numbers, then the number NB
(a,b)(T ) will grow faster

than Tn−2 = T , i.e., NB
(a,b)(T )/T is not bounded as T → ∞. The paper [98-1]

proves that the same conclusion holds for quadratic forms

Bα(x) = x2
1 + x2

2 − α2(x2
3 + x2

4).

Specifically, for every ε > 0, there exist an irrational form B of signature (2, q)
with q = 1, 2, a sequence Tj →∞, and a constant c > 0 such that

NB
(a,b)(Tj) > cT q

j (log Tj)1−ε.

On the positive side, [98-1] proves that for any form B of signature (2, q) with
q = 1, 2, there exists a constant c > 0 such that

NB
(a,b)(T ) < cT q log T, T > 2.

Moreover, for almost all such forms B, i.e. of signature (2, 1) or (2, 2), the
following asymptotic formula holds:

NB
(a,b)(T ) ∼ λ(b− a)T q.

A crucial step in the proof of the upper bounds on and hence the asymptotics of
NB

(a,b)(T ) in [98-1] is to get precise control on the behaviors of orbits of semisimple
subgroups on the space of lattices SL(n,R)/SL(n,Z).

For quadratic forms of signature (2, 2) satisfying certain Diophantine condi-
tions, the above asymptotics on NB

(a,b)(T ) were obtained in [05-1]. Briefly, a
quadratic form B is called extremely well approximable by split forms (EWAS)
if for any N > 0 there exists a split integral form B′ and k ≥ 2 so that
‖B− 1

kB′‖ ≤ 1/kN . For example, if β is a Liouville number, i.e., rapidly approx-
imated by rational numbers, then the form Bβ = qβ(x1, x2) − qβ(x3, x4), where
qβ(x, y) = x2 + βy2, is EWAS. As pointed out above, for such form, NB

(a,b)(T )
may grow faster than T 2 = Tn−2.

Another source for violating the desired upper bound comes from integral
points on rational isotropic subspaces with respect to the quadratic form B.

Let ÑB
(a,b)(T ) be the number of integral points v which do not lie on the rational

isotropic subspaces and satisfy the bounds: |v| < T, a < B(v) < b. Then one of
the main results in [05-1] is that if a quadratic form B of signature (2, 2) is not
EWAS, then ÑB

(a,b)(T ) satisfies the desired asymptotics above:

ÑB
(a,b)(T ) ∼ vol({v ∈ Rn | a < B(v) < b, |v| < T}) ∼ λ(b− a)Tn−2.

An important consequence of this result is an explicit construction of many flat
tori whose pair correlation function for the eigenvalues of the Laplacian satisfies
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the Berry-Tabor conjecture. Sarnak showed a generic flat torus satisfies the
Berry-Tabor conjecture for the pair correlation function, but the method does
not produce any explicit example. Indeed, no explicit example was known before
[05-1].

The methods developed in [98-1] for the sharp upper bound on NB
(a,b)(T ) have

also be effectively used in other problems, for example, in the problem of asymp-
totics for the number of cylinders and saddle connections on flat surfaces [EsM],
counting problems for billards [EsMS], and for obtaining quantitative recurrence
and large deviations results for the Teichmuller geodesic flow on connected com-
ponents of strata of the moduli space of holomorphic unit-area quadratic differen-
tials on compact surfaces [At]. See also [EMS] for related counting lattice points
on homogeneous varieties and [Es2] for an introduction to counting problems in
moduli space.

26. Oseledets multiplicative ergodic theorem and Lyapunov
exponents

The joint paper with Goldsheid [87-2] gives conditions under which the Lya-
punov exponents of linear multidimensional stochastic difference equations are
distinct. Briefly, let {ξn} be a stationary Markov chain with state space S, invari-
ant distribution π(·), and transition kernel P (·, ·). Suppose that f : S → GL(d,R)
is a Borel measurable function. Then the Oseledets multiplicative ergodic theo-
rem applies to the stationary matrix sequence {f(ξn)}∞n=1 and gives an increasing
sequence γ1 ≤ · · · ≤ γd of Lyapunov exponents and a filtration of random sub-
spaces Vi of Rd, which are defined by

Vi = {v ∈ Rd : limn−1 log ‖f(ξn)f(ξn−1) · · · f(ξ1)v‖ ≤ γi}.
One problem is to obtain conditions under which the Lyapunov exponents γi are
all distinct and the dimension of Vi is equal to i.

The joint paper with Goldsheid [89-5] proves the following important theorem:
Let A1, A2, · · · be independent random matrices in GL(d,R) with the same law
µ. Let H be the semigroup generated by the support of µ and H ′ be the algebraic
closure of H. If H ′ = GL(d,R), then all the Lyapunov exponents of the sequence
{AnAn−1 · · ·A1, n ≥ 1} are distinct. Similarly, a criterion ensuring that the
leading exponent is simple is given. It depends only on H ′. This paper also gives
a simplified proof of Oseledets multiplicative ergodic theorem with extension
to the infinite-dimensional case. This Oseledets multiplicative ergodic theorem
plays an important role in the super-rigidity of irreducible lattices of higher rank
semisimple Lie groups, in particular, in proving that the Zariski closure of the
image π(Γ) of the lattice Γ (see §9) is necessarily reductive.
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The joint paper with Karlsson [99-2] generalizes the Oseledets multiplicative
ergodic theorem as follows: Let (X, µ) be a probability space, T : X → X be an
ergodic measure preserving transformation. Let (Y, d) be a nonpositively curved
space (or a CAT(0)-space), D ⊂ Y a nonempty subset, y ∈ D, S the set of
nonexpanding maps D → D, and ϕ : X → S such that

∫
X d(y, ϕ(x)y) dµ(x) < ∞.

For x ∈ X and n ∈ N0, let yn(x) = ϕ(x)ϕ(T (x)) · · ·ϕ(Tn−1(x))y. Then for almost
all x ∈ X, the limit limn→∞ d(y, yn(x))/n exists, which is denoted by A; and if
A > 0, then for almost every x, there is a unique geodesic ray γx in Y starting
at y such that limn→∞ d(γAn(x), yn(x)) = 0.

The usual multiplicative ergodic theorem is obtained by taking Y = GL(N,R)/
O(N,R) and hence S = GL(N,R). As an application, the paper gives a char-
acterization of the Poisson boundary with respect to the probability measure of
a countable group of isometries of a complete uniformly convex nonpositively
curved metric space.

27. Proximal linear maps

An invertible, real matrix is called proximal if it has a unique eigenvalue of
maximum absolute value. The study of such matrices is useful for several appli-
cations. One reason is that a proximal matrix induces a map on the projective
space with a unique attracting fixed point whose basin is equal to a complement
of a hyperplane. This fact plays an important role in the proof of Tits alternative
for linear groups.

Proximal elements in any semisimple Lie group G are also used by Furstenberg
to study the maximal Furstenberg boundary B(G) of G, which are crucial for
many applications in the super-rigidity of lattices, boundary values and integral
representations of harmonic functions on the symmetric space associated with
G. In fact, he used the existence of proximal elements in G to show that B(G)
is determined measure-theoretically by any lattice in G, and used it to prove
a special case of Mostow-Margulis strong rigidity: a lattice in SL(2,R) is not
isomorphic to a lattice in SL(n,R) for n > 2.

In the joint paper with Goldsheid [89-5], it was proved that if a connected Lie
subgroup G ⊂ GL(V ) contains a proximal element, then so does every Zariski-
dense subsemigroup H of G, provided V is irreducible as a representation of G0,
the connected component of the Zariski-closure of G. One of the main results of
the joint paper with Abels and Soifer [95-2] is that, under the same conditions,
there is a subset M of H with dim(V )2 elements such that, for any g in G, there
exists some element m ∈ M such that mg is proximal. A quantitative version is
also obtained, and hence there is a rich supply of proximal elements in G. This
paper also gives a criterion for the image of a reductive group under an irreducible
representation to contain a proximal element. This criterion is given in terms of
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the highest weight of the representation and implies that when G is R-split, there
are always proximal elements.

28. QC-maps and Carnot-Carathéodory spaces

Quasiconformal (abbreviated qc) maps are basic objects in complex analysis of
one variable, for example, in the theory of Teichmuller spaces of Riemann surfaces.
The notion of qc maps makes sense for general metric spaces. In fact, for every
K ≥ 1, a K-qc map between any two metric spaces X1, X2 is a homeomorphism
f : X1 → X2 such that the infinitesimal distortion from a circle is bounded by
K, i.e.,

lim sup
r→0

Lr(p)/lr(p) ≤ K

for all p, where Lr(p) [resp. lr(p)] denotes the sup [resp. the inf] of d(f(p), f(q))
as q varies over the sphere d(p, q) = r.

But they have only recently been studied in such a general context. In fact,
before Mostow used qc maps in the context of the non-isotropic metrics of the
boundaries of rank one symmetric spaces of noncompact type to prove his well-
known strong rigidity in [Mos1] (see also the earlier paper [Mos2]), qc maps were
only studied on Rn with respect to the standard metric.

After this, the theory of qc maps have been developed for other groups, for ex-
ample, Heisenberg groups by Koranyi and Riemann [KoR1-2], and general nilpo-
tent groups by Pansu [Pan], Heinonen and Holopainen [HeH], and Vodopyanov
[Vo].

The joint paper with Mostow [95-1] studies what seems to be a natural and
broad context to which the classical theory of qc maps can be generalized. The
group structure is dropped and the question is studied on manifolds equipped
with a finite Carnot-Carathéodory distance generated by a distinguished “hori-
zontal” subbundle of the tangent bundle with a norm defined on it. This gener-
alization corresponds exactly to the classical generalization of the Rn-theory to
Riemannian manifolds and to the generalization of the Heisenberg group theory
to strongly pseudoconvex CR manifolds. Three fundamental results of the theory
are generalized to the present context: The older result of Mostow on absolute
continuity on lines, the result of Koranyi and Riemann on the Heisenberg groups,
that the inverse of a qc map is qc, and Pansu’s theorem on a.e. differentiability
which is now formulated in terms of the Gromov tangent cone to the manifold.

The main purpose of the joint paper with Mostow [00-4] is to give an improved
definition of the “tangent cone” of a manifold with Carnot-Carathéodory metric.
This notion was introduced by Gromov and was later studied [95-1], but it was
not uniquely defined.
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29. Bounded orbits and unbounded orbits of flows

It is a natural and important problem to understand structures of orbits of
dynamical systems. There are two types of orbits: bounded and unbounded.

Let G be a Lie group, Γ ⊂ G be a lattice subgroup, and F ⊂ G be a one-
parameter subgroup. The joint paper with Kleinbock [96-1] describes the set of
bounded F -orbits on the homogeneous space G/Γ.

If G/Γ is non-compact and F is unipotent and induces an ergodic flow, then
it follows from a result of Ratner [Ra3] that the set of bounded F -orbits lies in
a countable union of proper submanifolds of G/Γ, and hence in this case the set
of bounded orbits is of Hausdorff dimension at most dim(G) − 1. On the other
hand, if G = SL(n,R), Γ = SL(n,Z), and F is a diagonal subgroup of G with
two eigenvalues, then Dani [Da5] proved that the set of bounded F -orbits is of
full Hausdorff dimension.

This leads to the following question: Under what conditions is the set of
bounded orbits large enough? The paper [96-1] completely settles this problem,
after an earlier related work of Dani [Da3] for the rank one case under an as-
sumption that the adjoint action of the one parameter group has an eigenvalue of
absolute value other than 1. The main case to study is when Γ is an irreducible
lattice in a semisimple Lie group G. The paper [96-1] proves that for any par-
tially hyperbolic (i.e. nonquasiunipotent) one parameter subgroup F , the set of
bounded F -orbits on G/Γ is of full Hausdorff dimension.

Instead of bounded orbits, unbounded orbits and their asymptotic behaviors
are considered in the joint paper with Kleinbock [99-1]. Let G be a semisimple
Lie group and Γ a lattice in G as above. Let µ be the G-invariant probability
measure on G/Γ. Let {gi} be a sequence of elements in G and {Ei} be a sequence
of subsets of G/Γ. The general problem in [99-1] is to understand conditions
under which gix ∈ Ei for infinitely many i, for µ-almost all x in G/Γ. This
paper describes a condition on {gi}, called exponential divergence, and a class of
functions called distance-like functions, such that if ∆ is a distance-like function
and Ei = {x ∈ G/Γ|∆(x) ≥ ti} for a sequence {ti} such that the series

∑
i µ(Ei)

is divergent, then the desired conclusion holds.

When specialized to G = SO(n, 1), this result gives a generalization to higher
rank and a sharpening of Sullivan’s logarithm law for geodesics of hyperbolic
manifolds [Sul2]. It also gives a new proof of the classical theorem of Khinchin
and Groshev on simultaneous Diophantine approximation.

These and other related results are also discussed in [00-3] [02-3].



46 Lizhen Ji

30. Compact quotients of homogeneous spaces

If G is a noncompact semisimple Lie group with finite center, and H is a
compact subgroup of G, then a result of Borel implies that there always exists
discrete subgroups Γ that acts properly on G/H with compact quotient.

On the other hand, if H is noncompact, the answer is not always true. In fact,
in this case, no co-compact lattice Γ can act properly on G/H.

One problem is to find conditions or obstructions to existence of such discrete
groups. There have been some obstructions constructed before. The paper [97-2]
gives another obstruction by studying the restriction to H of matrix coefficients
of unitary representations of G. Briefly, the obstruction says: Suppose that H
is not compact and there exists a compact subgroup K ⊂ G and an integrable
function q on H such that for any unitary representation π of G without nontrivial
G-invariant vectors, any K-invariant vectors w1 and w2, and any h ∈ H, the
following inequality holds:

|〈π(h)w1, w2〉| ≤ q(h) |w1‖ ‖w2‖.
Then G/H has no compact quotients by discrete subgroups.

Therefore getting good bounds on matrix coefficients is important for this
problem. Combined with some estimates by Oh [Oh1] on the matrix coefficients,
this criterion gives many new examples of homogeneous spaces G/H which do not
admit proper and co-compact discrete group Γ-actions. Other sharp bounds on
matrix coefficients and applications to computing explicitly the Kazhdan constant
are obtained in [Oh2]. For other related results, see also [OhW].

The joint paper with Goldman [00-5] gives a proof of an unpublished result
of Mess: there is no faithful, proper, isometric action of the fundamental group
of a closed hyperbolic surface on (2 + 1)-dimensional Minkowski space R3

1. This
contrasts with the existence result of many such actions if the hyperbolic surface
is not assumed to be closed.

This problem on such proper and cocompact actions of discrete subgroups on
non-Riemannian homogeneous spaces is still not fully understood. See the survey
article for [KoY] the current status and many references.

31. Metric Diophantine approximation and Khintchine-type
theorems

The joint paper with Kleinbock [98-2] presents a new approach to metric Dio-
phantine approximation on manifolds based on the correspondence between ap-
proximation properties of numbers and orbit properties of certain flows on homo-
geneous spaces. It gives a new proof of a conjecture of Mahler in the 1930s and
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settles conjectures of Baker and Sprindzhuk formulated in the 1970s. An impor-
tant point here is that the number theoretic results were derived from estimates
for flows on the space of lattices as mentioned in §15.

For x ∈ Rn, let

‖x‖ = max
1≤i≤n

|xi|, Π(x) =
n∏

i=1

|xi|.

A vector x ∈ Rn is said to be very well approximated (VWA) if for some ε > 0,
there are infinitely many q ∈ Z and p ∈ Zn such that

‖qx + p‖n|q| ≤ |q|−ε.

Similarly, a vector x ∈ Rn is defined to be very well multiplicatively approximated
(VWMA) if for some ε > 0, there are infinitely many q ∈ Z and p ∈ Zn such that

Π(qx + p)|q| ≤ |q|−ε.

Clearly, a vector is VWMA if it is VWA. It is also easy to show that almost
every x ∈ Rn is not VWMA. On the other hand, it is more difficult if points x are
restricted to a proper submanifold M ⊂ Rn. In the 1930s, Mahler conjectured
that almost all points on the curve

M0 = {(t, t2, · · · , tn) | t ∈ R} ⊂ Rn

are not VWA. This was settled by Sprindzhuk (see the survey article [Spr1] and
the book [Spr2] for summaries and references).

Later in late 1970s, Sprindzhuk made the following conjecture: Let f1, · · · , fn

be real-analytic functions in x ∈ U , where U is a domain in Rd, which together
with 1 are linearly independent functions over R. Then almost all points of M =
{(f1(x), · · · , fn(x)) | x ∈ U} are not VWA.

The case n = 2 of the conjecture was settled by Schmidt [Sch] in 1964, and the
case n = 3 was settled in 1996 by Beresnevich and Bernik [BeB].

A stronger conjecture (also formulated by Sprindzhuk) states that almost all
points of M are not VWMA. When M = M0 defined above, this conjecture is
known as Baker’s conjecture. Except for the case n = 2, the Baker conjecture
has not been proved before.

The paper [98-2] proves a very general result which settles both of the conjec-
tures of Sprindzhuk and Baker.

In the joint paper with Bernik and Kleinbock [01-2], the convergence case of
a Khinchin type theorem is proved for non-degenerate manifolds. The result
improves and extends previous work of Baker, Sprindzhuk, Bernik and others
who had similar results for specific manifolds or for more restricted classes of
manifolds.



48 Lizhen Ji

A point x in Rn is called ψ-approximable if there exist infinitely many vectors q
in Zn such that |〈x · q〉| ≤ ψ(|q|n). Here, | · | denotes the supremum norm and |〈·〉|
denotes the distance from the integers. A point x in Rn is called ψ-multiplicatively
approximable if there exist infinitely many vectors q in Zn such that

|〈x · q〉| ≤ ψ(
∏
+

(q)),

where
∏

+(q) =
∏n

i=1 max(|qi|, 1), the product of the non-zero entries of q.

Let f = (f1, . . . , fn) be an n-tuple of Cm functions going from U to R, where U
is an open subset of Rd. Then f is nondegenerate at a point if the space Rn can
be spanned by partial derivatives, up to some order, of f at the point. Similarly
the notion of non-degeneracy can be defined for the d-dimensional submanifold
M ⊂ Rn.

A manifold M is said to be of Groshev type for divergence (resp. convergence)
if almost all (resp. almost no) points of M are ψ-approximable when the sum∑∞

n=1 ψ(n) diverges (resp. converges).

The joint paper with Bernik and Kleinbock [01-2] proves that non-degenerate
manifolds are of Groshev-type for convergence, and the joint paper with Beres-
nevich, Bernik and Kleinbock [02-2] proves that all nondegenerate manifolds are
of Groshev type for divergence.

The article [02-3] surveys these and related results.

32. Hyperbolic Penrose tile

The Penrose tiles [Pe] comprise an aperiodic tiling system for R2. The Penrose
tiles are not convex. Ammann has given an aperiodic tiling system consisting
of three convex polygons (see [AmGS] and [Sen]). The existence of an aperiodic
tiling system for R2 consisting of a single tile is still an open problem, although
Penrose has given an example of such a system in the hyperbolic plane H2, but
the tile is not convex. The joint paper with Mozes [98-3] constructs for each
n ≥ 3 a convex n-gon in H2 that tiles H2 but never periodically, i.e., the tile does
not factors through a compact quotient of H2 by a discrete group of isometries
acting freely on H2.

For aperiodic tilings of symmetric spaces and related results, see papers [Moz2]
and [BlW].

33. Wiener ergodicity for semisimple Lie groups

Given a measure-preserving action Tv : X → X, v ∈ Rd, of the group G = Rd

on a probability space (X, m), and a function f ∈ L1(X), consider the averaging
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operators

π(βt)f(x) =
1

vol(Bt)

∫

v∈Bt

f(Tvx)dv,

where Bt = {v ∈ Rd | |v| ≤ t}.
Wiener’s pointwise ergodic theorem asserts that π(βt)f(x) converges to a limit

as t → ∞ for almost every x ∈ X. The limit is given by the average of f on X,∫
X fdm, provided the action is ergodic.

The joint paper with Nevo and Stein [00-2] considers the following general-
ization by replacing Rn by a connected semisimple Lie group with finite center
and without compact factor. Let K ⊂ G be a maximal compact subgroup,
and X = G/K be given a G-invariant Riemannian metric. For any ergodic
measure-preserving action of G on a probability space (X, m), the ball averaging
operators π(βt) can be defined similarly. The analogue of the Wiener ergodic
theorem asserts that the averaging operators π(βt)f(x) converge to the average
value

∫
X fdm, for all f ∈ L1(X), or at least for all f ∈ Lp(X), p > 1.

One of the main results of this paper is to give a positive answer for p > 1.
The related strong maximal inequality in Lp is also proved and used to establish
this ergodicity result. Before this paper, this Wiener ergodicity was only known
for rank 1 simple Lie groups.

34. Finite coverings of hyperbolic manifolds

A well-known conjecture of Thurston asserts that every n-dimensional hyper-
bolic manifold of finite volume has a finite sheeted cover with a positive first
Betti number. This was motivated by an important step for the Thurston ge-
ometrization program for three dimensional manifolds. Briefly, for an irreducible
3-dimensional manifold with infinite fundamental group, the non-vanishing of
the first homology group is related to the existence of an immersed incompress-
ible surface in it, which implies that the manifold is Haken and hence can be
understood better (see [DuT]).

The above conjecture is equivalent to that every lattice subgroup in SO(n, 1)
has a finite index subgroup which is mapped onto the infinite cyclic group. In
[Lu2], Lubotzky showed a stronger result for some lattices Γ. It was shown there
that for some arithmetic and non-arithmetic lattices one can even find a finite
index subgroup which is mapped onto a non-abelian free group.

The joint paper with Vinberg [00-1] generalizes Lubotzky’s method and result
to a much larger family of groups. In particular, it shows that Coxeter groups
which are not virtually abelian have this property. It also shows that many
discrete subgroups of SO(n, 1), which are not necessarily lattices, are virtually
mapped onto non-abelian free groups.
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35. A generalized Tits alternative

The paper [00-6] is related to the class of results which go under the name
of Tits alternative. First we recall that the famous Tits alternative states that
a finitely generated linear group either contains a nonabelian free group or is
virtually solvable, i.e., it contains a solvable subgroup of finite index [Ti2]. It
has many important applications, for example, it is an important ingredient in
Gromov’s proof that finitely generated groups with polynomial growth are nilpo-
tent, and it is also used to prove that a famous conjecture of von Neumann that
non-amenable groups must contain free groups is true for linear groups.

A different proof of the Tits alternative using the Oseledets multiplicative
ergodic theorem was later given by Guivarch [Gu].

Such an alternative has also been proved for other classes of groups, for ex-
ample, for the mapping class groups of surfaces by McCarthy [Mc] and indepen-
dently by Ivanov [Iv], for the outer automorphism group of free groups by Bestv-
ina, Feighn and Handel [BFH1-2], for the polynomial automorphisms of C2, for
the generalized triangle groups by Fine, Roehl, and Rosenberger, for generalized
tetrahedron groups by Howie and Kopteva.

On the other hand, Ghys and Sergiescu [GhS] showed that the Tits alternative
does not hold for subgroups of the group Homeo(S1) of homeomorphisms of
the circle and even for subgroups of the group of smooth diffeomorphisms of
S1. In 1998, Ghys conjectured a possible replacement of the Tits alternative
for subgroups of Homeo(S1). The main result of the paper [00-6] is a proof of
this conjecture, i.e., it proves that if a group G acts by homeomorphisms on S1,
then, either there is a G-invariant probability measure on S1, or G contains a
free nonabelian subgroup.

36. Rigidity of actions of Lie groups and lattices

As a non-linear generalization of the Mostow strong rigidity and Margulis
super-rigidity of irreducible lattices in higher rank semisimple Lie groups, the
Zimmer program [Zi1] [Zi2] tries to understand and to classify actions of such
Lie groups and their lattices on compact manifolds preserving various geometric
structures. Such actions can be viewed either as a nonlinear finite-dimensional
theory or as the study of homomorphisms into the infinite-dimensional group of
diffeomorphisms of the compact manifold under discussion, and they are expected
to enjoy Mostow and Margulis type rigidity properties.

One of the central questions in this program about the actions of higher real
rank groups and higher rank lattices is whether or not they are all (or under some
mild hypotheses) of an algebraic nature. It is conjectured that such actions are
rigid. For example, one conjecture states that for ergodic actions of higher rank
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lattices Γ on closed manifolds preserving the Lebesgue measure, the actions are
of algebraic nature on an open dense set with the following building blocks:

(1) actions preserving a Riemannian metric;
(2) actions on nilmanifolds N/Λ by automorphisms via a homomorphism Γ →

Aut(N/Λ), where N is a simply connected nilpotent Lie group, Λ is a
cocompact lattice in N and Aut(N/Λ) consists of all automorphisms of
N preserving Λ;

(3) actions on H/Λ by left translation via a homomorphism Γ → H, where
H is a connected Lie group and Λ ⊂ H is a cocompact lattice.

These are called standard actions. It is also conjectured that the standard
actions are locally rigid, i.e., any small perturbations of these actions are conju-
gations by diffeomorphisms.

Under some weak hyperbolicity conditions, the joint paper with Qian [01-1]
proves C0- and C∞-local rigidity theorems for two classes of standard algebraic
actions: (1) left translation actions of higher real rank semisimple Lie groups
and their lattices on quotients of Lie groups by uniform lattices; (2) higher rank
lattice actions on nilmanifolds by affine diffeomorphisms; (3) C0-global rigidity
of volume preserving, higher rank lattice Anosov actions on nilmanifolds with a
finite orbit.

The proofs depend on local rigidity of some constant cocycles and Zimmer’s
cocycle super-rigidity theorem, which is a generalization of the Margulis super-
rigidity of lattices to this non-linear group situation.

The joint paper with Fisher [03] studies perturbations of constant cocycles for
actions of higher rank semi-simple algebraic groups and their lattices. For er-
godic actions, Zimmer’s cocycle superrigidity theorem implies that the perturbed
cocycle is measurably conjugate to a constant cocycle modulo a compact valued
cocycle. The main point of this article is to see that a cocycle which is a contin-
uous perturbation of a constant cocycle is actually continuously conjugate back
to the original constant cocycle modulo a cocycle that is continuous and ‘small’.
Applications include local rigidity of affine and quasi-affine actions of higher rank
semisimple Lie groups and their lattices. This paper also improves and extends
Zimmer’s cocycle superrigidity.

The joint paper with Fisher [05-3] proves local rigidity of actions of groups
having property (T) of Kazhdan. Specifically, let Γ be a countable group having
property (T), and M a smooth compact Riemannian manifold, k ∈ N. Assume
that Γ acts on M by Ck-isometries, and denote this action by ρ. For any ε > 0, if
a Ck-diffeomorphism action of Γ on M is close in the Ck-topology to the isometric
action ρ, then it is conjugate to ρ by a small Ck−ε-diffeomorphism. The same
result holds for C∞-actions. It also proves a more general foliated version of local
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rigidity, which is crucially used to prove local rigidity for quasi-affine actions of
higher rank semisimple Lie groups and their lattices in a later work.

When Γ is a lattice in a simple Lie group of rank at least 2, a weaker version
of this result was proved by Zimmer in 1985 for ergodic, volume preserving per-
turbations of an ergodic, isometric actions of such Γ, and the local rigidity was
proved by Benveniste [Ben] in 2000 for smooth actions. It is well-known that
such higher rank lattices have property (T). Besides strengthening these results,
another point of the paper [05-3] is to derive the local rigidity from the property
(T) of the discrete groups Γ alone, without using structures of the ambient Lie
groups.

By definition, a locally compact, σ-compact group Γ has property (T) if any
continuous isometric action of Γ on a Hilbert space has a fixed point. The paper
[05-3] gives a generalization of this standard fixed point property to a wider class
of actions, i.e., this fixed point property persists for actions which are perturba-
tions of isometric actions.

Using results in [03] and [05-3], a very general local rigidity result about actions
of semisimple Lie groups G with all simple factors of real rank at least two and
their lattices Γ are proved in [06-2]. One special case says that any action of Γ
by toral automorphisms is locally rigid. More generally, given a manifold M on
which Γ acts isometrically and a torus Tn on which it acts by automorphisms,
the diagonal action on Tn×M is locally rigid.

Though the standard actions defined above are natural and attractive, they
are in the process of being replaced by affine algebraic actions and generalized
affine algebraic actions. They provide the natural languages to describe results
in [03] [05-3], which are stronger than forms presented above. For more details
about the current status of the local rigidity, see the survey article by Fisher [Fi].

37. Random walks on homogeneous spaces and reduction theory

An important question for a random walk is to decide if it is transient or
recurrent. It is well-known that the random walks on Z2 are recurrent but they
are transient on Zn for n ≥ 3. There are also quantitative versions of these
properties.

Motivated by the results in [Da1-2] [75-2] on recurrence properties of orbits
of one parameter unipotent subgroups, the joint paper with Eskin [04-2] studies
recurrence properties of random walks on finite volume homogeneous manifolds.
Specifically, let G be a linear semisimple Lie group, Γ a nonuniform irreducible
lattice in G, and µ a probability measure on G. Then µ defines a random walk
on the noncompact space G/Γ, which is recurrent.
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Let µ(n) be the convolution of µ with itself n times, and δx be the probability
measure supported on x ∈ G/Γ. Then one of the main results of the paper
[04-2] is as follows. Suppose that the noncompact part of the Zariski closure of
the subgroup generated by supp(µ) is semisimple and is not contained in any
conjugate of a proper Γ-rational parabolic subgroup of G. Then for every compact
set C ⊂ G/Γ and every ε > 0, there exists a compact set K such that for every
x ∈ C and all n > 0, the following inequality holds:

µ(n) ∗ δx(K) > 1− ε.

Similarly, for every ε > 0, there exists a compact set K such that for every
x ∈ G/Γ and all sufficiently large n, the above inequality also holds.

One application of these results is a new proof of a special case of a fundamental
result for arithmetic subgroups Γ of semisimple linear algebraic groups G, i.e., the
volume of the quotient Γ\G is finite with respect to every invariant measure on
G = G(R). This was proved by Borel and Harish-Chandra [BoHC] as a corollary
of the reduction theory for arithmetic subgroups developed by them.

Specifically, this finite volume result was proved in [04-2] under the assump-
tion there exists a faithful representation of G which is defined over Q and is
irreducible over R.

Another new proof of this finiteness of the volume of Γ\G for general arithmetic
subgroups Γ of semisimple groups G is given in the paper [04-4] using a simplified
version of the results [04-2] based on recurrence properties of random walks on
the space of lattices in Rn.

38. Coarse metrics on reductive groups

Let G be an algebraic group defined over R and let G be the identity component
of the real locus G(R). For every bounded symmetric open neighbourhood L of
the identity element in G, one can associate with it a “word metric” ρL on G,
defined by

ρL(g, h) = min{i | g−1h ∈ Li}.
This metric defines a discrete topology on G, but is quasi-isometric to the metric
induced from any left-invariant Riemannian metric on G. A pseudometric on G is
said to be normlike if it is K-biinvariant for a maximal compact subgroup K and
corresponds to a norm when restricted to a maximal connected diagonalisable
subgroup of G. The joint paper with Abels [04-3] compares pseudo-metrics on
G under a notion of coarse equivalence, motivated by a conjecture of Siegel on
comparison of restrictions of invariant metrics to Siegel sets. Specifically, two
pseudometrics ρ1 and ρ2 are said to be coarsely equal if there exists C > 0 such
that

|ρ1(g, h)− ρ2(g, h)| ≤ C for all g, h ∈ G.
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Then a special case of the main result of [04-3] says that when G is reductive, for
any bounded symmetric open neighbourhood L of the identity element in G, the
associated word metric ρ is coarsely equal to a normlike pseudometric on G.

39. Effective ergodic theory

As discussed earlier, Margulis has ingeniously used ergodic theory to prove
many seemingly unrelated results. A basic aspect of ergodic theory concerns
convergence of measures. For example, the basic ergodic theorem says that in an
ergodic system, the time average is equal to the space average almost everywhere.

Effective ergodic theory aims to obtain good bounds on the rate of such con-
vergence. Questions of this type on effective ergodic theory, or rather effective
proofs of results which are proved using ergodic theory, are natural and have been
raised by Margulis in [00-3, pp. 167-169].

For example, in the solutions to the Oppenheim conjecture on the values of
quadratic forms B at integral vectors, there are no estimates on the norm of the
shortest integral vectors v ∈ Zn with values B(v) lying in an interval (a, b).

Another ineffective aspect concerns bounds on the error terms for NB
(a,b), the

counting function for the integral vectors with values in (a, b) (see §25 for defini-
tion). As mentioned before, the joint paper with Dani [93] together with the joint
papers with Eskin and Mozes [95-3] [98-1] [05-1] give sharp bounds and asymp-
totics for NB

(a,b), but no estimates on the error terms are known. One reason
for these ineffective results is that the proofs depend on the Ratner results on
uniform distribution theorem, which is quite ineffective.

Similar ineffective problems occur in the study of the asymptotic behaviors of
the number of lattice points on affine homogeneous varieties [00-3, Problem 6]
and in the proofs of the orbit closure theorem and uniform distribution theorem
(see [00-3, Problem 7] for precise formulation on desired effective proofs of these
results.)

Ratner’s classification of invariant ergodic measures of unipotent subgroups U
of G on homogeneous spaces Γ\G is also crucial to the solution of the Oppenheim
conjecture in §24 but is ineffective. Closely related to this is a result of Mozes
and Shah [MozS] which states that non-zero weak*-limits of U -invariant ergodic
probability measures are again ergodic. Specifically, let H ⊂ G be a semisimple
subgroup generated by unipotent elements. Then a special case of the results of
[MozS] states that the only nonzero weak*-limits of normalized Haar measures on
closed H-orbits in Γ\G are Haar measures on closed orbits of a closed subgroup
S ⊇ H.
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After these problems were raised in [00-3], some important effective results
have been obtained in the past few years. One of the results of the joint paper
with Einsiedler and Venkatesh [07-2] gives a polynomial rate convergence of such
a sequence of H-invariant measures to a Haar measure of an S-orbit, under the
assumption that G is semisimple and Γ is an arithmetic subgroup of G.

Closely related to convergence of measures are problems about equi-distribution,
for example, distribution of translates of orbits of subgroups. Effective distribu-
tion results for Linnik problems are also obtained in [07-2].

See the joint paper of Margulis with Kleinbock [07-1] and the paper [BeO] for
related effective results on equistribution of translates of special subgroups and
S-integraal points.

40. Problem lists by Margulis

Besides problems raised by Margulis in various places, there are two such lists
in [75-4, pp. 38-39] and [00-3]. Another list of problems is [Gor], where many
problems were suggested by Margulis.

In [75-4], there are three kinds of problems:

(1) Generalizations of results for linear groups to isometry groups of sim-
ply connected complete Riemannian manifolds with non-positive sectional
curvature.

(2) Existence of non-uniform (non-arithmetic) lattices in semisimple linear
real Lie groups of R-rank 1.

(3) Group structures of higher rank irreducible lattices, in particular arith-
metic subgroups of algebraic groups.

Unlike the paper [75-4] which also gives an impressive summary of results on
arithmeticity and rigidity of lattices of Lie groups, the paper [00-3] are mainly
concerned with problems and conjectures related to rigidity of actions of Lie
groups and lattices, and an application to the Littlewood conjecture on sizes of
non-integral parts of integral multiples of any two given numbers (see the next
page).

More specifically, the paper [00-3] contains the following types of problems:

(1) Orbit closures, invariant measures and uniform distribution on homoge-
neous spaces.

(2) Application to the Littlewood conjecture.
(3) Effective proofs of the Oppenheim conjecture on values of indefinite ir-

rational quadratic forms at integral points and more generally effective
ergodic theory.
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(4) Arithmeticity and super-rigidity for lattices acting on the complex hyper-
bolic spaces.

(5) Existence of compact quotients of homogeneous spaces.
(6) Classification of actions of higher rank groups and their lattices.
(7) Classification of Anosov diffeomorphisms.

Due to the lack of knowledge of the author, we will only briefly comment on few
of the problems raised by Margulis in [75-4] [00-3] (for effective ergodic theeory,
see §39).

If Γ is a finitely generated subgroup of GL(n,C), it is known by Selberg [Se3,
Lemma 8, p. 154] that Γ admits a torsion-free normal subgroup Γ′ of finite index.
This fact is important for many applications and is known as the Selberg Lemma.
In [Rag1, Corollary 6.13], a slightly more general result is proved for subgroups
of not necessarily linear Lie groups. Specifically, it says that if a connected Lie
group G admits a linear representation ρ : G → GL(n,C) such that the kernel of
ρ is torsion-free, then any finitely generated subgroup of G admits a torsion-free
subgroup Γ′ of finite index. An immediate corollary is that if X is a symmetric
space without compact factors and Isom(X) its isometry group, then any finitely
generated subgroup of Isom(X) admits a torsion-free subgroup of finite index.
The first question in [75-4, p. 38] asks whether the same conclusion holds if X is
replaced by a general complete Riemannian manifold with non-positive sectional
curvature.

One reason is that in [Se3] and [Rag1], the fact that the elements of Γ can be
realized as matrices is crucial for algebraic methods. One point of this question
of Margulis is to understand the extent to which the above result on the existence
of torsion-free subgroups of finite index only depends on the geometry of X (or
on the linear structure of the groups).

If Γ ⊂ Isom(X) is a discrete subgroup, then Γ acts properly on X and the
quotient Γ\X is an orbifold. In this special case, this question of Margulis is
equivalent to if the orbifold Γ\X admits a finite smooth cover. In general, not
every orbifold admits a finite smooth cover, and one question is how the assump-
tion on the non-positive sectional curvature of X can be used for this purpose.
(See [ALR] for references on orbifolds.)

The second problem on [75-4, p.38] is concerned witht existence of (non-
arithmetic) nonuniform lattices, motivated by construction of some non-arithmetic
lattices acting on the real hyperbolic spaces of low dimension by Makarov and
Vinberg, and the arithmeticity theorem of Margulis for irreducible higher rank
lattices. The existence of non-arithmetic lattices for all real hyperbolic spaces
is established by Gromov and Piatetski-Shapiro in [GPS]. For the complex hy-
perbolic spaces in complex dimension 2 and 3, non-arithmetic lattices have been
constructed by Mostow (see [DeM] and references there). As mentioned at the
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end of §9, all lattices for other two rank one symmetric spaces are arithmetic
by [Co] and [GS]. Therefore, the remaining cases are for lattices acting on the
complex hyperbolic spaces. For lattices acting on the complex hyperbolic spaces,
a weaker notion of arithmeticity, called integral, has been studied for them. See
[Ye] and [Kli] and the survey article [Sp].

The third question in [75-4, p. 38] asks if any nontrivial normal subgroup of
an higher rank irreducible lattice has finite index. This is solved by himself. See
§10.

The sixth question in [75-4, p. 38] asks about proportionality of covolumes
of lattices in general semisimple Lie groups. See §23 for some results on this
problem.

The seventh problem in [75-4, p. 39] is concerned with quotients of simply
connected complete Riemannian manifolds of nonpositive without any flat factors.
One question asks if there is a uniform lower bound on volumes of such quotients
if the sectional curvature is uniformly bounded from below. Other problems
are concerned with finiteness properties of these quotients if their volumes are
bounded from above by a given fixed constant. The Margulis Lemma discussed
in §6 is related to these problems.

The deep work of Ratner proved a conjecture of Raghunathan and generaliza-
tions on the orbit closure of unipotent flows on homogeneous manifolds which are
quotients of Lie groups by lattices [Ra2]. It is natural to consider flows defined
by more general subgroups. The first several conjectures in [00-3] are concerned
with conditions under which orbit closures are homogeneous or manifolds, and
conditions under which invariant and ergodic measures are algebraic.

For any x ∈ R, let ||x|| denote the distance d(x,Z) with respect to the usual
absolute value on R. Then the Littlewood conjecture states that for any two
numbers α, β ∈ R,

lim inf
n→+∞ n ||nα|| ||nβ|| = 0.

It was proved by Cassels and Swinnterton-Dyer in 1955 that the Littlewood
conjecture follows from a conjecture that the infimum of the absolute values of
L on the integral points Zn is equal to 0, where L is the product of n linearly
independently linear forms on Rn and is not a multiple of a form with integer
coefficients.

It was also observed by Cassels and Swinnterton-Dyer (implicitly) in 1955 for
n = 3 and Margulis [97-3] for general n that this latter conjecture is implied by the
following conjecture on the orbit closure: Assume that n ≥ 3. Let D ⊂ SL(n,R)
be the subgroup of all diagonal matrices. If for any z ∈ SL(n,R)/SL(n,Z), the
orbit Dz in SL(n,R)/SL(n,Z) is relatively compact, then Dz is closed.
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This conjecture is a special case of the first conjecture in [00-3]. This refor-
mulation of, or rather the approach to, the Littlewood conjecture has been quite
influential. In [EKL], a partial result towards the Littlewood conjecture that the
exception set is of Hausdorff dimension 0 is obtained by classifying measures on
SL(n,R)/SL(n,Z) with positive entropy which are invariant and ergodic under
the action of the subgroup of all positive diagonal matrices.

Another type of problems is concerned with orbit closures of semigroups of
endomorphisms of nilmanifolds, i.e., to find conditions under which the closure
is the finite union of closed homogeneous subspaces, and structures of invariant
and ergodic measures. See [Sp] for a survey and [KaS] for related results.

Rigidity and classification of actions of higher rank semissimple Lie groups and
their lattices are related to the Zimmer program. Several questions of this type
are raised in [00-3]. See [Sp] and [GoS] for references and related results.

Partial list of papers and books of Margulis.
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G.A.Margoulis, Séminaire Bourebaki, Exp. 358 (1968/69). Lect. Notes Math. 179 (1971)
199-216.

[Bo3] A.Borel, On the work of M. S. Raghunathan, in Algebraic groups and arithmetic, pp.1–
24, Tata Inst. Fund. Res., 2004.

[BoHC] A.Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75
(1962) 485–535.

[BoP] A.Borel, G.Prasad, Values of isotropic quadratic forms at S-integral points, Compositio
Math. 83 (1992) 347–372.

[Bur] M.Burger, Rigidity properties of group actions on CAT(0)-spaces, Proceedings of the
International Congress of Mathematicians, Vol. 1, 2 (Zrich, 1994), pp. 761–769,
Birkhäuser, 1995.

[BuM1] M.Burger, S.Mozes, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math.
No. 92 (2000) 151–194.

[BuM2] M.Burger, S.Mozes, Groups acting on trees: from local to global structure, Inst. Hautes
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[Pan] P.Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques

de rang un, Ann. of Math. 129 (1989) 1–60.
[Pa] W.Parry, On some aspects of the theory of Anosov systems, Bull. Amer. Math. Soc. 42

(2005) 257-261.
[Pe] R.Penrose, Pentaplexity, Mathematical Intelligencer 2 (1979) 32–37.
[PS1] I.Piatetski-Shapiro, Discrete subgroups of Lie groups, Trans. Moscow Math. Soc. 18

(1968) 1-18.
[PS2] I.Piatetski-Shapiro, Automorphic functions and arithmetic groups, (Russian) Proc. In-

ternat. Congr. Math. (Moscow, 1966) pp. 232–247. English translation, Amer. Math.
Soc. Transl. 70 (1968) 185-201.

[PlR] V.Platonov, A.Rapinchuk, Algebraic groups and number theory, Pure and Applied Math-
ematics, 139. Academic Press, 1994. xii+614 pp.

[Pol] L.Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent.
Math. 150 (2002) 655–686.

[Pop] S.Popa, Deformation and rigidity for group actions and von Neumann algebras, Proc.
of ICM, vol. 1, 2006, pp. 445–477.

[Pr1] G.Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973)255–286.
[Pr2] G.Prasad, Strong approximation for semi-simple groups over function fields, Ann. of

Math. 105 (1977) 553–572.
[Rag1] M.S.Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, 1972. ix+227 pp.
[Rag2] M.S.Raghunathan, Discrete groups and Q-structures on semi-simple Lie groups, in Dis-

crete subgroups of Lie groups and applications to moduli, pp. 225–321. Oxford Univ.
Press, 1975.

[RaSS] A.Rapinchuk, Y.Segev, G.Seitz, Finite quotients of the multiplicative group of a finite
dimensional division algebra are solvable, J. Amer. Math. Soc. 15 (2002) 929–978.

[Ra1] M.Ratner, Interactions between ergodic theory, Lie groups, and number theory, Proc,
of International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 157–182,
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