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A STICKY HDP-HMM WITH APPLICATION TO SPEAKER
DIARIZATION

BY EMILY B. Fox', ERIK B. SUDDERTH, MICHAEL |. JORDAN? AND ALAN
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Duke University, Brown University, University of California, Berkeléy and
Massachusetts Institute of Technolbgy

We consider the problem speaker diarizationthe problem of segment-
ing an audio recording of a meeting into temporal segmentesponding to
individual speakers. The problem is rendered particuldifficult by the fact
that we are not allowed to assume knowledge of the numberogfip@artic-
ipating in the meeting. To address this problem, we take &8ap nonpara-
metric approach to speaker diarization that builds on teeah¢hical Dirichlet
process hidden Markov model (HDP-HMM) @&h et al.(2006. Although
the basic HDP-HMM tends to over-segment the audio data—tngeeedun-
dant states and rapidly switching among them—we describeugmented
HDP-HMM that provides effective control over the switchirege. We also
show that this augmentation makes it possible to treat éonisistributions
nonparametrically. To scale the resulting architecturestdistic diarization
problems, we develop a sampling algorithm that employsrecated approx-
imation of the Dirichlet process to jointly resample thel fthte sequence,
greatly improving mixing rates. Working with a benchmarkSYl data set,
we show that our Bayesian nonparametric architecture yigtiake-of-the-art
speaker diarization results.

1. Introduction. A recurring problem in many areas of information technol-
ogy is that of segmenting a waveform into a set of time intisrttzat have a useful
interpretation in some underlying domain. In this article fecus on a particu-
lar instance of this problem, namely the problenspéaker diarizationin speaker
diarization, an audio recording is made of a meeting inv@winultiple human par-
ticipants and the problem is to segment the recording ime tntervals associated
with individual speakersWooters and Huijbregt2007). This segmentation is to
be carried out without a priori knowledge of the number ofadqges involved in
the meeting; moreover, we do not assume that we have a priowlkdge of the
speech patterns of particular individuals.

Our approach to the speaker diarization problem is builthenftamework of
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hidden Markov models (HMMs), which have been a major sucstesg not only in
speech technology but also in many other fields involving glemsequential data,
including genomics, structural biology, machine transtatcryptanalysis and fi-
nance. An alternative to HMMs in the speaker diarizatiotirsgtvould be to treat
the problem as a changepoint detection problem, but a kegcasp speaker di-
arization is that speech data from a single individual galherecurs in multiple
disjoint intervals. This suggests a Markovian frameworkvinich the model tran-
sitions among states that are associated with the diffepmdkers.

An apparent disadvantage of the HMM framework, howeverh# tlassical
treatments of the HMM generally require the number of statdee fixed a priori.
While standard parametric model selection methods can &egted to the HMM,
there is little understanding of the strengths and wealasess such methods in
this setting, and practical applications of HMMs generéitythe number of states
using ad hoc approaches. It is not clear how to adapt HMMs d¢odthrization
problem where the number of speakers is unknown.

Building on work ofBeal et al.(2002, Teh et al.(2006 presented a Bayesian
nonparametric version of the HMM in which a stochastic psseethehierarchi-
cal Dirichlet process(HDP)—defines a prior distribution on transition matrices
over countably infinite state spaces. The resultitigP-HMM is amenable to full
Bayesian posterior inference over the number of stategimtidel. Moreover, this
posterior distribution can be integrated over when makirggligtions, effectively
averaging over models of varying complexity. The HDP-HMN lsown promise
in a variety of applied problems, including visual scenegition (Kivinen et al,
2007, music synthesisHoffman et al, 2008, and the modeling of genetic recom-
bination Xing and Sohn2007) and gene expressioBéal and Krishnamurthy2006).

While the HDP-HMM seems like a natural fit to the speaker datron problem
given its structural flexibility, as we show in Secti@nthe HDP-HMM does not
yield state-of-the-art performance in the speaker diidmasetting. The problem
is that the HDP-HMM inadequately models the temporal pesce of states. This
problem arises in classical finite HMMs as well, where senaiHbvian models are
often proposed as solutions. However, the problem is ekatedt in the nonpara-
metric setting, in which the Bayesian bias towards simpledefs is insufficient
to prevent the HDP-HMM from giving high posterior probatyilio models with
unrealistically rapid switching. This is demonstrated ig.A, where we see that
the HDP-HMM sampling algorithm creates redundant statesrapidly switches
among them. (The figure also displays results from the autpdddDP-HMM—
the “sticky HDP-HMM” that we describe in this paper.) Thedency to create
redundant states is not necessarily a problem in settingbich model averaging
is the goal. For speaker diarization, however, it is criticainfer the number of
speakers as well as the transitions among speakers.
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Fic 1. (2) Multinomial observation sequence; (b) true state sege; (c)-(d) estimated state se-
guence after 30,000 Gibbs iterations for the original anidist HDP-HMM, respectively, with er-
rors indicated in red. Without an extra self-transition bjaghe HDP-HMM rapidly transitions among
redundant states.

Thus, one of our major goals in this paper is to provide a gérsaiution to the
problem of state persistence in HDP-HMMs. Our approach $ilyeatated—we
simply augment the HDP-HMM to include a parameter for selfisition bias, and
place a separate prior on this parameter. The challengei®tute this idea coher-
ently in a Bayesian nonparametric framework. Earlier psypewve also proposed
self-transition parameters for HMMs with infinite state cps Beal et al, 2002
Xing and Sohn2007), but did not formulate general solutions that integraty fu
with Bayesian nonparametric inference.

Another goal of the current paper is to develop a more fullpparametric
version of the HDP-HMM in which not only the transition dibtition but also
the emission distribution (the conditional distributichobservations given states)
is treated nonparametrically. This is again motivated ke sheaker diarization
problem—in classical applications of HMMs to speech redogm problems it is
often the case that emission distributions are found to bkinmdal, and high-
performance HMMs generally use finite Gaussian mixturesnaisseon distribu-
tions Gales and Young2007). In the nonparametric setting it is natural to replace
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these finite mixtures with Dirichlet process mixtures. Utiioately, this idea is
not viable in practice, because of the tendency of the HDRvHbIrapidly switch
between redundant states. As we show, however, by incdipgran additional
self-transition bias it is possible to make use of Diriclgedcess mixtures for the
emission distributions.

An important reason for the popularity of the classical HM#its computa-
tional tractability. In particular, marginal probabiés and samples can be obtained
from the HMM via an efficient dynamic programming algorithmokvn as the
forward-backward algorithmRabiner 1989. We show that this algorithm also
plays an important role in computationally efficient infece for our generalized
HDP-HMM. Using a truncated approximation to the full Bayesnonparametric
model, we develop a blocked Gibbs sampler which leveragegafd—backward
recursions to jointly resample the state and emission mssgts for all observa-
tions.

The paper is organized as follows. In Sectigrwe begin by summarizing re-
lated prior work on the speaker diarization task and anady#ie key characteris-
tics of the dataset we examine in Sectrin Section3, we provide some basic
background on Dirichlet processes. Then, in Secfione overview the hierarchi-
cal Dirichlet process and, in Sectidn discuss how it applies to HMMs and can
be extended to account for state persistence. An efficidstisl3ampler is also de-
scribed in this section. In Sectiof) we treat the case of honparametric emission
distributions. We discuss our application to speaker zidion in Sectior8. A list
of notational conventions can be found in the Supplementaterial (?).

2. The Speaker Diarization Task. There is a vast literature on the speaker
diarization task, and in this section we simply aim to prevah overview of the
most common techniques. We refer the interested readerattter and Reynolds
(2006 for a more thorough exposition on the subject.

Classical speaker diarization techniques typically emplowo-stage procedure
that first segments the audio (or features thereof) usingpbaevariety of change-
point algorithms. The inferred segments are then regroupeda set of speaker
labels via a clustering algorithm. For exampReynolds and Torres-Carrasquillo
(2004) propose a changepoint detection method based on the Bayagrmation
Criterion (BIC). Specifically, a penalized likelihood matiest is used to compare
whether the data within a fixed window are better modeled \dimgle Gaussian
or two Gaussians. The window gradually grows at each testaiohangepoint is
inferred, at which point the window is reinitialized at timfarred changepoint. An
alternative changepoint detection technique, first pregasSiegler et al(1997),
uses fixed length windows and computes the symmetric Kikhhadbler (KL)
divergence between a pair of Gaussians each fit by the dateeinrespective
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windows. A post-processing step then sets the changepeintal to the peaks
of the computed KL that exceed a predetermined thresholarder to group
the inferred segments into a set of speaker labels, a compymoach is to use
hierarchical agglomerative clustering with a BIC stoppargerion, as proposed
in Chen and Gopalakrishna(h998).

The simple two-stage approach outlined above suffers franfdct that errors
made in the segmentation stage can degrade the performéartice subsequent
clustering stage. A number of algorithms instead iteratevéen multiple stages
of resegmentation (typically via Viterbi decoding) andstiring; for example, see
Barras et al(2004); Wooters et al(2004). Iterative segmentation and clustering al-
gorithms employing a Gaussian mixture model for each dlysee, speaker), such
as those proposed [Barras et al(2004); Gauvain et al(1998), have been shown
to improve diarization performance. Overall, however,laggerative clustering is
extremely sensitive to the specified threshold for clustergimg, with different
settings leading to either over- or under-clustering ofdbgments into speakers.
The thresholds are typically set based on testing on an @xeetraining database.

A number of more recent approaches have considered thespnaiiljoint seg-
mentation and clustering by employing HMMs to capture thgeeted returns of
speakers. To handle the fact that the state space is unkibeignier et al.(2000
introduces the use of an evolutive-HMM which is further deped inMeignier et al.
(200)). The HMM is initialized to have one state and at each iterad segment
of speech is assumed to arise from an undetected speakersvduunéd to the
model. The revised HMM is then used to resegment the audobttds iterative
procedure continues until the speaker labels have cordiefgealternative HMM
formulation is presented iooters and Huijbregt€2007). The data are initially
split into K states, with/' assumed to be larger than the number of true speakers,
and the HMM states are iteratively merged according to aimieésed on changes
in BIC. At each iteration, Viterbi decoding is performed &segment the features
of the audio, and the inferred segments are used to fit a new KM Mxpectation
maximization (EM). Then, the BIC criterion is applied to @kxwhether to merge
HMM states. The algorithm also includes HMM substates toasgpminimum
speaker durations.

Our approach also seeks to jointly segment and cluster ttiie &to speaker-
homogenous regions, as targeted by the HMM approachdsighier et al(2007);
Wooters and Huijbregt§2007), but within a Bayesian nonparametric framework
that avoids relying on the heuristics employed by theseipusly proposed algo-
rithms and allows for coherent Bayesian inference.

The data set we consider in the experiments of Sed@ima standard bench-
mark data set distributed by NIST as part of the Rich Trapton 2004-2007
meeting recognition evaluationN ST, 2007). The data set consists of 21 recorded
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meetings, each of which may have different sets of spealatsib number and
identity. We use the first 19 Mel Frequency Cepstral Coefiisi¢MFCCs}, com-
puted over a 30ms window every 10ms, as a feature vector. thit¢se features are
computed, a speech/non-speech detector is run to identifyeanove observations
corresponding to non-speech. (Non-speech refers to timevals in which nobody
is speaking.) The pre-processing step of removing nonespeleservations is im-
portant in ensuring that the fitted acoustic models are notipted by non-speech
information.

When working with this dataset, we discovered that the higlguency con-
tent of these features contained little discriminativeoinfation. Since minimum
speaker durations are rarely less than 500ms, we chose e dieé observations
as averages over 250ms, non-overlapping blocks. This gregpsing stage also
aids in achieving speaker dynamics at the correct gramylgs opposed to finer
temporal scale features leading to inferring within-sgeakynamics in addition to
global speaker changes.) In Fig.we plot a histogram the speaker durations of
our preprocessed features based on the ground truth labeigdgd for each of the
21 meetings. From this plot, we see that a geometric durdaigtnibution fits this
data reasonably well. This motivates our approach of sirmayeasing the prior
probability of self-transitions within a Markov frameworkther than moving to
the more complicated semi-Markov formulation of speakangitions.

Mel-frequency cepstral coefficients (MFCCs) comprise agsgntation of the short-term power
spectrum of a sound on the mel scale (a nonlinear scale afdrey based on the human auditory
system response). Specifically, the computation of an MB@{Cally involves (i) taking the Fourier
transform of a windowed excerpt of a signal, (ii) mapping lttge powers of the obtained spectrum
onto the mel scale, and (iii) performing a discrete cosim@dform of the mel log powers. The
MFCCs are the amplitudes of the resulting spectrum.
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Another key feature of the speaker diarization data is toetfeat the speaker
specific emissions are not well approximated by a single Sanssee Fig3. This
observation has led many researchers to consider a miafuB&ussians speaker
model, as previously described. As demonstrated in Se8{me show that achiev-
ing state-of-the-art performance within our frameworloalslies on allowing for
non-Gaussian emissions.

3. Dirichlet Processes. A Dirichlet process (DP) is a distribution on proba-
bility measures on a measurable sp&teThis stochastic process is uniquely de-
fined by a base measufe on © and a concentration parametgrwe denote it by
DP(~, H). Consider a random probability measurg ~ DP(v, H). The DP is
formally defined by the property that for any finite partitjohy , ..., Ax } of ©,

(3.1) (Go(A1),...,Go(Ak)) | v, H ~ Dir(yH(A1),...,vH(AK)).

That is, the measure of a random probability distributign~ DP (v, H) on every
finite partition of© follows a finite-dimensional Dirichledistribution (Ferguson
1973. A more constructive definition of the DP was given®gthuramar1994).
Consider a probability mass function (pm{f; }2°; on a countably infinite set,
where the discrete probabilities are defined as follows:

v | v ~ Betd1,7) k=1,2,...
k—1

(3.2) Br=wv [[(1—v) k=12,....
=1

In effect, we have divided a unit-length stick into lengtlgeg by the weights,:
the k' weight is a random proportiony, of the remaining stick after the previous
(k — 1) weights have been defined. Thaick-breaking constructiors generally
denoted by ~ GEM(~). With probability one, a random dra®, ~ DP(v, H)
can be expressed as

(3.3) Go=)Y Bby, Op|H~H, k=12,
k=1

wheredy denotes a unit-mass measure concentratédatl where{d, } are drawn
independently fromH. From this definition, we see that the DP actually defines
a distribution over discrete probability measures. Thekdbreaking construction
also gives us insight into how the concentration parametsontrols the relative
magnitude of the mixture weights., and thus determines the model complexity
in terms of the expected number of components with signifipesbability mass.
The DP has a number of properties which make inference basttismonpara-
metric prior computationally tractable. Consider a set lndayvations{6,} with
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0! ~ Gy. Because probability measures drawn from a DP are disdfetes is
a strictly positive probability of multiple observatio$ taking identical values
within the set{f;}, with 6, defined as in Equatior8(3). For each valué’, let z;
be an indicator random variable that picks out the uniqueefabuch that = 6,..
Blackwell and MacQuee(1973 introduced a Polya urn representation of e

i—1
1
010, ...60 ~— 1 —dy
QLR y+i—1 +j:1'y—|—i—1 b
y i Ny
3.4 R — - k5
(34) y+i—1 +kz::1’y+i—16’“’

implying the following predictive distribution for the inchtor random variables:

(3.5)

1 K
P(ZN+1:Z‘ZL---,ZN"Y): 5(27K+1)+—an5(27k)
k=1

~
N+~ N+~ =

Here,n, = S.N, 6(2, k) is the number of indicator random variables taking the
valuek, and K + 1 is a previously unseen value. We use the notafion k) to
indicate the discrete Kronecker delta. This represematemn be used to sample
observations from a DP without explicitly constructing ttmuntably infinite ran-
dom probability measur&y ~ DP(v, H).

The distribution on partitions induced by the sequence oflitmnal distribu-
tions in Equation §.5) is commonly referred to as th@hinese restaurant process
The analogy, which is useful in developing various geneagitbons of the Dirichlet
process we consider in this paper, is as follows. Tiakebe a customer entering a
restaurant with infinitely many tables, each serving a umidighd,.. Each arriving
customer chooses a table, indicated:hyn proportion to how many customers are
currently sitting at that table. With some positive proltigbproportional to, the
customer starts a new, previously unoccupied t@ble¢ 1. The Chinese restaurant
process captures the fact that the DP has a clustering pyaperh that multiple
draws from the random measure take the same value.

The DP is commonly used as a prior on the parameters of a raixiodel with a
random number of components. Such a model is callegiehlet process mixture
modeland is depicted as a graphical model in Fi¢n)-(b). To generate observa-
tions, we choosé, ~ Gy andy; ~ F(¢;) for an indexed family of distributions
F(-). This sampling process is also often described in termseofrtlicator ran-
dom variablesz; in particular, we have; ~ 3 andy; ~ F(6,). The parameter
with which an observation is associated implicitly paotits or clusters the data.
In addition, the Chinese restaurant process represemtatthcates that the DP
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provides a prior that makes it more likely to associate amdagion with a param-
eter to which other observations have already been assdcibhis reinforcement
property is essential for inferring finite, compact mixtunedels. It can be shown
under mild conditions that if the data were generated by &fmixture, then the
DP posterior is guaranteed to converge (in distributiortha finite set of mixture
parameterslgéhwaran and Zarepou20023.

4. Hierarchical Dirichlet Processes. In the following section we describe
how ideas based on the Dirichlet process have been used ¢topgexv Bayesian
nonparametric approach to hidden Markov modeling in whiehrtumber of states
is unknown a priori. To develop this nonparametric versibtmne HMM the Dirich-
let process does not suffice; rather, it is necessary toaleeghierarchical Bayesian
model involving a tied collection of Dirichlet processesig has been done by
Teh et al.(2006 whosehierarchical Dirichlet process (HDPyve describe in this
section. The HDP is applicable to general problems invglvielated groups of
data, each of which can be modeled using a DP, and we begindayiliag the
HDP at this level of generality, subsequently specializimthe HMM.

To describe the HDP, suppose there Agroups of data and Igty;1, . . ., y;jn; }
denote the set of observations in grogug\ssume that there are a collection of DP
mixture models underlying the observations in these groups

Gj :Zfilﬁjt(%;t 7jla~GEM(o) j=1,...,J
9;t|G0NG0 t=1,2,...
4.1)
05 | Gj ~ G yji |0 ~ F(0) j=1,....J
i=1,...,N;

We wish to tie the DP mixtures across the different group$ shat atoms that
underly the data in group can be used in groupy. The problem is that it7,
is absolutely continuous with respect to Lebesgue measisré generally is for
continuous parameters) then the atom& jrwill be distinct from those irtz; with
probability one. The solution to this problem is to &} itself be a draw from a
DP:

(4 2) Go = 2211 516591& 5 ’ v GEM(’Y)
' O | HA~HQ\) k=12, ..

In this hierarchical model;7, is atomic and random. Letting, be a base measure
for the drawG; ~ DP(«, Gy) implies that only these atoms can appeatGin
Thus atoms can be shared among the collection of random nesgst; }. The
HDP model is depicted graphically in two different ways ig Fi(c) and Fig4(d).
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FiGc 4. Dirichlet process (left) and hierarchical Dirichlet press (right) mixture models repre-
sented in two different ways as graphical models. (a) Indicaariable representation in which
Bly ~ GEM(®), 0x|H, A\ ~ H(X), zi|8 ~ B, andy;|{0k }7=1, z: ~ F(0:,). (b) Alternative rep-
resentation withGo|y, H ~ DP(v, H), 0;|Go ~ Go, andy;|0; ~ F(0;). (c) Indicator variable
representation in whiclB|y ~ GEM(v), mx|a, 8 ~ DP(a, B), Ox|H, A ~ H(N), zji|7; ~ 75,
and y;i {0k }321, 26 ~ F(0-,;). (d) Alternative representation witli/o|y, H ~ DP(y, H),
G;|Go ~ DP(a, Go), 03;|G; ~ Gj, andy;:|0; ~ F(07;). The “plate” notation is used to com-
pactly represent replicationTeh et al, 2006).
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Teh et al.(2006 have also described the marginal probabilities obtaimenh f
integrating over the random measu€gsand{G; }. They show that these marginals
can be described in terms oifGhinese restaurant franchi€RF) that is an ana-
log of the Chinese restaurant process. The CRF is comprfsédestaurants, each
corresponding to an HDP group, and an infinite buffet line ishes common to
all restaurants. The process of seating customers at tdidesver, is restaurant
specific. Each customer is pre-assigned to a given restaded@rmined by that
customer’s groug. Upon entering thg*” restaurant in the CRF, customgy; sits
at currently occupied tablées; with probability proportional to the number of cur-
rently seated customers, or starts a new tdble 1 with probability proportional to
«. The first customer to sit at a table goes to the buffet linegcks a disht;; for
their table, choosing the dish with probability proporébio the number of times
that dish has been picked previously, or ordering a newdjish with probability
proportional toy. The intuition behind this predictive distribution is thategrating
over the global dish probabilities results in customers making decisions based on
the observed popularity of the dishes throughout the efrtarechise. See the Sup-
plementary Material for further detail8)(

Recalling Equation4.1)-(4.2), since each distributiod; is drawn from a DP
with a discrete base measut®, multiple 67, may take an identical valug, for
multiple unique values of. As we see in the Supplemental Materid), (this cor-
responds to multiple tables in the same restaurant beingdé¢ne same dish. We
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can writeG; as a function of the unique dishes:
(4.3) Gj =) mde,, mjl|a,B~DP(a,B), Op|H~H,
k=1

wherer; now defines a restaurant-specific distribution over diskeeges rather
than over tables, with

t\G;t:Gk
Let z;; be the indicator random variable for the unique dish setelsyeobserva-
tion y;;. An equivalent representation for the generative moded terims of these

indicator random variables:
(45) 7o, 8~DP(a,B)  zji|lmi~mp yii [ {0k}, 25 ~ F(02,),
and is shown in Fig4(c).

5. The Sticky HDP-HMM. Recall that the hidden Markov model, MM,
is a class of doubly stochastic processes based on an undeudyjscrete-valued
state sequence, which is modeled as MarkoviRab{ner 1989. Let z; denote the
state of the Markov chain at timeand ; the state-specific transition distribu-
tion for statej. Then, the Markovian structure on the state sequence ekcthat
2z ~ m,_,. The observationsy,, are conditionally independent given this state
sequence, withy, ~ F'(6,,) for some fixed distributiorf'(-).

The HDP can be used to develop an HMM with an infinite state espdhe
HDP-HMM (Teh et al, 2006). In the speaker diarization task, each state constitutes
a different speaker and our goal in moving to an infinite stp@ce is to remove
upper bounds on the total number of speakers present. Coatlgpwe envision a
doubly-infinite transition matrix, with each row correspamg to a Chinese restau-
rant. That is, the groups in the HDP formalism here corredgorstates, and each
Chinese restaurant defines a distribution on next statesCRF links these next-
state distributions. Thus, in this application of the HDI, yjroup-specific distribu-
tion, ;, is a state-specific transition distribution and, due tanfiaite state space,
there are infinitely many such groups. Singe~ 7, ,, we see that,_; indexes
the group to whichy, is assigned (i.e., all observations with | = j are assigned
to groupy). Just as with the HMM, the current statethen indexes the parameter
6., used to generate observatign(see Fig5(a)).

By definingw; ~ DP(«, ), the HDP prior encourages states to have similar
transition distributions K[r;;, | 3] = (). However, it does not differentiate self-
transitions from moves between different states. When iimggeata with state
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Fic 5. (a) Graphical representation of the sticky HDP-HMM. Theatst evolves as
zer1{mr iz, 2t ~ 7, Wheremg|a, k, 8 ~ DP(a + &, (af + kdk)/(a + k)) and By ~
GEM(~), and observations are generated @3{0x }r—1,2¢ ~ F(0.,). The original HDP-HMM
hasx = 0. (b) Sticky HDP-HMM with DP emissions, whesg indexes the state-specific mix-
ture component generating observatign The DP prior dictates that,|{¢x }71,2¢ ~ ., for
Yrlo ~ GEM(o). The; ™" Gaussian component of thé"™ mixture density is parameterized By ;
Soyt|{9k,j}i<jj:17 Rty St~ F(azt-,st)'

persistence, the flexible nature of the HDP-HMM prior alldasstate sequences
with unrealistically fast dynamics to have large postepiabability. For example,
with multinomial emissions, a good explanation of the dattoidivide different
observation values into unique states and then rapidlyckwiietween them (see
Fig. 1). In such cases, many models with redundant states may amee poste-
rior probability, thus impeding our ability to identify a egpact dynamical model
which best explains the observations. The problem is comged by the fact that
once this alternating pattern has been instantiated byamplgr, its persistence
is then reinforced by the properties of the Chinese restadiranchise, thus slow-
ing mixing rates. Furthermore, this fragmentation of data redundant states can
reduce predictive performance, as is discussed in Se@tibmmany applications,
one would like to be able to incorporate prior knowledge ghatv, smoothly vary-
ing dynamics are more likely.

To address these issues, we propose to instead model thigitoradistributions
m; as follows:

B |y~ GEM(y)

(5.1) Wj\a,ﬁ,ﬂNDP<a+m,M).

o+ K

Here,(af + xd;) indicates that an amount> 0 is added to the?” component of
af. Informally, what we are doing is increasing the expecteambability of self-
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transition by an amount proportional o

O‘ﬁk’ + lié(j? k)
a+kK '

More formally, over a finite partitiofiZ1, . .., Zx ) of the positive integer.,, the
prior on the measure; adds an amount only to the arbitrarily small partition
containingyj, corresponding to a self-transition. That is,

(5.3)
(ﬂ'j(Zl), - ,Wj(ZK)) | Oé,ﬁ ~ Dlr(aﬁ(Zl) + I{éj(Zl), - ,Oéﬁ(ZK) + Iiéj(ZK))

Whenx = 0 the original HDP-HMM of Teh et al.(2006) is recovered. Because
positivex values increase the prior probabiliB{r;; | 3] of self-transitions, we re-
fer to this extension as ttetickyHDP-HMM. See Fig5(a). Note that this formula-
tion assumes that the stickiness of each HMM state is the agmieri. The param-
eter could be made state-dependent through a hierarchadglrthat ties together
a collection of state-specific sticky parameters. Howesgrh state-specific stick-
iness is unnecessary for the speaker diarization task at $inoe each speaker is
assumed to have similar expected durations. Differencieclea speaker-specific
transitions become more distinguished in the posterior.

The x parameter is reminiscent of the self-transition bias patamof theinfi-
nite HMM, an urn model for hidden Markov models on infinite state spdhat
predated the HDP-HMMReal et al, 2002. The connection between the (sticky)
HDP-HMM and the infinite HMM is analogous to that between thie &nd the
Polya urn; in both cases the latter is obtained by integgabiut the random mea-
sures in the former. In particular, the infinite HMM employsv@-level urn model
in which the top-level urn places a probability on trangifdo existing states in
proportion to how many times these transitions have been, seith an added
bias for a self-transition even if this has not previouslgweed. With some re-
maining probability an oracle is called, representing tbeosd-level urn. This
oracle chooses an existing state in proportion to how mangdgithe oracle pre-
viously chose that state, regardless of the state transitimlved, or chooses a
previously unvisited state. The original HDP-HMM providas interpretation of
this urn model in terms of an underlying collection of linkethdom probability
measures, however without the self-transition paramiteddition to the concep-
tual clarity provided by the random measure formalism, tiEPFHMM has the
practical advantage that it makes it possible to use stdid@&MC algorithms for
posterior inference; working within the urn model formigat Beal et al.(2002
needed to resort to a heuristic approximation to a Gibbs kEamihe sticky HDP-
HMM, an early version of which was presentedFox et al.(2008), restores the
self-transition parameter of the infinite HMM to this clagsmodels, doing so in a
way that integrates with a full Bayesian nonparametric $jgation.

(5.2) Elmji | B, k] =
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As with the DP, this specification in terms of random measuyielsls various
interesting characterizations of marginal probabilitiesparticular, as described
in the Supplemental MateriaP), the partitioning structure induced by the sticky
HDP-HMM has an interpretation as an extension of the Chimes&wurant fran-
chise (CRF) which we refer to asGRF with loyal customerdiere, each restaurant
in the franchise has a specialty dish with the same indexaftthe restaurant.
Although this dish is served elsewhere, it is more populahédish’s namesake
restaurant. Recall that while customers in the CRF of the ldE2Hre-partitioned
into restaurants based on the fixed group assignments, HRRRHMM the value
of the statez; determines the group assignment (and thus restaurantstdmear
yi+1- The increased popularity of the house specialty dish (oeted by the sticky
parameter) implies that children are more likely to eat in the samea@sint as
their parent £; = z;_1 = j) and, in turn, more likely to eat the restaurant’s spe-
cialty dish ¢.11 = j). This develops family loyalty to a given restaurant in the
franchise. However, if the parent chooses a dish other tharhbuse specialty
(z+ = k, k # 7), the child will then go to the restaurant where this dishhis t
specialty and will in turn be more likely to eat this dish, td@ne might say that
for the sticky HDP-HMM, children have similar tastebudsheit parents and will
always go to the restaurant that prepares their parentshdist. Often, this keeps
many generations eating in the same restaurant.

Throughout the remainder of the paper, we use the followatgtional conven-
tions. Given a random sequenge;, o, ..., x7 }, we use the shorthand ., to de-
note the sequendgery, o, . . ., z¢ } andx,, to denote the seftey, . .., 241, Tyy1, - -+, 27}
Also, for random variables with double subindices, suckgas,, we will usex
to denote the entire set of such random varialles, .,, Va1, Vas }, and the short-

hand notationc,,. = 3", Tajags Toay = Dogy Tarags ANAT. =37, D70 Taja,-

5.1. Sampling via Direct Assignmentsln this section we present an inference
algorithm for the sticky HDP-HMM of Sectioh and Fig.5(a) that is a modified
version of the direct assignment Rao-Blackwellized Gibdssgler of Teh et al.
(2006. This sampler circumvents the complicated bookkeepinghef CRF by
sampling indicator random variables directly. The rengltsticky HDP-HMM di-
rect assignment Gibbs sampler is outlined in Algorithm 1haf Supplementary
Material (?), which also contains the full derivations of this sampler.

The basic idea is that we marginalize over the infinite setaiésspecific transi-
tion distributionsrt;,, and parameter$,, and sequentially sample the staiegiven
all other state assignments;, the observationg,.7, and the global transition dis-
tribution 5. A variant of the Chinese restaurant process gives us toe proba-
bility of an assignment of; to a valuek based on how many times we have seen
other transitions from the previous state vatue, to k£ andk to the next state value



THE STICKY HDP-HMM 15

z11. As derived in the Supplementary Materid),(this conditional distribution is
dependent upon whether either or both of the transitigng to £ and % to 2,41
correspond to a self-transition, most strongly wihen 0. The prior probability of
an assignment of; to statek is then weighted by the likelihood of the observation
y; given all other observations assigned to state

Given a sample of the state sequenge, we can represent the posterior distri-
bution of the global transition distributiofi via a set of auxiliary random variables
mjk, Mk, andw;;, which correspond to th@'th restaurant-specific set of table
counts associated with the CRF with loyal customers desgiiio the Supplemen-
tal Material (). The Gibbs sampler iterates between sequential sampfitigeo
statez; for each individual value of given 3 andz\,; sampling of the auxiliary
variablesm ;j, m i, andw;, givenz;.7 and3; and sampling of3 given these aux-
iliary variables.

The direct assignment sampler is initialized by samplirg hiliperparameters
andg from their respective priors and then sequentially sangpdiachz; as if the
associated;; was the last observation. That is, we first samplgiveny, &, and
the hyperparameters. We then samplegiven z1, y1.2, 5, and the hyperparam-
eters, and so on. Based on the resulting sample.ef we resamples and the
hyperparameters. From then on, the sampler continues ndthdrmal procedure
of conditioning onz, when resampling.

5.2. Blocked Sampling of State Sequencehe HDP-HMM sequential, direct
assignment sampler of Sectiéril can exhibit slow mixing rates since global state
sequence changes are forced to occur coordinate by cotardiftas phenomenon
is explored inScott (2002 for the finite HMM. Although the sticky HDP-HMM
reduces the posterior uncertainty caused by fast statefsng explanations of the
data, the self-transition bias can cause two continuoustemgorally separated
sets of observations of a given state to be grouped into mtestSee Figh(b) for
an example. If this occurs, the high probability of selfag@ion makes it challeng-
ing for the sequential sampler to group those two examptesasingle state.

We thus propose using a variant of the HMM forward-backwardcedure
(Rabiner 1989 to harness the Markovian structure and jointly sample thges
sequencer.r given the observationg,., transition probabilitiesr;,, and param-
etersd,. There are two main mechanisms for sampling in an uncolthpteP
model (i.e., one that instantiates the parametgrandfy): one is to employ slice
sampling while the other is to consider a truncated appration to the HDP.
For the HDP-HMM, a slice sampler, referred tolzsam samplingwas recently
developed Van Gael et al.2008. This sampler harnesses the efficiencies of the
forward-backward algorithm without having to fix a truncatilevel for the HDP.
However, as we elaborate upon in Sectt, this sampler suffers from slower
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mixing rates than the block sampler we propose, which eslia fixed-order trun-
cation of the HDP-HMM. Although a fixed truncation reduces owodel to a
parametric Bayesian HMM, the specific hierarchical priaiuoced by a trunca-
tion of the fully nonparametric HDP significantly improvepan classical para-
metric Bayesian HMMs. Specifically, a fixed degie¢runcation encourages each
transition distribution to be sparse over the seLgjossible HMM states, and si-
multaneously encourages transitions from different staiehave similar sparsity
structures. That is, the truncated HDP prior leads shaedsparse subset of the
L possible states. See Secti@@for a comparison with standard parametric mod-
eling.

There are multiple methods of approximating the countabliniite transition
distributions via truncations. One approach is to ternginhe stick-breaking con-
struction after some portion of the stick has already beehkdmr and assign the
remaining weight to a single component. This approximatsoreferred to as the
truncated Dirichlet processAnother method is to consider thegreel, weak limit
approximationto the DP (shwaran and Zarepou2002b,

(5.4) GEMy () 2 Dir(a/L, ..., a/L),

whereL is a number that exceeds the total number of expected HMMsstBbth

of these approximations, which are presentedsimwvaran and Zarepou2000Q
20021, encourage the learning of models with fewer tHamomponents while
allowing the generation of new components, upper boundet, lag new data are
observed. We choose to use the second approximation bechitsesimplicity
and computational efficiency. The two choices of approxiomst are compared
in Kurihara et al.(2007), and little to no practical differences are found. Using a
weak limit approximation to the Dirichlet process prior @n(i.e., employing a
finite Dirichlet prior) induces a finite Dirichlet prior om;:

(5:5) By~ Dir(y/L, .., /L)
(5.6) 7j | o, B ~ Dir(af,...,afL).

As L — oo, this model converges in distribution to the HDP mixture mod
(Teh et al, 2006).

The Gibbs sampler using blocked resampling:of is derived in the Supple-
mentary Material ?); an outline of the resulting algorithm is also presentes (&l-
gorithm 3). A similar sampler has been used for inferencedPHhidden Markov
trees Kivinen et al, 2007). However, this work did not consider the complications
introduced by multimodal emissions, which we explore intlec’.

The blocked sampler is initialized by drawirdg parameter®;, from the base
measureS from its L-dimensional symmetric Dirichlet prior, and tHe transi-
tion distributionsm;, from the inducedL-dimensional Dirichlet prior specified in
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Equation 6.6). The hyperparameters are also drawn from the prior. Basdtie
sampled parameters and transition distributions, one t@uk lIsamplez;. and
proceed as in Algorithm 3 of the Supplementary Mater?al (

5.3. Hyperparameters. We treat the hyperparameters in the sticky HDP-HMM
as unknown quantities and perform full Bayesian inferenger these quantities.
This emphasizes the role of the data in determining the nuwfb@ccupied states
and the degree of self-transition bias. Our derivation af@ang updates for the
hyperparameters of the sticky HDP-HMM is presented in thepf&mentary Ma-
terial (?); it roughly follows that of the original HDP-HMMTeh et al, 2006). A
key step which simplifies our inference procedure is to riag¢ $ince we have the
deterministic relationships

o= (1= p)a+r)
(5.7) k= pla+ k),

we can treap and« + « as our hyperparameters and sample these values instead
of samplinga: andx directly.

6. Experimentswith Synthetic Data. In this section, we explore the perfor-
mance of the sticky HDP-HMM relative to the original modeé(j the model with
r = 0) in a series of experiments with synthetic data. We judgéopmance ac-
cording to two metrics: our ability to accurately segmeret data according to the
underlying state sequence, and the predictive likelihdduet-out data under the
inferred model. We additionally assess the improvemenisiking rate achieved
by using the blocked sampler of Sectibrz.

6.1. Gaussian Emissions.We begin our analysis of the sticky HDP-HMM per-
formance by examining a set of simulated data generateddrofiMM with Gaus-
sian emissions. The first dataset is generated from an HMRKlaMitigh probability
of self-transition. Here, we aim to show that the original PHBIMM inadequately
captures state persistence. The second dataset is from ahwidi¥l a high prob-
ability of leaving the current state. In this scenario, ooalgs to demonstrate that
the sticky HDP-HMM is still able to capture rapid dynamicsibferring a small
probability of self-transition.

For all of the experiments with simulated data, we used wealkbrmative hy-
perpriors. We placed a Gamiiia0.01) prior on the concentration parameters
and (« + k). The self-transition proportion paramefemwas given a Betd0, 1)
prior. The parameters of the base measure were set from thgagawill be de-
scribed for each scenario.
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State Persistence.The data for the high persistence case were generated from a
three-state HMM with a 0.98 probability of self-transitiamd equal probability
of transitions to the other two states. The observation argdtate sequences for
the state persistence scenario are shown indtg. We placed a normal inverse-
Wishart prior on the space of mean and variance parametdrsedrihe hyperpa-
rameters as: 0.01 pseudocounts, mean equal to the empiézal, three degrees
of freedom, and scale matrix equal to 0.75 times the empiverdance. We used
this conjugate base measure so that we may directly comipangerformance of
the blocked and direct assignment samplers. For the blos&atler, we used a
truncation level ofl. = 20.

In Fig. 6(d)-(h), we plot the10*”, 50", and 90" quantiles of the Hamming
distance between the true and estimated state sequencab@\t®00 Gibbs iter-
ations using the direct assignment and blocked samplettseosticky and original
HDP-HMM models. To calculate the Hamming distance, we ukedtunkres al-
gorithm Munkres 1957 to map the randomly chosen indices of the estimated state
sequence to the set of indices that maximize the overlapthétiirue sequence.

From these plots, we see that the burn-in rate of the blockegpker using the
sticky HDP-HMM is significantly faster than that of any otlsaimpler-model com-
bination. As expected, the sticky HDP-HMM with the sequalntlirect assignment
sampler gets stuck in state sequence assignments from Wwhshard to move
away, as conveyed by the flatness of the Hamming error vetstzion number
plot in Fig.6(g). For example, the estimated state sequence obtymight have
similar parameters associated with states 3, 7, 10 and lHasdhie likelihood is
in essence the same as if these states were grouped, bugdhesnse has a large
error in terms of Hamming distance and it would take manyattens to move
away from this assignment. Incorporating the blocked sampith the original
HDP-HMM improves the Hamming distance performance redativthe sequen-
tial, direct assignment sampler for both the original amckgtHDP-HMM; how-
ever, the burn-in rate is still substantially slower thaattbf the blocked sampler
on the sticky model.

As discussed earlier, Beam samplingalgorithm {an Gael et al. 2008 has
been proposed which adapts slice sampling methBa®€rt 2007) to the HDP-
HMM. This approach uses a set of auxiliary slice variables for each observa-
tion, to effectively truncate the number of state transgithat must be considered
at every Gibbs sampling iteration. Dynamic programminghuod$ can then be
used to jointly resample state assignments. The beam sawgsenspired by a re-
lated approach for DP mixture model&/dlker, 2007), which is conceptually sim-
ilar to retrospective sampling methodBapaspiliopoulos and Rober2008. In
comparison to our fixed-order, weak-limit truncation of thBP-HMM, the beam
sampler provides an asymptotically exact algorithm. Havethe beam sampler
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FIG 6. (a) Observation sequence (blue) and true state sequerdg for a three-state HMM with
state persistence. (b) Example of the sticky HDP-HMM diessignment Gibbs sampler splitting
temporally separated examples of the same true state (néo)niultiple estimated states (blue) at
Gibbs iteration 1,000. (c) Histogram of the inferred se#rsition proportion parametey, for the
sticky HDP-HMM blocked sampler. For the original HDP-HMNhet median (solid blue) ant*®
and90*" quantiles (dashed red) of Hamming distance between thatrdestimated state sequences
over the first 1,000 Gibbs samples from 200 chains are shomthéqd) direct assignment sampler,
and (e) blocked sampler. (f) Hamming distance over 30,0@b&samples from three chains of the
original HDP-HMM blocked sampler. (g)-(i) Analogous pldts (d)-(f) for the sticky HDP-HMM.
(k) and () Plots analogous to (e) and (f) for a nonsticky HBIRIM using beam sampling. (j) A
histogram of the effective beam sampler truncation lefg},;, over the 30,000 Gibbs iterations
from the three chains (blue) compared to the fixed truncaiesl, L = 20, used in the truncated
sticky HDP-HMM blocked sampler results (red).
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can be slow to mix relative to our blocked sampler on the fixatcated model
(see Fig.6 for an example comparison.) The issue is that in order toidens
transition which has low prior probability, one needs a espondingly rare slice
variable sample at that time. Thus, even if the likelihoogscare strong, to be
able to consider state sequences with several low-privghility transitions, one
needs to wait for severahre eventgo occur when drawing slice variables. By con-
sidering the full, exponentially large set of paths in thentated state space, we
avoid this problem. Of course, the trade-off between themdational cost of the
blocked sampler on the fixed, truncated mode(1'L?)) and the slower mixing
rate of the beam sampler yields an application-dependemplsa choice.

The Hamming distance plots of Fig(k) and (I), when compared to those of
Fig. 6(e) and (f), depict the substantially slower mixing ratetod beam sampler
compared to the blocked sampler (both using a non-sticky HIVM). However,
the theoretical computational benefit of the beam samplebeaseen in Figo(j).

In this plot, we present a histogram of the effective truiocalevel, L. s ;, used over
the 30,000 Gibbs iterations on three chains. We computeceffective truncation
level by summing over the number of state transitions camsil during a full
sweep of sampling;.7 and then dividing this number by the length of the dataset,
T, and taking the square root. Finally, on a more technicad,rair fixed, truncated
model allows for more vectorization of the code than the beampler. Thus, in
practice, the difference in computation time between tmepdars is significantly
less than the)(L?/L? 1) factor obtained by counting state transitions.

From this point onwards, we present results only from bldck@mpling since
we have seen the clear advantages of this method over thergedjudirect assign-
ment sampler.

Fast State-Switching. In order to warrant the general use of the sticky model,
one would like to know that the sticky parameter incorpatdtethe model does
not preclude learning models with fast dynamics. To this, amel explored the
performance of the sticky HDP-HMM on data generated from dehwith a high
probability of switching between states. Specifically, vengrated observations
from a four-state HMM with the following transition probdibr matrix:

04 04 01 0.1
04 04 01 0.1
0.1 01 04 04
0.1 01 04 04

(6.1)

We once again used a truncation leyel 20. Since we are restricting ourselves
to the blocked Gibbs sampler, it is no longer necessary tcausenjugate base
measure. Instead we placed an independent Gaussian pitioe omean parameter
and an inverse-Wishart prior on the variance parametertheécGaussian prior, we
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FiG 7. (a) Observation sequence (blue) and true state sequeerdg for a four-state HMM with
fast state switching. For the original HDP-HMM using a bleckGibbs sampler: (b) the median
(solid blue) and10t* and 90" quantiles (dashed red) of Hamming distance between theatnde
estimated state sequences over the first 1,000 Gibbs safnmhes200 chains, and (c) Hamming
distance over 30,000 Gibbs samples from three chains. (stpbfiam of the inferred self-transition
parameter,p, for the sticky HDP-HMM blocked sampler. (e)-(f) Analoggulsts to (b)-(c) for the
sticky HDP-HMM.

set the mean and variance hyperparameters to be equal togigoal mean and
variance of the entire dataset. The inverse-Wishart hygarpeters were set such
that the expected variance is equal to 0.75 times that ofrttiealataset, with three
degrees of freedom.

The results depicted in Fig. confirm that by inferring a small probability of
self-transition, the sticky HDP-HMM is indeed able to captiast HMM dynam-
ics, and just as quickly as the original HDP-HMM (althoughhnhigher variabil-
ity.) Specifically, we see that the histogram of the selfitfaon proportion param-
eter p for this dataset (see Fig(d)) is centered around a value close to the true
probability of self-transition, which is substantiallywer than the mean value of
this parameter on the data with high persistence ig).)

6.2. Multinomial Emissions. The difference in modeling power, rather than
simply burn-in rate, between the sticky and original HDP-MMs more pro-
nounced when we consider multinomial emissions. This isabgse the multino-
mial observations are embedded in a discrete topologiealesim which there is no
concept of similarity between non-identical observatiatues. In contrast, Gaus-
sian emissions have a continuous range of valueR"irwith a clear notion of
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closenesdbetween observations under the Lebesgue measure, aidgrguping
observations under a single HMM state’s Gaussian emissgiribaition, even in
the absence of a self-transition bias.

To demonstrate the increased posterior uncertainty wgbrelie observations,
we generated data from a five-state HMM with multinomial esieiss with a 0.98
probability of self-transition and equal probability oansitions to the other four
states. The vocabulary, or range of possible observatituesawas set to 20. The
observation and true state sequences are shown (&g \We placed a symmetric
Dirichlet prior on the parameters of the multinomial distiion, with the Dirichlet
hyperparameters equal to 2 (i.e., Qir.. ., 2).)

From Fig.8, we see that even after burn-in, many fast-switching sedqeences
have significant posterior probability under the non-stisiodel leading to sweeps
through regions of larger Hamming distance error. A quiliggplot of one such in-
ferred sequence after 30,000 Gibbs iterations is showrgirlfg). Such sequences
have negligible posterior probability under the sticky HEIRIM formulation.

In some applications, such as the speaker diarization gmolthat is explored
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in Section8, one cares about the inferred segmentation of the data isti af
state labels. In this case, the advantage of incorporabiagsticky parameter is
clear. However, it is often the case that the metric of irgeisthe predictive power
of the fitted model, not the accuracy of the inferred stateisece. To study per-
formance under this metric, we simulated 10 test sequensiag the same pa-
rameters that generated the training sequence. We thenutedhfhe likelihood
of each of the test sequences under the set of parametensihte everyl 00"
Gibbs iteration from iterations 10,000 to 30,000. Thislitkeod was computed by
running the forward-backward algorithm Babiner(1989. We plot these results
as a histogram in Figd(b). From this plot, we see that the fragmentation of data
into redundant HMM states can also degrade the predictifenpeance of the in-
ferred model. Thus, the sticky parameter plays an impor@etin the Bayesian
nonparametric learning of HMMs even in terms of model avieigg

6.3. Comparison to Independent Sparse Dirichlet PrioWe have alluded to
the fact that thesharedsparsity of the HDP-HMM induced by is essential for in-
ferring sparse representations of the data. Although shiseiar from the perspec-
tive of the prior model, or equivalently the generative @sx; it is not immediately
obvious how much this hierarchical Bayesian constrainiak in posterior infer-
ence. Once we are in the realm of considering a fixed, trudagieroximation to
the HDP-HMM, one might propose an alternate model in whiclsingly place a
sparse Dirichlet prior, Diw/L, ..., /L) with a/L < 1, independently on each
row of the transition matrix. This is equivalent to settiig= [1/L,...,1/L] in
the truncated HDP-HMM, which can also be achieved by lettireghyperparame-
ter~ tend to infinity. Indeed, when the data do not exhibit shapedsty or when
the likelihood cues are sufficiently strong, the independgarse Dirichlet prior
model can perform as well as the truncated HDP-HMM. Howewegcenarios
such as the one depicted in Figj.we see substantial differences in performance
by considering the HDP-HMM, as well as the inclusion of thiekst parameter.
We explored the relative performance of the HDP-HMM and sp&irichlet prior
model, with and without the sticky parameter, on such a Markodel with multi-
nomial emissions on a vocabulary of size 20. We placed €Dir...,0.1) prior
on the parameters of the multinomial distribution. For tharse Dirichlet prior
model, we assumed a state space of size 50, which is the satine sncation
level we chose for the HDP-HMM (i.el, = 50). The results are presented in
Fig. 10. From these plots, we see that the hierarchical Bayesiaroagip of the
HDP-HMM does, in fact, improve the fitting of a model with sbdrsparsity. The
HDP-HMM consistently infers fewer HMM states and more repraative model
parameters. As a result, the HDP-HMM has higher predicikelihood on test
data, with an additional benefit gained from using the stigdgameter.
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FIG 9. (a) State transition diagram for a nine-state HMM with onaimstate (labeled 1) and eight
sub-states (labeled 2 to 9.) All states have a significanbalodity of self-transition. From the main
state, all other states are equally likely. From a sub-stdte most likely non-self-transition is a
transition is back to the main state. However, all sub-stdtave a small probability of transitioning
to another sub-state, as indicated by the dashed arcs. (Bg@htion sequence (top) and true state
sequence (bottom) generated by the nine-state HMM withinoatial observations.

Note that the results of Fid.0(f) also motivate the use of the sticky parameter
in the more classical setting of a finite HMM with a standardidbilet sparsity
prior. A motivating example of the use of sparse Dirichléom for finite HMMs
is presented idohnson(2007).

7. Multimodal Emission Densities. In many application domains, the data
associated with each hidden state may have a complex, nodiihadistribution. We
propose to model such emission distributions nonparacaditri using a DP mix-
ture of Gaussians. This formulation is related to the neBtedRodriguez et aJ.
2008, which uses a Dirichlet process to partition data into gsyand then mod-
els each group via a Dirichlet process mixture. The bias tdsvaelf-transitions
allows us to distinguish between the underlying HDP-HMMesta If the model
were free to both rapidly switch between HDP-HMM states aswbeaiate multiple
Gaussians per state, there would be considerable postegertainty. Thus, it is
only with the sticky HDP-HMM that we can effectively fit suchoatels.

We augment the HDP-HMM statg with a terms; indexing the mixture com-
ponent of thez* emission density. For each HDP-HMM state, there is a unique
stick-breaking measure;, ~ GEM(o) defining the mixture weights of the!”
emission density so that ~ ,,. Given the augmented state;, s;), the obser-
vationy; is generated by the Gaussian component with pararfigter. Note that
both the HDP-HMM state index and mixture component indexadleved to take
values in a countably infinite set. See Figh).

7.1. Direct Assignment SamplerMany of the steps of the direct assignment
sampler for the sticky HDP-HMM with DP emissions remain theng as for the
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FiG 10. (a) The true transition probability matrix (TPM) asso@dtwith the state transition diagram
of Fig. 9. (b) and (c) The inferred TPM at the 30,000th Gibbs iterafionthe sticky HDP-HMM and
sticky sparse Dirichlet model, respectively, only exangrihose states with more than 1% of the
assignments. For the HDP-HMM and sparse Dirichlet modethwind without the sticky parameter,
we plot: (d) the Hamming distance error over 10,000 Gibbgaiiens, (e) the inferred number of
states with more than 1% of the assignments, and (f) the gireeliprobability of test sequences
using the inferred parameters sampled evedg?” iteration from Gibbs iterations 5,000 to 10,000.

regular sticky HDP-HMM. Specifically, the sampling of thelgal transition dis-
tribution 3, the table countsn;, andm;, and the override variables;; are un-
changed. The difference arises in how we sample the augthstate( z;, s; ).

The joint distribution on the augmented state, having nmalged the transition
distributionsm;, and emission mixture weights,, is given by

p(zt =k,s=] | Z\tvs\tvylzT>B>a>o-> K, >\) :p(st =7 | t = kvz\tvs\tvylzT>J> >\)
(71) p(Zt =k ‘ Z\tas\t7y1:T7ﬂ7a7’%7)‘)'

We then block-sampléz;, s;) by first samplingz;, followed by s; conditioned on
the sampled value of;. The termp(s; = j | 2zt = k, 2\, S\r,y1.1, 0, A) relies
on how many observations are currently assigned tojthenixture component
of statek. These conditional distributions are derived in the Sumpgeletary Mate-
rial (?), which also contains an outline of the resulting Gibbs damp Algorithm
2.

7.2. Blocked Sampler. To implement blocked resampling 6f,.7, s1.7), we
use weak limit approximations to both the HDP-HMM and DP esioiss, approx-
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imated to levelsL and L/, respectively. The posterior distributions férand 7,
remain unchanged from the sticky HDP-HMM; thatwf is given by

(72) P ’ 21T, 81.T,0 ~ DiI’(O'/L/ + 712,1, - ,O’/L/ + nﬁcL,),

wheren/, is the number of; taking a value/ whenz;, = k. (i.e., the number of
observations assigned to thé& state’s¢’” mixture component.) The procedure for
sampling the augmented stéte.r, s1.7) is derived in the Supplementary Material
(see Algorithm 47).

7.3. Assessing the Multimodal Emissions Modédh this section, we evaluate
the ability of the sticky HDP-HMM to infer multimodal emissi distributions rel-
ative to the model without the sticky parameter. We gendrdéta from a five-state
HMM with mixture-of-Gaussian emissions, where the numbenixture compo-
nents for each emission distribution was chosen randoroiy fa uniform distri-
bution on{1,2,...,10}. Each component of the mixture was equally weighted
and the probability of self-transition was set to 0.98, watfual probabilities of
transitions to the other states. The large probability tfftsensition is what dis-
ambiguates this process from one with many more HMM stases) with a single
Gaussian emission distribution. The resulting obseruadiad true state sequences
are shown in Figll(a).

We once again used a non-conjugate base measure and plaeedsa@ prior
on the mean parameter and an independent inverse-Wislartoprthe variance
parameter of each Gaussian mixture component. The hypengaers for these
distributions were set from the data in the same manner dseirfiaist-switching
scenario. Consistent with the sticky HDP-HMM concentratiarametersy and
(e + k), we placed a weakly informative Gama0.01) prior on the concentra-
tion parametet of the DP emissions. All results are for the blocked sampién w
truncation leveld, = L' = 20.

In Fig. 11, we compare the performance of the sticky HDP-HMM with DPmi
sions to that of the original HDP-HMM with DP emissions (i[eP emissions, but
no bias towards self-transitions.) As with the multinonoakervations, when the
distance between observations does not directly factortire grouping of obser-
vations into HMM states, there is a considerable amount sfgsmr uncertainty
in the underlying HMM state of the nonsticky model. Even af38,000 Gibbs
samples, there are still state sequence sample paths wythagd dynamics. The
result of this fragmentation into redundant states is dsligduction in predictive
performance on test sequences, as in the multinomial emisase. See Figl1(b).

8. Speaker Diarization Results. Recall thespeaker diarizatiotask from Sec-
tion 2, which involves segmenting audio recordings from the NISaGhRranscrip-
tion 2004-2007 database into speaker-homogeneous reglilessimultaneously
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Fic 11. (a) Observation sequence (blue) and true state sequerdg for a five-state HMM with
mixture-of-Gaussian observations. (b) Histogram of tredjmtive probability of test sequences using
the inferred parameters sampled evéfp'” iteration from Gibbs iterations 10,000 to 30,000 for the
sticky and original HDP-HMM. The Hamming distance over 80,Gibbs samples from three chains
are shown for the (c) sticky HDP-HMM and (d) original HDP-HMIklbth with DP emissions.

identifying the number of speakers. In this section we presar results on apply-
ing the sticky HDP-HMM with DP emissions to the speaker diation task.

A minimum speaker duration of 500ms was set by associatingpteprocessed
MFCCs with each hidden state. We also tied the covariancesthin-state mix-
ture components (i.e., each speaker-specific mixture coergavas forced to have
identical covariance structure), and used a non-conjugiade on the mean and
covariance parameters. We placed a normal prior on the masmeter with
mean equal to the empirical mean and covariance equal totinés the empir-
ical covariance, and an inverse-Wishart prior on the cavae parameter with
1000 degrees of freedom and expected covariance equal &thiical covari-
ance. Our choice of a large degrees of freedom is akin to arnrieaiBayes ap-
proach in that it concentrates the mass of the prior in resderregions based on
the data. Such an approach is often helpful in high-dimeasiapplied problems
since our sampler relies on forming new states (i.e., spspkased on param-
eters drawn from the prior. Issues of exploration in thishkhdgmensional space
increases the importance of the setting of the base medsoiréhe concentra-
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tion parameters, we placed a Ganiirza2) prior on~y, a Gammés, 1) prior on
a + Kk, and a Gamm@, 0.5) prior ono. The self-transition parametgrwas given
a Betd500, 5) prior. For each of the 21 meetings, we ran 10 chains of thekblbc
Gibbs sampler for 10,000 iterations for both the originad aticky HDP-HMM
with DP emissions. We used a sticky HDP-HMM truncation leskIlL = 15,
where the DP-mixture-of-Gaussians emission distribuéissociated with each of
thesel, HMM states was truncated fd = 30 components. Our choice @fsignif-
icantly exceeds the typical number of speakers, which ilI8 database tends
to be between 4 and 6. In practice, our sampler never appedadding the full set
of possible states and emission components.

In order to explore the importance of capturing the tempdyalamics, we also
compare our sticky HDP-HMM performance to that of a Diri¢lgeocess mixture
of Gaussians that simply pools together the data from eadtimgeignoring the
time indices associated with the observations. We coreidartruncated Dirichlet
process mixture model with = 50 components and a Gami@al) prior on the
concentration parameter The base measure was set as in the sticky HDP-HMM.

For the NIST speaker diarization evaluations, the goal ipramuce a single
segmentation for each meeting. Due to the label-switch#sgd (i.e., under our
exchangeable prior, labels are arbitrary entities thatalaacessarily remain con-
sistent over Gibbs iterations), we cannot simply integ@ter multiple Gibbs-
sampled state sequences. We propose two solutions to thlidepr. The first,
which we refer to as thékelihood metric is to simply choose from a fixed set
of Gibbs samples the one that produces the largest likalilgiven the estimated
parameters (marginalizing over state sequences), angbtbdace the correspond-
ing Viterbi state sequence. This heuristic, however, isisiga to overfitting and
will, in general, be biased towards solutions with moreestat

An alternative, and more robust, metric is what we refer tah@sminimum
expected Hamming distanc@/e first choose a large reference &bf state se-
guences produced by the Gibbs sampler and a possibly sreetleftest sequences
7. Then, for each sequeneé) in the test sef’, we compute the empirical mean
Hamming distance between the test sequence and the segueribe reference
setR; we denote this empirical mean hy;. We then choose the test sequence
2\") that minimizes this expected Hamming distance. That is,

2U7) = arg min H;.
2WeT
The empirical mean Hamming distanB is alabel-invariant loss functiosince it
does not rely on labels remaining consistent across samplessimply compute

=L S Hamm(z(),20)),

|R| 2DerR
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Fic 12. (a)-(c) For each of the 21 meetings, comparison of diarrat using sticky vs. original
HDP-HMM with DP emissions. In (a) we plot the DERs correspngdo the Viterbi state sequence
using the parameters inferred at Gibbs iteration 10,00Q thaximize the likelihood, and in (b) the
DERs using the state sequences that minimize the expectathidg distance. Plot (c) is the same
as (b), except for running the 10 chains for meeting 16 outt@® iterations. (d)-(f) Comparison
of the sticky HDP-HMM with DP emissions to the ICSI errors @nthe same conditions.

where Hamnz (), 2()) is the Hamming distance between sequenéesand z()
after finding the optimal permutation of the labels in tesfusmcez(?) to those in
reference sequencé’). At a high level, this method for choosing state sequence
samples aims to produce segmentations of the data th&g@ocal samples from
the posteriorJasra et al(2005 provides an overview of some related techniques
to address the label-switching issue. Although we coulcehzhosen any label-
invariant loss function to minimize, we chose the Hammingtatice metric be-
cause it is closely related to the official NISifarization error rate(DER) that is
calculated during the evaluations. The final metric by whtoh speaker diariza-
tion algorithms are judged is thmverall DER, a weighted average over the set of
meetings based on the length of each meeting.

In Fig. 12(a), we report the DER of the chain with the largest likelidapven
the parameters estimated at ttie 000*" Gibbs iteration for each of the 21 meet-
ings, comparing the sticky and original HDP-HMM with DP esigs. We see that
the sticky model’s temporal smoothing provides substhpégormance gains. Al-
though not depicted in this paper, the likelihoods basedemparameter estimates
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under the original HDP-HMM are almost always higher tharsthonder the sticky
model. This phenomenon is due to the fact that without tlekyiparameter, the
HDP-HMM over-segments the data and thus produces param&iarates more
finely tuned to the data resulting in higher likelihoods. cgirthe original HDP-
HMM is contained within the class of sticky models (i.e., whe = 0), there
is some probability that state sequences similar to thoderuime original model
will eventually arise using the sticky model. Thus, since ffarameters associ-
ated with these fast-switching sequences result in higkeliHood of the data, the
likelihood metric is not very robust—one would expect thef@enance under the
sticky model to degrade given enough Gibbs chains andfatiibas. In Fig12(b),
we instead report the DER of the chain whose state sequetingatsat Gibbs
iteration 10,000 (this defines the test ggtminimizes the expected Hamming dis-
tance to the sequences estimated every 100 Gibbs iteraigegrding the first
5,000 iterations (this defines the reference®gtDue to the slow mixing rate of
the chains in this application, we additionally discard pkem whose normalized
log-likelihood is below 0.1 units of the maximum at Gibbgdtéon 10,000. From
this figure, we see that the sticky model still significantiytmerforms the original
HDP-HMM, implying that most state sequences produced byotfggnal model
are worse, not just the one corresponding to the most-lgagple. Example max-
imum likelihood and minimum expected Hamming distanceizgdions are dis-
played in Fig.13. One noticeable exception to this trend is the NI&ZJI051102-
1323 meeting (meeting 16). For the sticky model, the statgiesgce using the
maximum likelihood metric had very low DER (see Fig3(b)); however, there
were many chains that merged speakers and produced setjorensamilar to the
one in Fig.13(c), resulting in such a sequence minimizing the expectadriag
distance. See Sectidhfor a discussion on the issue of merged speakers. Running
meeting 16 for 50,000 Gibbs iterations improved the pertoroe, as depicted by
the revised results in Fig.2(c). We summarize our overall performance in Tahle
and note that (when using the 50,000 Gibbs iterations fortinge&6 and 10,000
Gibbs iterations for all other meetirsve obtain an overall DER of 17.84% using
the sticky HDP-HMM versus the 23.91% of the original HDP-HMMbdel. Al-
ternatively, when constrained to single Gaussian emisdioa sticky HDP-HMM
and original HDP-HMM have overall DERs of 34.97% and 36.8%éspectively,
which clearly demonstrates the importance of considerifgemissions. When
considering the DP mixture-of-Gaussians model (ignorhmgy ttime indices asso-

20n such a large dataset, running 10 chains for 50,000 ib@stior each of the 21 meetings
would have represented a significant computational burdérrais we only ran the chains to 50,000
iterations for meeting 16, which clearly had not mixed aft@r000 iterations (based on an exami-
nation of trace plots of log-likelihoods; see Fitf). In meeting 16 the differences between two of
the speakers are especially subtle, and our sampler hasultiffin reliably finding parameters that
separate these speakers.
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Fic 13. Qualitative results for meetings AMI0041210-1052 (meeting 1, top), CMRO050228-
1615 (meeting 3, middle), and NISZD051102-1323 meeting (meeting 16, bottom). (a) True state
guence with the post-processed regions of overlapping-amnd speech time steps removed. (b)-(c)
Plotted only over the time-steps as in (a), the state seaqseinferred by the sticky HDP-HMM with
DP emissions at Gibbs iteration 10,000 chosen using the likedy and minimum expected Ham-
ming distance metrics, respectively. Incorrect labelsstrewn in red. For meeting 1, the maximum
likelihood and minimum expected Hamming distance diadionatare similar whereas in meeting 3
we clearly see the sensitivity of the maximum likelihoodimgt overfitting. The minimum expected
Hamming distance diarization for meeting 16 has more ertbe that of the maximum likelihood
due to poor mixing rates and many samples failing to idemtiépeaker.

ciated with the observations), the overall DER is 72.67%ni¢ uses the ground
truth labels to map multiple inferred DP mixture componéotsa single speaker
label, the overall DER drops to 54.19%. The poor performaricke DP mixture-
of-Gaussians model, even when assuming that ground trb#islare available,
which would not be the case in practice, illustrates the ingrze of the temporal
dynamics captured by the HMM.

As a further comparison, the algorithm that was by far the pegformer at the
2007 NIST competition—the algorithm developed by a teanhatlbternational
Computer Science Institute (ICSNWpoters and Huijbregi2007—has an over-
all DER of 18.37%. The ICSI team’s algorithm uses agglonezatlustering, and
requires significant tuning of parameters on represeetdtdining data. In con-
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| Overall DERs (%) [ Min Hamming | Max Likelihood | 2-Best| 5-Best |

Sticky HDP-HMM 19.01 (17.84) 19.37 16.97 | 14.61
Non-Sticky HDP-HMM 23.91 25.91 23.67 | 21.06
TABLE 1

Overall DERs for the sticky and original HDP-HMM with DP ersiisns using the minimum
expected Hamming distance and maximum likelihood metiashbosing state sequences at Gibbs
iteration 10,000. For the maximum likelihood criterion, aleow the best overall DER if we
consider the top two or top five most-likely candidates. Turalver in the parentheses is the
performance when running meeting 16 for 50,000 Gibbs itenat The overall ICSI DER is
18.37%, while the best achievable DER with the chosen aicqustprocessing is 10.57%.

trast, our hyperparameters are automatically set mebgiageeting, as outlined
at the beginning of this section. An additional benefit of stieky HDP-HMM
over the ICSI approach is the fact that there is inherentepastuncertainty in this
task, and by taking a Bayesian approach we are able to preeideral interpreta-
tions. Indeed, when considering the best per-meeting DERé&five most likely
samples, our overall DER drops to 14.61% (see TdpleéAlthough not helpful
in the NIST evaluations, which requires a single segmantaproviding multiple
segmentations could be useful in practice.

To ensure a fair comparison, we use the same speech/nochgpeeprocessing
and acoustic features as ICSlI, so that the differences ipedormance are due
to changes in the identified speakers. As depicted inJEigooth our performance
and that of ICSI depend significantly on the quality of thig-processing step.
For the periods of non-speech that are incorrectly idedtdie speech during pre-
processing, we are forced to produce errors on these seainoe they will be
assigned an HMM label (and thus a speaker label) that is atepiiom the label
assigned to the pre-processed sections labeled as nochspe®ther source of er-
rors are periods of overlapping speech, which impede olityatu clearly identify
a single speaker. In Fid.4(a), we compare the meeting-by-meeting DERs of the
sticky HDP-HMM, the original HDP-HMM, and the ICSI algorith If we use the
ground truth speaker labels for the post-processed da@(@sy undetected non-
speech a label different than the pre-processed non-spekehresulting overall
DER is 10.57% with meeting-by-meeting DERs displayed in Eigb). This num-
ber provides a lower bound on the achievable performanceyube speech/non-
speech preprocessing, our block-averaging of features$,oan assumptions of
minimum duration. Beyond these forced errors, it is cleamfiFig. 14(a) that the
sticky HDP-HMM with DP emissions provides performance canable to that of
the ICSI algorithm while the original HDP-HMM with DP emissis performs sig-
nificantly worse. Overall, the results presented in thigsiseaemonstrate that the
sticky HDP-HMM with DP emissions provides an elegant andieicglly effective
speaker diarization method.
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FIG 14. (a) Chart comparing the DERs of the sticky and original HBIRMM with DP emissions to
those of ICSI for each of the 21 meetings. Here, we choseates#tquence at thid), 000" Gibbs
iteration that minimizes the expected Hamming distancentfeeting 16 using the sticky HDP-HMM
with DP emissions, we chose between state sequences atigilation 50,000. (b) DERs associated
with using ground truth speaker labels for the post-proedssata. Here, we assign undetected non-
speech a label different than the pre-processed non-speech

9. Discussion. We have developed a Bayesian nonparametric approach to the
problem of speaker diarization, building on the HDP-HMMg@sted inTeh et al.
(2006. Although the original HDP-HMM does not yield competitispeaker di-
arization performance due to its inadequate modeling ofd¢h®oral persistence
of states, the sticky HDP-HMM that we have presented heves this problem
and yields a state-of-the-art solution to the speakerziitian problem.

We have also shown that this sticky HDP-HMM allows a fully Baian non-
parametric treatment of multimodal emissions, disamhggi®y its bias towards
self-transitions. Accommodating multimodal emissionessential for the speaker
diarization problem and is likely to be an important ingesdiin other applications
of the HDP-HMM to problems in speech technology.

We also presented efficient sampling techniques with mixatgs that improve
on the state-of-the-art by harnessing the Markovian siracof the HDP-HMM.
Specifically, we proposed employing a truncated approdonai the HDP and
block-sampling the state sequence using a variant of thveafokbackward algo-
rithm. Although the blocked samplers yield substantiathyproved mixing rates
over the sequential, direct assignment samplers, thestithsome pitfalls to these
sampling methods. One issue is that for each new consideats] the parameter
sampled from the prior distribution must better explaindb&a than the parameters
associated with other states that have already been infbbyé¢he data. In high-
dimensional applications, and in cases where state-specifission distributions
are not clearly distinguishable, this method for adding séates poses a signif-
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FiG 15. Trace plots of (a) log-likelihood, (b) Hamming distanceogrand (c) number of speakers
for 10 chains for two meetings: CMR0050912-0900 / meeting 5 (top) and N130051102-1323 /
meeting 16 (bottom). For meeting 5, which has behavior gative of the majority of the meet-
ings, we show traces over the 10,000 Gibbs iterations usetthéoresults in SectioB. For meeting
16, we ran the chains out to 100,000 Gibbs iterations to desimate the especially slow mixing rate
for this meeting. The dashed blue vertical lines indicat®QO iterations.

icant challenge. Indeed, both issues arise in the speakdration task and we
did have difficulties with mixing. Further evidence of thssgresented in the trace
plots in Fig.15, where we plot log-likelihoods, Hamming distances, anchkpe
counts for 10,000 Gibbs sampling iterations of meeting 5E3®000 iterations of
meeting 16. As discussed previously, meeting 16 is the ntoslgmatic meeting
in our data set, and these plots provide clear evidence thagampler is not mix-
ing on this meeting. But even on meeting 5, which is more prative of the
full set of meetings and which is segmented effectively bymocedure, we see a
relatively slow evolution of the sampler, particularly asasured by the number of
speakers. Our use of the minimum expected Hamming distanncedure to select
samples mitigates this difficulty, but further work on samglprocedures for the
sticky HDP-HMM is needed. One possibility is to considelitsplerge algorithms
similar to those developed rain and Neal2004) for the DP mixture model.

A limitation of the HMM in general is that the observationg assumed condi-
tionally i.i.d. given the state sequence. This assumpsariten insufficient in cap-
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turing the complex temporal dependencies exhibited inweasld data. Another
area of future work is to consider Bayesian nonparametrisioes of models bet-
ter suited to such applications, like the switching linegmaimical system (SLDS)
and switching VAR process. A first attempt at developing sucdidels is presented
in Fox et al.(2009. An inspiration for the sticky HDP-HMM actually came from
considering the original HDP-HMM as a prior for an SLDS. Irclsuscenarios
where one does not have direct observations of the undgrstate sequence, the
issues arising from not properly capturing state persigteare exacerbated. The
sticky HDP-HMM presented in this paper provides a robusidiug block for de-
veloping more complex Bayesian nonparametric dynamicalaiso
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SUPPLEMENTARY MATERIAL

Notational Conventions, Chinese Restaurant Franchises, and Derivations
of Gibbs Samplers
(doi: ???http://lib.stat.cmu.edu/aoas/???/AxH). We present detailed derivations
of the conditional distributions used for both the directigement and blocked
Gibbs samplers, as well as the associated pseudo-code.eShaption of these
derivations relies on the chinese restaurant analogiesiassd with the HDP and
sticky HDP-HMM, which are expounded upon in this suppleragnmaterial. We
also provide a list of notational conventions used througlioe paper.
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