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1. Let p be a prime ^3. If (r, p) = l, define r' by means of rr'

= 1 (mod p); the symbol R(r) will denote the least positive residue of

r (mod p). Following Maillet we define the determinant Dp by means

of

(1.1) Dp = \R(rs')\ (r, s= 1, ••• , (p - l)/2).

Maillet raised the question whether Pp^0 for all p. Malo computed

Dp for several small values of p:

D3 = 1,       Db = - 5,       P7 = 72,       P„ = ll4,    P„ = - 136,

and conjectured that generally

(1.2) Dp =(-pyw I2.

For references see [2, pp. 340-342].

Making use of the easily proved transformation

(1.3) Dp = (-py*-v'2\\-]\ (r,s = 2, •••,(/» -l)/2)
I LpJ I

which is obtained by subtracting r times the first row of Dp from the

rth row, it is evident that Dp is indeed divisible by the power of p in-

dicated in (1.2). In turn (1.3) may be further simplified by successive

row subtractions to

I frs'l      V(r - l)s'l I
(1.4) z,,-(-#)c^w.|y_^i_J_j|

(r, s = 2, ■■■ ,(p - l)/2).

It is also not difficult to show that

(1.5) Dp = + \p + R(rs) | (r, s= 1, ■ ■ ■ , (p - l)/2)

which in turn reduces to

(r, s = 3, • • • , (p - l)/2).

This formula is particularly convenient for computation. Note that
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the elements in the determinants in (1.4) and (1.6) consist only of

zeros and ones.

By means of (1.6) it is not difficult to verify that (1.2) holds for

p = 17 and 19 but not for p = 23; in the last case an additional factor

3 occurs. Thus Malo's conjecture is not correct. We shall however

show that Dp never vanishes. This is a consequence of the formula

proved below:

(1.7) Dp = + ptr-Wh,

where h denotes the first factor of the class number of the cyclotomic

field k(e2^i").

Some related determinants are discussed briefly in §3.

2. Put

(2.1) 7J>p(x) = | x + R(rs') \ (r, s = 1, ■ ■ ■ , (p - l)/2),

so that Dp(Q)=Dp. Since the last column of Dp consists of the

numbers p — 2, p — 4, • ■ • , 1, it follows that by addition of twice the

first column to the last column of both Dp and Dp(x) we get

3x + p
(2.2) Dp(x) =--Dp.

P

If we take x = — p/2 then (2.2) becomes

(2.3) Dp = - Dp/2,

where

(2.4) Dp = Dp(-p/2) = | {rs'\ \ (r, s = 1, • • • , (p - l)/2)

and

(2.5) {r\ = R(r) - p/2.

Note that (2.5) implies

(2.6) {_r} =_{,}.

In the next place let g denote a primitive root (mod p) and put

(2.7) Dp = | {g*-'| | (i,j = 0, • • • , (p - 3)/2).

Except for sign and order, the numbers

{!}.{«}.••■. {g^3),i}

are the same as the numbers {l},  {2}, • • • , {(p —1)/2}. Conse-
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quently comparison of (2.4) and (2.7) shows that

(2.8) Dp = ± Dp.

Since g(p-»/2= — 1, it follows from (2.6) that D'v' is not a circulant.

However, if a denotes a primitive (p —l)th root of unity, then

clearly

(2.9) Dp' = | {£«-'}«•-'■ | (i, j = 0, • • ■ , (p - l)/2)

is a circulant; moreover it is evident that

(2.10) Dp=D'p".

Using the familiar formula for a circulant, (2.9) yields

(p-3)/2      (j>-3)/2

(2.1D        Dp" = n   e u<-'V(2'+i).
i-O )'-0

Now on the other hand the first factor of the class number of

k(e2"lr) is given by [3, p. 35]

(p-3)/2

(2.12) h = (2p)-e-3>/2 II   *(«,m).
i-o

where

*(*) = E Rig*)*.
i-0

Thenif/3=a«+1,

Cp-8)/2 (j>-3)/2

*0J) = Z 72(g0^< - E Ri-fW
1=0 I—0

(p-»)/2 (j>-3)/2

= E (2J«(«0 - p)P = 2 E {r}^j-
t—0 t—0

Hence using (2.3), (2.8), (2.10), (2.11), and (2.12) we get

(2.13) h = + p-<r-»i2Dp,

which proves (1.7).

It follows at once from (2.13) that

(2.14) Dp *0

for all p = 3. On the other hand Kummer's criterion  [3, p. 35] for

divisibility of h by p shows that

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



268 L. CARLITZ AND F. R. OLSON [Aprii

(2.15) pir-»i*\Dp

if and only if p divides the numerator of one of the Bernoulli num-

bers P2, Bi, • ■ • , Bp-%; moreover we can assert that (2.15) holds for

infinitely many primes p.

3. By a formula of Eisenstein

Vm~\      m       1        1 "^i        2kmr kit
—   =-1-2^ sin-cot-•

L n J       n        2       2« t_i n n

This implies

. <»=i>/2 2kmw kw
\m\ = —     2_,      sin-cot->

k-i p p

where {m} is defined by (2.5). Replacing m by rs' we get

(p-i)/« 2*w        ksv
\rs'    = —     >.     sin -«— cot-j

*-i P P

and therefore

, 2r57T T57T
Pp = (-1)(^1)/2 sin-  -cot- ,

P P

where in each determinant r, 5 = 1, • • • , (p — l)/2. Now since

| sin 2rsrc/p\2 = 2-^1>/>^1"2,

it follows, using (2.3), that | cot rsw/p\ = ±2(-^^i2p~^l'"iDP. Hence

(2.13) yields

(3.1) | cot rsw/p\ = + 2<-*-vi2p<-^Vh.

Again, recalling the definition of the Dedekind sum

^J   k (rk      frkl       1 \       1 *=i    .     .

and Rademacher's formula (for an elementary proof see [l])

1 p=i       rkir        kic
s(r< P) ~ — Z^ c°t-cot->

4/> k=i p p

we see that

1   <*=»'2       rk*       tk*
(3.2) s(rt\ p) = —     X)   cot-cot-'

2p     t_i /> />
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where as above tt' = l (mod p). If we put

A, = | s(rl', p)\ (r, t - 1, • • • , (p - l)/2),

it follows from (3.2) that

Ap = (2p)-("-1)/2|cot^7r/p|2.

Consequently by (3.1)

(3.3) Ap = 2<p-«)/2p-2A2.

Added in proof. Professor S. Chowla has kindly informed the writ-

ers that he and A. Weil had proved the formula (1.7) several years

ago but had not published the result.
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