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We consider the problem ofspeaker diarization, the problem of segment-
ing an audio recording of a meeting into temporal segments corresponding to
individual speakers. The problem is rendered particularlydifficult by the fact
that we are not allowed to assume knowledge of the number of people partic-
ipating in the meeting. To address this problem, we take a Bayesian nonpara-
metric approach to speaker diarization that builds on the hierarchical Dirichlet
process hidden Markov model (HDP-HMM) ofTeh et al.(2006). Although
the basic HDP-HMM tends to over-segment the audio data—creating redun-
dant states and rapidly switching among them—we describe anaugmented
HDP-HMM that provides effective control over the switchingrate. We also
show that this augmentation makes it possible to treat emission distributions
nonparametrically. To scale the resulting architecture torealistic diarization
problems, we develop a sampling algorithm that employs a truncated approx-
imation of the Dirichlet process to jointly resample the full state sequence,
greatly improving mixing rates. Working with a benchmark NIST data set,
we show that our Bayesian nonparametric architecture yields state-of-the-art
speaker diarization results.

1. Introduction. A recurring problem in many areas of information technol-
ogy is that of segmenting a waveform into a set of time intervals that have a useful
interpretation in some underlying domain. In this article we focus on a particu-
lar instance of this problem, namely the problem ofspeaker diarization. In speaker
diarization, an audio recording is made of a meeting involving multiple human par-
ticipants and the problem is to segment the recording into time intervals associated
with individual speakers (Wooters and Huijbregts, 2007). This segmentation is to
be carried out without a priori knowledge of the number of speakers involved in
the meeting; moreover, we do not assume that we have a priori knowledge of the
speech patterns of particular individuals.

Our approach to the speaker diarization problem is built on the framework of
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hidden Markov models (HMMs), which have been a major successstory not only in
speech technology but also in many other fields involving complex sequential data,
including genomics, structural biology, machine translation, cryptanalysis and fi-
nance. An alternative to HMMs in the speaker diarization setting would be to treat
the problem as a changepoint detection problem, but a key aspect of speaker di-
arization is that speech data from a single individual generally recurs in multiple
disjoint intervals. This suggests a Markovian framework inwhich the model tran-
sitions among states that are associated with the differentspeakers.

An apparent disadvantage of the HMM framework, however, is that classical
treatments of the HMM generally require the number of statesto be fixed a priori.
While standard parametric model selection methods can be adapted to the HMM,
there is little understanding of the strengths and weaknesses of such methods in
this setting, and practical applications of HMMs generallyfix the number of states
using ad hoc approaches. It is not clear how to adapt HMMs to the diarization
problem where the number of speakers is unknown.

Building on work ofBeal et al.(2002), Teh et al.(2006) presented a Bayesian
nonparametric version of the HMM in which a stochastic process—thehierarchi-
cal Dirichlet process(HDP)—defines a prior distribution on transition matrices
over countably infinite state spaces. The resultingHDP-HMM is amenable to full
Bayesian posterior inference over the number of states in the model. Moreover, this
posterior distribution can be integrated over when making predictions, effectively
averaging over models of varying complexity. The HDP-HMM has shown promise
in a variety of applied problems, including visual scene recognition (Kivinen et al.,
2007), music synthesis (Hoffman et al., 2008), and the modeling of genetic recom-
bination (Xing and Sohn, 2007) and gene expression (Beal and Krishnamurthy, 2006).

While the HDP-HMM seems like a natural fit to the speaker diarization problem
given its structural flexibility, as we show in Section8, the HDP-HMM does not
yield state-of-the-art performance in the speaker diarization setting. The problem
is that the HDP-HMM inadequately models the temporal persistence of states. This
problem arises in classical finite HMMs as well, where semi-Markovian models are
often proposed as solutions. However, the problem is exacerbated in the nonpara-
metric setting, in which the Bayesian bias towards simpler models is insufficient
to prevent the HDP-HMM from giving high posterior probability to models with
unrealistically rapid switching. This is demonstrated in Fig. 1, where we see that
the HDP-HMM sampling algorithm creates redundant states and rapidly switches
among them. (The figure also displays results from the augmented HDP-HMM—
the “sticky HDP-HMM” that we describe in this paper.) The tendency to create
redundant states is not necessarily a problem in settings inwhich model averaging
is the goal. For speaker diarization, however, it is critical to infer the number of
speakers as well as the transitions among speakers.
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FIG 1. (a) Multinomial observation sequence; (b) true state sequence; (c)-(d) estimated state se-
quence after 30,000 Gibbs iterations for the original and sticky HDP-HMM, respectively, with er-
rors indicated in red. Without an extra self-transition bias, the HDP-HMM rapidly transitions among
redundant states.

Thus, one of our major goals in this paper is to provide a general solution to the
problem of state persistence in HDP-HMMs. Our approach is easily stated—we
simply augment the HDP-HMM to include a parameter for self-transition bias, and
place a separate prior on this parameter. The challenge is toexecute this idea coher-
ently in a Bayesian nonparametric framework. Earlier papers have also proposed
self-transition parameters for HMMs with infinite state spaces (Beal et al., 2002;
Xing and Sohn, 2007), but did not formulate general solutions that integrate fully
with Bayesian nonparametric inference.

Another goal of the current paper is to develop a more fully nonparametric
version of the HDP-HMM in which not only the transition distribution but also
the emission distribution (the conditional distribution of observations given states)
is treated nonparametrically. This is again motivated by the speaker diarization
problem—in classical applications of HMMs to speech recognition problems it is
often the case that emission distributions are found to be multimodal, and high-
performance HMMs generally use finite Gaussian mixtures as emission distribu-
tions (Gales and Young, 2007). In the nonparametric setting it is natural to replace
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these finite mixtures with Dirichlet process mixtures. Unfortunately, this idea is
not viable in practice, because of the tendency of the HDP-HMM to rapidly switch
between redundant states. As we show, however, by incorporating an additional
self-transition bias it is possible to make use of Dirichletprocess mixtures for the
emission distributions.

An important reason for the popularity of the classical HMM is its computa-
tional tractability. In particular, marginal probabilities and samples can be obtained
from the HMM via an efficient dynamic programming algorithm known as the
forward-backward algorithm (Rabiner, 1989). We show that this algorithm also
plays an important role in computationally efficient inference for our generalized
HDP-HMM. Using a truncated approximation to the full Bayesian nonparametric
model, we develop a blocked Gibbs sampler which leverages forward–backward
recursions to jointly resample the state and emission assignments for all observa-
tions.

The paper is organized as follows. In Section2, we begin by summarizing re-
lated prior work on the speaker diarization task and analyzing the key characteris-
tics of the dataset we examine in Section8. In Section3, we provide some basic
background on Dirichlet processes. Then, in Section4, we overview the hierarchi-
cal Dirichlet process and, in Section5, discuss how it applies to HMMs and can
be extended to account for state persistence. An efficient Gibbs sampler is also de-
scribed in this section. In Section7, we treat the case of nonparametric emission
distributions. We discuss our application to speaker diarization in Section8. A list
of notational conventions can be found in the SupplementaryMaterial (?).

2. The Speaker Diarization Task. There is a vast literature on the speaker
diarization task, and in this section we simply aim to provide an overview of the
most common techniques. We refer the interested reader toTranter and Reynolds
(2006) for a more thorough exposition on the subject.

Classical speaker diarization techniques typically employ a two-stage procedure
that first segments the audio (or features thereof) using oneof a variety of change-
point algorithms. The inferred segments are then regroupedinto a set of speaker
labels via a clustering algorithm. For example,Reynolds and Torres-Carrasquillo
(2004) propose a changepoint detection method based on the Bayesian Information
Criterion (BIC). Specifically, a penalized likelihood ratio test is used to compare
whether the data within a fixed window are better modeled via asingle Gaussian
or two Gaussians. The window gradually grows at each test until a changepoint is
inferred, at which point the window is reinitialized at the inferred changepoint. An
alternative changepoint detection technique, first proposed inSiegler et al.(1997),
uses fixed length windows and computes the symmetric Kullback-Leibler (KL)
divergence between a pair of Gaussians each fit by the data in their respective
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windows. A post-processing step then sets the changepointsequal to the peaks
of the computed KL that exceed a predetermined threshold. Inorder to group
the inferred segments into a set of speaker labels, a common approach is to use
hierarchical agglomerative clustering with a BIC stoppingcriterion, as proposed
in Chen and Gopalakrishnam(1998).

The simple two-stage approach outlined above suffers from the fact that errors
made in the segmentation stage can degrade the performance of the subsequent
clustering stage. A number of algorithms instead iterate between multiple stages
of resegmentation (typically via Viterbi decoding) and clustering; for example, see
Barras et al.(2004); Wooters et al.(2004). Iterative segmentation and clustering al-
gorithms employing a Gaussian mixture model for each cluster (i.e., speaker), such
as those proposed byBarras et al.(2004); Gauvain et al.(1998), have been shown
to improve diarization performance. Overall, however, agglomerative clustering is
extremely sensitive to the specified threshold for cluster merging, with different
settings leading to either over- or under-clustering of thesegments into speakers.
The thresholds are typically set based on testing on an extensive training database.

A number of more recent approaches have considered the problem of joint seg-
mentation and clustering by employing HMMs to capture the repeated returns of
speakers. To handle the fact that the state space is unknown,Meignier et al.(2000)
introduces the use of an evolutive-HMM which is further developed inMeignier et al.
(2001). The HMM is initialized to have one state and at each iteration a segment
of speech is assumed to arise from an undetected speaker who is added to the
model. The revised HMM is then used to resegment the audio, and this iterative
procedure continues until the speaker labels have converged. An alternative HMM
formulation is presented inWooters and Huijbregts(2007). The data are initially
split intoK states, withK assumed to be larger than the number of true speakers,
and the HMM states are iteratively merged according to a metric based on changes
in BIC. At each iteration, Viterbi decoding is performed to resegment the features
of the audio, and the inferred segments are used to fit a new HMMvia expectation
maximization (EM). Then, the BIC criterion is applied to decide whether to merge
HMM states. The algorithm also includes HMM substates to impose minimum
speaker durations.

Our approach also seeks to jointly segment and cluster the audio into speaker-
homogenous regions, as targeted by the HMM approaches ofMeignier et al.(2001);
Wooters and Huijbregts(2007), but within a Bayesian nonparametric framework
that avoids relying on the heuristics employed by these previously proposed algo-
rithms and allows for coherent Bayesian inference.

The data set we consider in the experiments of Section8 is a standard bench-
mark data set distributed by NIST as part of the Rich Transcription 2004-2007
meeting recognition evaluations (NIST, 2007). The data set consists of 21 recorded
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FIG 2. Normalized histogram of
speaker durations of the pre-
processed audio features from
the 21 meetings in the NIST
database. A Geom(0.1) density
is also shown for comparison.
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FIG 3. Contour plots of the best fit Gaussian (top) and kernel
density estimate (bottom) for the top two principal compo-
nents of the audio features associated with each of the four
speakers present in the AMI20041210-1052 meeting. With-
out capturing the non-Gaussianity of the speaker-specific
emissions, the speakers are challenging to identify.

meetings, each of which may have different sets of speakers both in number and
identity. We use the first 19 Mel Frequency Cepstral Coefficients (MFCCs)1, com-
puted over a 30ms window every 10ms, as a feature vector. After these features are
computed, a speech/non-speech detector is run to identify and remove observations
corresponding to non-speech. (Non-speech refers to time intervals in which nobody
is speaking.) The pre-processing step of removing non-speech observations is im-
portant in ensuring that the fitted acoustic models are not corrupted by non-speech
information.

When working with this dataset, we discovered that the high frequency con-
tent of these features contained little discriminative information. Since minimum
speaker durations are rarely less than 500ms, we chose to define the observations
as averages over 250ms, non-overlapping blocks. This preprocessing stage also
aids in achieving speaker dynamics at the correct granularity (as opposed to finer
temporal scale features leading to inferring within-speaker dynamics in addition to
global speaker changes.) In Fig.2, we plot a histogram the speaker durations of
our preprocessed features based on the ground truth labels provided for each of the
21 meetings. From this plot, we see that a geometric durationdistribution fits this
data reasonably well. This motivates our approach of simplyincreasing the prior
probability of self-transitions within a Markov frameworkrather than moving to
the more complicated semi-Markov formulation of speaker transitions.

1Mel-frequency cepstral coefficients (MFCCs) comprise a representation of the short-term power
spectrum of a sound on the mel scale (a nonlinear scale of frequency based on the human auditory
system response). Specifically, the computation of an MFCC typically involves (i) taking the Fourier
transform of a windowed excerpt of a signal, (ii) mapping thelog powers of the obtained spectrum
onto the mel scale, and (iii) performing a discrete cosine transform of the mel log powers. The
MFCCs are the amplitudes of the resulting spectrum.
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Another key feature of the speaker diarization data is the fact that the speaker
specific emissions are not well approximated by a single Gaussian; see Fig.3. This
observation has led many researchers to consider a mixture-of-Gaussians speaker
model, as previously described. As demonstrated in Section8, we show that achiev-
ing state-of-the-art performance within our framework also relies on allowing for
non-Gaussian emissions.

3. Dirichlet Processes. A Dirichlet process (DP) is a distribution on proba-
bility measures on a measurable spaceΘ. This stochastic process is uniquely de-
fined by a base measureH onΘ and a concentration parameterγ; we denote it by
DP(γ,H). Consider a random probability measureG0 ∼ DP(γ,H). The DP is
formally defined by the property that for any finite partition{A1 , . . . , AK} of Θ,

(G0(A1), . . . , G0(AK)) | γ,H ∼ Dir(γH(A1), . . . , γH(AK)).(3.1)

That is, the measure of a random probability distributionG0 ∼ DP(γ,H) on every
finite partition ofΘ follows a finite-dimensional Dirichletdistribution (Ferguson,
1973). A more constructive definition of the DP was given bySethuraman(1994).
Consider a probability mass function (pmf){βk}

∞
k=1 on a countably infinite set,

where the discrete probabilities are defined as follows:

vk | γ ∼ Beta(1, γ) k = 1, 2, . . .

βk = vk

k−1
∏

ℓ=1

(1 − vℓ) k = 1, 2, . . . .(3.2)

In effect, we have divided a unit-length stick into lengths given by the weightsβk:
thekth weight is a random proportionvk of the remaining stick after the previous
(k − 1) weights have been defined. Thisstick-breaking constructionis generally
denoted byβ ∼ GEM(γ). With probability one, a random drawG0 ∼ DP (γ,H)
can be expressed as

G0 =
∞
∑

k=1

βkδθk
θk | H ∼ H, k = 1, 2, . . . ,(3.3)

whereδθ denotes a unit-mass measure concentrated atθ and where{θk} are drawn
independently fromH. From this definition, we see that the DP actually defines
a distribution over discrete probability measures. The stick-breaking construction
also gives us insight into how the concentration parameterγ controls the relative
magnitude of the mixture weightsβk, and thus determines the model complexity
in terms of the expected number of components with significant probability mass.

The DP has a number of properties which make inference based on this nonpara-
metric prior computationally tractable. Consider a set of observations{θ′i} with
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θ′i ∼ G0. Because probability measures drawn from a DP are discrete,there is
a strictly positive probability of multiple observationsθ′i taking identical values
within the set{θk}, with θk defined as in Equation (3.3). For each valueθ′i, let zi
be an indicator random variable that picks out the unique valuek such thatθ′i = θzi

.
Blackwell and MacQueen(1973) introduced a Pólya urn representation of theθ′i:

θ′i | θ
′
1, . . . , θ

′
i−1 ∼

γ

γ + i− 1
H +

i−1
∑

j=1

1

γ + i− 1
δθ′

j

=
γ

γ + i− 1
H +

K
∑

k=1

nk

γ + i− 1
δθk
,(3.4)

implying the following predictive distribution for the indicator random variables:

p(zN+1 = z | z1, . . . , zN , γ) =
γ

N + γ
δ(z,K + 1) +

1

N + γ

K
∑

k=1

nkδ(z, k).

(3.5)

Here,nk =
∑N

i=1 δ(zi, k) is the number of indicator random variables taking the
valuek, andK + 1 is a previously unseen value. We use the notationδ(z, k) to
indicate the discrete Kronecker delta. This representation can be used to sample
observations from a DP without explicitly constructing thecountably infinite ran-
dom probability measureG0 ∼ DP(γ,H).

The distribution on partitions induced by the sequence of conditional distribu-
tions in Equation (3.5) is commonly referred to as theChinese restaurant process.
The analogy, which is useful in developing various generalizations of the Dirichlet
process we consider in this paper, is as follows. Takei to be a customer entering a
restaurant with infinitely many tables, each serving a unique dishθk. Each arriving
customer chooses a table, indicated byzi, in proportion to how many customers are
currently sitting at that table. With some positive probability proportional toγ, the
customer starts a new, previously unoccupied tableK + 1. The Chinese restaurant
process captures the fact that the DP has a clustering property such that multiple
draws from the random measure take the same value.

The DP is commonly used as a prior on the parameters of a mixture model with a
random number of components. Such a model is called aDirichlet process mixture
modeland is depicted as a graphical model in Fig.4(a)-(b). To generate observa-
tions, we chooseθ′i ∼ G0 andyi ∼ F (θ′i) for an indexed family of distributions
F (·). This sampling process is also often described in terms of the indicator ran-
dom variableszi; in particular, we havezi ∼ β andyi ∼ F (θzi

). The parameter
with which an observation is associated implicitly partitions or clusters the data.
In addition, the Chinese restaurant process representation indicates that the DP
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provides a prior that makes it more likely to associate an observation with a param-
eter to which other observations have already been associated. This reinforcement
property is essential for inferring finite, compact mixturemodels. It can be shown
under mild conditions that if the data were generated by a finite mixture, then the
DP posterior is guaranteed to converge (in distribution) tothat finite set of mixture
parameters (Ishwaran and Zarepour, 2002a).

4. Hierarchical Dirichlet Processes. In the following section we describe
how ideas based on the Dirichlet process have been used to develop a Bayesian
nonparametric approach to hidden Markov modeling in which the number of states
is unknown a priori. To develop this nonparametric version of the HMM the Dirich-
let process does not suffice; rather, it is necessary to develop a hierarchical Bayesian
model involving a tied collection of Dirichlet processes. This has been done by
Teh et al.(2006) whosehierarchical Dirichlet process (HDP)we describe in this
section. The HDP is applicable to general problems involving related groups of
data, each of which can be modeled using a DP, and we begin by describing the
HDP at this level of generality, subsequently specializingto the HMM.

To describe the HDP, suppose there areJ groups of data and let{yj1, . . . , yjNj
}

denote the set of observations in groupj. Assume that there are a collection of DP
mixture models underlying the observations in these groups:

Gj =
∑∞

t=1 π̃jtδθ∗
jt

π̃j | α ∼ GEM(α) j = 1, . . . , J

θ∗jt | G0 ∼ G0 t = 1, 2, . . .

θ′ji | Gj ∼ Gj yji | θ
′
ji ∼ F (θ′ji) j = 1, . . . , J

i = 1, . . . , Nj .

(4.1)

We wish to tie the DP mixtures across the different groups such that atoms that
underly the data in groupj can be used in groupj′. The problem is that ifG0

is absolutely continuous with respect to Lebesgue measure (as it generally is for
continuous parameters) then the atoms inGj will be distinct from those inGj′ with
probability one. The solution to this problem is to letG0 itself be a draw from a
DP:

G0 =
∑∞

k=1 βkδθk
β | γ ∼ GEM(γ)
θk | H,λ ∼ H(λ) k = 1, 2, . . . .

(4.2)

In this hierarchical model,G0 is atomic and random. LettingG0 be a base measure
for the drawGj ∼ DP(α,G0) implies that only these atoms can appear inGj .
Thus atoms can be shared among the collection of random measures{Gj}. The
HDP model is depicted graphically in two different ways in Fig. 4(c) and Fig.4(d).
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(a) (b) (c) (d)

FIG 4. Dirichlet process (left) and hierarchical Dirichlet process (right) mixture models repre-
sented in two different ways as graphical models. (a) Indicator variable representation in which
β|γ ∼ GEM(γ), θk|H,λ ∼ H(λ), zi|β ∼ β, andyi|{θk}

∞

k=1, zi ∼ F (θzi
). (b) Alternative rep-

resentation withG0|γ,H ∼ DP(γ,H), θ′i|G0 ∼ G0, andyi|θ
′

i ∼ F (θ′i). (c) Indicator variable
representation in whichβ|γ ∼ GEM(γ), πk|α, β ∼ DP(α, β), θk|H,λ ∼ H(λ), zji|πj ∼ πj ,
and yji|{θk}

∞

k=1, zji ∼ F (θzji
). (d) Alternative representation withG0|γ,H ∼ DP(γ,H),

Gj |G0 ∼ DP(α,G0), θ′ji|Gj ∼ Gj , andyji|θ
′

ji ∼ F (θ′ji). The “plate” notation is used to com-
pactly represent replication (Teh et al., 2006).

Teh et al.(2006) have also described the marginal probabilities obtained from
integrating over the random measuresG0 and{Gj}. They show that these marginals
can be described in terms of aChinese restaurant franchise(CRF) that is an ana-
log of the Chinese restaurant process. The CRF is comprised of J restaurants, each
corresponding to an HDP group, and an infinite buffet line of dishes common to
all restaurants. The process of seating customers at tables, however, is restaurant
specific. Each customer is pre-assigned to a given restaurant determined by that
customer’s groupj. Upon entering thejth restaurant in the CRF, customeryji sits
at currently occupied tablestji with probability proportional to the number of cur-
rently seated customers, or starts a new tableTj +1 with probability proportional to
α. The first customer to sit at a table goes to the buffet line andpicks a dishkjt for
their table, choosing the dish with probability proportional to the number of times
that dish has been picked previously, or ordering a new dishθK+1 with probability
proportional toγ. The intuition behind this predictive distribution is thatintegrating
over the global dish probabilitiesβ results in customers making decisions based on
the observed popularity of the dishes throughout the entirefranchise. See the Sup-
plementary Material for further details (?).

Recalling Equation (4.1)-(4.2), since each distributionGj is drawn from a DP
with a discrete base measureG0, multiple θ∗jt may take an identical valueθk for
multiple unique values oft. As we see in the Supplemental Material (?), this cor-
responds to multiple tables in the same restaurant being served the same dish. We
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can writeGj as a function of the unique dishes:

Gj =
∞
∑

k=1

πjkδθk
, πj | α, β ∼ DP(α, β) , θk | H ∼ H,(4.3)

whereπj now defines a restaurant-specific distribution over dishes served rather
than over tables, with

πjk =
∑

t|θ∗
jt

=θk

π̃jt.(4.4)

Let zji be the indicator random variable for the unique dish selected by observa-
tion yji. An equivalent representation for the generative model is in terms of these
indicator random variables:

πj | α, β ∼ DP(α, β) zji | πj ∼ πj yji | {θk}, zji ∼ F (θzji
),(4.5)

and is shown in Fig.4(c).

5. The Sticky HDP-HMM. Recall that the hidden Markov model, orHMM,
is a class of doubly stochastic processes based on an underlying, discrete-valued
state sequence, which is modeled as Markovian (Rabiner, 1989). Let zt denote the
state of the Markov chain at timet andπj the state-specific transition distribu-
tion for statej. Then, the Markovian structure on the state sequence dictates that
zt ∼ πzt−1 . The observations,yt, are conditionally independent given this state
sequence, withyt ∼ F (θzt) for some fixed distributionF (·).

The HDP can be used to develop an HMM with an infinite state space—the
HDP-HMM (Teh et al., 2006). In the speaker diarization task, each state constitutes
a different speaker and our goal in moving to an infinite statespace is to remove
upper bounds on the total number of speakers present. Conceptually, we envision a
doubly-infinite transition matrix, with each row corresponding to a Chinese restau-
rant. That is, the groups in the HDP formalism here correspond to states, and each
Chinese restaurant defines a distribution on next states. The CRF links these next-
state distributions. Thus, in this application of the HDP, the group-specific distribu-
tion,πj, is a state-specific transition distribution and, due to theinfinite state space,
there are infinitely many such groups. Sincezt ∼ πzt−1 , we see thatzt−1 indexes
the group to whichyt is assigned (i.e., all observations withzt−1 = j are assigned
to groupj). Just as with the HMM, the current statezt then indexes the parameter
θzt used to generate observationyt (see Fig.5(a)).

By definingπj ∼ DP(α, β), the HDP prior encourages states to have similar
transition distributions (E[πjk | β] = βk). However, it does not differentiate self-
transitions from moves between different states. When modeling data with state
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(a) (b)

FIG 5. (a) Graphical representation of the sticky HDP-HMM. The state evolves as
zt+1|{πk}

∞

k=1, zt ∼ πzt , whereπk|α, κ, β ∼ DP(α + κ, (αβ + κδk)/(α + κ)) and β|γ ∼
GEM(γ), and observations are generated asyt|{θk}

∞

k=1, zt ∼ F (θzt). The original HDP-HMM
has κ = 0. (b) Sticky HDP-HMM with DP emissions, wherest indexes the state-specific mix-
ture component generating observationyt. The DP prior dictates thatst|{ψk}

∞

k=1, zt ∼ ψzt for
ψk|σ ∼ GEM(σ). Thejth Gaussian component of thekth mixture density is parameterized byθk,j

soyt|{θk,j}
∞

k,j=1, zt, st ∼ F (θzt,st).

persistence, the flexible nature of the HDP-HMM prior allowsfor state sequences
with unrealistically fast dynamics to have large posteriorprobability. For example,
with multinomial emissions, a good explanation of the data is to divide different
observation values into unique states and then rapidly switch between them (see
Fig. 1). In such cases, many models with redundant states may have large poste-
rior probability, thus impeding our ability to identify a compact dynamical model
which best explains the observations. The problem is compounded by the fact that
once this alternating pattern has been instantiated by the sampler, its persistence
is then reinforced by the properties of the Chinese restaurant franchise, thus slow-
ing mixing rates. Furthermore, this fragmentation of data into redundant states can
reduce predictive performance, as is discussed in Section6. In many applications,
one would like to be able to incorporate prior knowledge thatslow, smoothly vary-
ing dynamics are more likely.

To address these issues, we propose to instead model the transition distributions
πj as follows:

β | γ ∼ GEM(γ)

πj | α, κ, β ∼ DP
(

α+ κ,
αβ + κδj
α+ κ

)

.(5.1)

Here,(αβ + κδj) indicates that an amountκ > 0 is added to thejth component of
αβ. Informally, what we are doing is increasing the expected probability of self-
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transition by an amount proportional toκ:

E[πjk | β, κ] =
αβk + κδ(j, k)

α+ κ
.(5.2)

More formally, over a finite partition(Z1, . . . , ZK) of the positive integersZ+, the
prior on the measureπj adds an amountκ only to the arbitrarily small partition
containingj, corresponding to a self-transition. That is,

(πj(Z1), . . . , πj(ZK)) | α, β ∼ Dir(αβ(Z1) + κδj(Z1), . . . , αβ(ZK) + κδj(ZK)).
(5.3)

Whenκ = 0 the original HDP-HMM ofTeh et al.(2006) is recovered. Because
positiveκ values increase the prior probabilityE[πjj | β] of self-transitions, we re-
fer to this extension as thestickyHDP-HMM. See Fig.5(a). Note that this formula-
tion assumes that the stickiness of each HMM state is the samea priori. The param-
eter could be made state-dependent through a hierarchical model that ties together
a collection of state-specific sticky parameters. However,such state-specific stick-
iness is unnecessary for the speaker diarization task at hand since each speaker is
assumed to have similar expected durations. Differences between speaker-specific
transitions become more distinguished in the posterior.

Theκ parameter is reminiscent of the self-transition bias parameter of theinfi-
nite HMM, an urn model for hidden Markov models on infinite state spaces that
predated the HDP-HMM (Beal et al., 2002). The connection between the (sticky)
HDP-HMM and the infinite HMM is analogous to that between the DP and the
Pólya urn; in both cases the latter is obtained by integrating out the random mea-
sures in the former. In particular, the infinite HMM employs atwo-level urn model
in which the top-level urn places a probability on transitions to existing states in
proportion to how many times these transitions have been seen, with an added
bias for a self-transition even if this has not previously occurred. With some re-
maining probability an oracle is called, representing the second-level urn. This
oracle chooses an existing state in proportion to how many times the oracle pre-
viously chose that state, regardless of the state transition involved, or chooses a
previously unvisited state. The original HDP-HMM providesan interpretation of
this urn model in terms of an underlying collection of linkedrandom probability
measures, however without the self-transition parameter.In addition to the concep-
tual clarity provided by the random measure formalism, the HDP-HMM has the
practical advantage that it makes it possible to use standard MCMC algorithms for
posterior inference; working within the urn model formulation Beal et al.(2002)
needed to resort to a heuristic approximation to a Gibbs sampler. The sticky HDP-
HMM, an early version of which was presented inFox et al.(2008), restores the
self-transition parameter of the infinite HMM to this class of models, doing so in a
way that integrates with a full Bayesian nonparametric specification.
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As with the DP, this specification in terms of random measuresyields various
interesting characterizations of marginal probabilities. In particular, as described
in the Supplemental Material (?), the partitioning structure induced by the sticky
HDP-HMM has an interpretation as an extension of the Chineserestaurant fran-
chise (CRF) which we refer to as aCRF with loyal customers. Here, each restaurant
in the franchise has a specialty dish with the same index as that of the restaurant.
Although this dish is served elsewhere, it is more popular inthe dish’s namesake
restaurant. Recall that while customers in the CRF of the HDPare pre-partitioned
into restaurants based on the fixed group assignments, in theHDP-HMM the value
of the statezt determines the group assignment (and thus restaurant) of customer
yt+1. The increased popularity of the house specialty dish (determined by the sticky
parameterκ) implies that children are more likely to eat in the same restaurant as
their parent (zt = zt−1 = j) and, in turn, more likely to eat the restaurant’s spe-
cialty dish (zt+1 = j). This develops family loyalty to a given restaurant in the
franchise. However, if the parent chooses a dish other than the house specialty
(zt = k, k 6= j), the child will then go to the restaurant where this dish is the
specialty and will in turn be more likely to eat this dish, too. One might say that
for the sticky HDP-HMM, children have similar tastebuds to their parents and will
always go to the restaurant that prepares their parent’s dish best. Often, this keeps
many generations eating in the same restaurant.

Throughout the remainder of the paper, we use the following notational conven-
tions. Given a random sequence{x1, x2, . . . , xT }, we use the shorthandx1:t to de-
note the sequence{x1, x2, . . . , xt} andx\t to denote the set{x1, . . . , xt−1, xt+1, . . . , xT }.
Also, for random variables with double subindices, such asxa1a2 , we will usex

to denote the entire set of such random variables,{xa1a2 ,∀a1,∀a2}, and the short-
hand notationxa1· =

∑

a2
xa1a2 , x·a2 =

∑

a1
xa1a2 , andx·· =

∑

a1

∑

a2
xa1a2 .

5.1. Sampling via Direct Assignments.In this section we present an inference
algorithm for the sticky HDP-HMM of Section5 and Fig.5(a) that is a modified
version of the direct assignment Rao-Blackwellized Gibbs sampler ofTeh et al.
(2006). This sampler circumvents the complicated bookkeeping ofthe CRF by
sampling indicator random variables directly. The resulting sticky HDP-HMM di-
rect assignment Gibbs sampler is outlined in Algorithm 1 of the Supplementary
Material (?), which also contains the full derivations of this sampler.

The basic idea is that we marginalize over the infinite set of state-specific transi-
tion distributionsπk and parametersθk, and sequentially sample the statezt given
all other state assignmentsz\t, the observationsy1:T , and the global transition dis-
tribution β. A variant of the Chinese restaurant process gives us the prior proba-
bility of an assignment ofzt to a valuek based on how many times we have seen
other transitions from the previous state valuezt−1 to k andk to the next state value
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zt+1. As derived in the Supplementary Material (?), this conditional distribution is
dependent upon whether either or both of the transitionszt−1 to k andk to zt+1

correspond to a self-transition, most strongly whenκ > 0. The prior probability of
an assignment ofzt to statek is then weighted by the likelihood of the observation
yt given all other observations assigned to statek.

Given a sample of the state sequencez1:T , we can represent the posterior distri-
bution of the global transition distributionβ via a set of auxiliary random variables
m̄jk, mjk, andwjt, which correspond to thejth restaurant-specific set of table
counts associated with the CRF with loyal customers described in the Supplemen-
tal Material (?). The Gibbs sampler iterates between sequential sampling of the
statezt for each individual value oft givenβ andz\t; sampling of the auxiliary
variablesm̄jk,mjk, andwjt givenz1:T andβ; and sampling ofβ given these aux-
iliary variables.

The direct assignment sampler is initialized by sampling the hyperparameters
andβ from their respective priors and then sequentially sampling eachzt as if the
associatedyt was the last observation. That is, we first samplez1 giveny1, β, and
the hyperparameters. We then samplez2 given z1, y1:2, β, and the hyperparam-
eters, and so on. Based on the resulting sample ofz1:T , we resampleβ and the
hyperparameters. From then on, the sampler continues with the normal procedure
of conditioning onz\t when resamplingzt.

5.2. Blocked Sampling of State Sequences.The HDP-HMM sequential, direct
assignment sampler of Section5.1can exhibit slow mixing rates since global state
sequence changes are forced to occur coordinate by coordinate. This phenomenon
is explored inScott (2002) for the finite HMM. Although the sticky HDP-HMM
reduces the posterior uncertainty caused by fast state-switching explanations of the
data, the self-transition bias can cause two continuous andtemporally separated
sets of observations of a given state to be grouped into two states. See Fig.6(b) for
an example. If this occurs, the high probability of self-transition makes it challeng-
ing for the sequential sampler to group those two examples into a single state.

We thus propose using a variant of the HMM forward-backward procedure
(Rabiner, 1989) to harness the Markovian structure and jointly sample the state
sequencez1:T given the observationsy1:T , transition probabilitiesπk, and param-
etersθk. There are two main mechanisms for sampling in an uncollapsed HDP
model (i.e., one that instantiates the parametersπk andθk): one is to employ slice
sampling while the other is to consider a truncated approximation to the HDP.
For the HDP-HMM, a slice sampler, referred to asbeam sampling, was recently
developed (Van Gael et al., 2008). This sampler harnesses the efficiencies of the
forward-backward algorithm without having to fix a truncation level for the HDP.
However, as we elaborate upon in Section6.1, this sampler suffers from slower
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mixing rates than the block sampler we propose, which utilizes a fixed-order trun-
cation of the HDP-HMM. Although a fixed truncation reduces our model to a
parametric Bayesian HMM, the specific hierarchical prior induced by a trunca-
tion of the fully nonparametric HDP significantly improves upon classical para-
metric Bayesian HMMs. Specifically, a fixed degreeL truncation encourages each
transition distribution to be sparse over the set ofL possible HMM states, and si-
multaneously encourages transitions from different states to have similar sparsity
structures. That is, the truncated HDP prior leads to asharedsparse subset of the
L possible states. See Section6.3for a comparison with standard parametric mod-
eling.

There are multiple methods of approximating the countably infinite transition
distributions via truncations. One approach is to terminate the stick-breaking con-
struction after some portion of the stick has already been broken and assign the
remaining weight to a single component. This approximationis referred to as the
truncated Dirichlet process. Another method is to consider thedegreeL weak limit
approximationto the DP (Ishwaran and Zarepour, 2002b),

GEML(α) , Dir(α/L, . . . , α/L),(5.4)

whereL is a number that exceeds the total number of expected HMM states. Both
of these approximations, which are presented inIshwaran and Zarepour(2000,
2002b), encourage the learning of models with fewer thanL components while
allowing the generation of new components, upper bounded byL, as new data are
observed. We choose to use the second approximation becauseof its simplicity
and computational efficiency. The two choices of approximations are compared
in Kurihara et al.(2007), and little to no practical differences are found. Using a
weak limit approximation to the Dirichlet process prior onβ (i.e., employing a
finite Dirichlet prior) induces a finite Dirichlet prior onπj:

β | γ ∼ Dir(γ/L, . . . , γ/L)(5.5)

πj | α, β ∼ Dir(αβ1, . . . , αβL).(5.6)

As L → ∞, this model converges in distribution to the HDP mixture model
(Teh et al., 2006).

The Gibbs sampler using blocked resampling ofz1:T is derived in the Supple-
mentary Material (?); an outline of the resulting algorithm is also presented (see Al-
gorithm 3). A similar sampler has been used for inference in HDP hidden Markov
trees (Kivinen et al., 2007). However, this work did not consider the complications
introduced by multimodal emissions, which we explore in Section 7.

The blocked sampler is initialized by drawingL parametersθk from the base
measure,β from its L-dimensional symmetric Dirichlet prior, and theL transi-
tion distributionsπk from the inducedL-dimensional Dirichlet prior specified in
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Equation (5.6). The hyperparameters are also drawn from the prior. Based on the
sampled parameters and transition distributions, one can block samplez1:T and
proceed as in Algorithm 3 of the Supplementary Material (?).

5.3. Hyperparameters. We treat the hyperparameters in the sticky HDP-HMM
as unknown quantities and perform full Bayesian inference over these quantities.
This emphasizes the role of the data in determining the number of occupied states
and the degree of self-transition bias. Our derivation of sampling updates for the
hyperparameters of the sticky HDP-HMM is presented in the Supplementary Ma-
terial (?); it roughly follows that of the original HDP-HMM (Teh et al., 2006). A
key step which simplifies our inference procedure is to note that since we have the
deterministic relationships

α = (1 − ρ)(α+ κ)

κ = ρ(α+ κ),(5.7)

we can treatρ andα + κ as our hyperparameters and sample these values instead
of samplingα andκ directly.

6. Experiments with Synthetic Data. In this section, we explore the perfor-
mance of the sticky HDP-HMM relative to the original model (i.e., the model with
κ = 0) in a series of experiments with synthetic data. We judge performance ac-
cording to two metrics: our ability to accurately segment the data according to the
underlying state sequence, and the predictive likelihood of held-out data under the
inferred model. We additionally assess the improvements inmixing rate achieved
by using the blocked sampler of Section5.2.

6.1. Gaussian Emissions.We begin our analysis of the sticky HDP-HMM per-
formance by examining a set of simulated data generated froman HMM with Gaus-
sian emissions. The first dataset is generated from an HMM with a high probability
of self-transition. Here, we aim to show that the original HDP-HMM inadequately
captures state persistence. The second dataset is from an HMM with a high prob-
ability of leaving the current state. In this scenario, our goal is to demonstrate that
the sticky HDP-HMM is still able to capture rapid dynamics byinferring a small
probability of self-transition.

For all of the experiments with simulated data, we used weakly informative hy-
perpriors. We placed a Gamma(1, 0.01) prior on the concentration parametersγ
and(α + κ). The self-transition proportion parameterρ was given a Beta(10, 1)
prior. The parameters of the base measure were set from the data, as will be de-
scribed for each scenario.
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State Persistence.The data for the high persistence case were generated from a
three-state HMM with a 0.98 probability of self-transitionand equal probability
of transitions to the other two states. The observation and true state sequences for
the state persistence scenario are shown in Fig.6(a). We placed a normal inverse-
Wishart prior on the space of mean and variance parameters and set the hyperpa-
rameters as: 0.01 pseudocounts, mean equal to the empiricalmean, three degrees
of freedom, and scale matrix equal to 0.75 times the empirical variance. We used
this conjugate base measure so that we may directly compare the performance of
the blocked and direct assignment samplers. For the blockedsampler, we used a
truncation level ofL = 20.

In Fig. 6(d)-(h), we plot the10th, 50th, and90th quantiles of the Hamming
distance between the true and estimated state sequences over the 1000 Gibbs iter-
ations using the direct assignment and blocked samplers on the sticky and original
HDP-HMM models. To calculate the Hamming distance, we used the Munkres al-
gorithm (Munkres, 1957) to map the randomly chosen indices of the estimated state
sequence to the set of indices that maximize the overlap withthe true sequence.

From these plots, we see that the burn-in rate of the blocked sampler using the
sticky HDP-HMM is significantly faster than that of any othersampler-model com-
bination. As expected, the sticky HDP-HMM with the sequential, direct assignment
sampler gets stuck in state sequence assignments from whichit is hard to move
away, as conveyed by the flatness of the Hamming error versus iteration number
plot in Fig.6(g). For example, the estimated state sequence of Fig.6(b) might have
similar parameters associated with states 3, 7, 10 and 11 so that the likelihood is
in essence the same as if these states were grouped, but this sequence has a large
error in terms of Hamming distance and it would take many iterations to move
away from this assignment. Incorporating the blocked sampler with the original
HDP-HMM improves the Hamming distance performance relative to the sequen-
tial, direct assignment sampler for both the original and sticky HDP-HMM; how-
ever, the burn-in rate is still substantially slower than that of the blocked sampler
on the sticky model.

As discussed earlier, abeam samplingalgorithm (Van Gael et al., 2008) has
been proposed which adapts slice sampling methods (Robert, 2007) to the HDP-
HMM. This approach uses a set of auxiliary slice variables, one for each observa-
tion, to effectively truncate the number of state transitions that must be considered
at every Gibbs sampling iteration. Dynamic programming methods can then be
used to jointly resample state assignments. The beam sampler was inspired by a re-
lated approach for DP mixture models (Walker, 2007), which is conceptually sim-
ilar to retrospective sampling methods (Papaspiliopoulos and Roberts, 2008). In
comparison to our fixed-order, weak-limit truncation of theHDP-HMM, the beam
sampler provides an asymptotically exact algorithm. However, the beam sampler
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FIG 6. (a) Observation sequence (blue) and true state sequence (red) for a three-state HMM with
state persistence. (b) Example of the sticky HDP-HMM directassignment Gibbs sampler splitting
temporally separated examples of the same true state (red) into multiple estimated states (blue) at
Gibbs iteration 1,000. (c) Histogram of the inferred self-transition proportion parameter,ρ, for the
sticky HDP-HMM blocked sampler. For the original HDP-HMM, the median (solid blue) and10th

and90th quantiles (dashed red) of Hamming distance between the trueand estimated state sequences
over the first 1,000 Gibbs samples from 200 chains are shown for the (d) direct assignment sampler,
and (e) blocked sampler. (f) Hamming distance over 30,000 Gibbs samples from three chains of the
original HDP-HMM blocked sampler. (g)-(i) Analogous plotsto (d)-(f) for the sticky HDP-HMM.
(k) and (l) Plots analogous to (e) and (f) for a nonsticky HDP-HMM using beam sampling. (j) A
histogram of the effective beam sampler truncation level,Leff , over the 30,000 Gibbs iterations
from the three chains (blue) compared to the fixed truncationlevel,L = 20, used in the truncated
sticky HDP-HMM blocked sampler results (red).
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can be slow to mix relative to our blocked sampler on the fixed,truncated model
(see Fig.6 for an example comparison.) The issue is that in order to consider a
transition which has low prior probability, one needs a correspondingly rare slice
variable sample at that time. Thus, even if the likelihood cues are strong, to be
able to consider state sequences with several low-prior-probability transitions, one
needs to wait for severalrare eventsto occur when drawing slice variables. By con-
sidering the full, exponentially large set of paths in the truncated state space, we
avoid this problem. Of course, the trade-off between the computational cost of the
blocked sampler on the fixed, truncated model (O(TL2)) and the slower mixing
rate of the beam sampler yields an application-dependent sampler choice.

The Hamming distance plots of Fig.6(k) and (l), when compared to those of
Fig. 6(e) and (f), depict the substantially slower mixing rate of the beam sampler
compared to the blocked sampler (both using a non-sticky HDP-HMM). However,
the theoretical computational benefit of the beam sampler can be seen in Fig.6(j).
In this plot, we present a histogram of the effective truncation level,Leff , used over
the 30,000 Gibbs iterations on three chains. We computed this effective truncation
level by summing over the number of state transitions considered during a full
sweep of samplingz1:T and then dividing this number by the length of the dataset,
T , and taking the square root. Finally, on a more technical note, our fixed, truncated
model allows for more vectorization of the code than the beamsampler. Thus, in
practice, the difference in computation time between the samplers is significantly
less than theO(L2/L2

eff ) factor obtained by counting state transitions.
From this point onwards, we present results only from blocked sampling since

we have seen the clear advantages of this method over the sequential, direct assign-
ment sampler.

Fast State-Switching. In order to warrant the general use of the sticky model,
one would like to know that the sticky parameter incorporated in the model does
not preclude learning models with fast dynamics. To this end, we explored the
performance of the sticky HDP-HMM on data generated from a model with a high
probability of switching between states. Specifically, we generated observations
from a four-state HMM with the following transition probability matrix:











0.4 0.4 0.1 0.1
0.4 0.4 0.1 0.1
0.1 0.1 0.4 0.4
0.1 0.1 0.4 0.4











.(6.1)

We once again used a truncation levelL = 20. Since we are restricting ourselves
to the blocked Gibbs sampler, it is no longer necessary to usea conjugate base
measure. Instead we placed an independent Gaussian prior onthe mean parameter
and an inverse-Wishart prior on the variance parameter. Forthe Gaussian prior, we
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FIG 7. (a) Observation sequence (blue) and true state sequence (red) for a four-state HMM with
fast state switching. For the original HDP-HMM using a blocked Gibbs sampler: (b) the median
(solid blue) and10th and 90th quantiles (dashed red) of Hamming distance between the trueand
estimated state sequences over the first 1,000 Gibbs samplesfrom 200 chains, and (c) Hamming
distance over 30,000 Gibbs samples from three chains. (d) Histogram of the inferred self-transition
parameter,ρ, for the sticky HDP-HMM blocked sampler. (e)-(f) Analogousplots to (b)-(c) for the
sticky HDP-HMM.

set the mean and variance hyperparameters to be equal to the empirical mean and
variance of the entire dataset. The inverse-Wishart hyperparameters were set such
that the expected variance is equal to 0.75 times that of the entire dataset, with three
degrees of freedom.

The results depicted in Fig.7 confirm that by inferring a small probability of
self-transition, the sticky HDP-HMM is indeed able to capture fast HMM dynam-
ics, and just as quickly as the original HDP-HMM (although with higher variabil-
ity.) Specifically, we see that the histogram of the self-transition proportion param-
eterρ for this dataset (see Fig.7(d)) is centered around a value close to the true
probability of self-transition, which is substantially lower than the mean value of
this parameter on the data with high persistence (Fig.6(c).)

6.2. Multinomial Emissions. The difference in modeling power, rather than
simply burn-in rate, between the sticky and original HDP-HMM is more pro-
nounced when we consider multinomial emissions. This is because the multino-
mial observations are embedded in a discrete topological space in which there is no
concept of similarity between non-identical observation values. In contrast, Gaus-
sian emissions have a continuous range of values inR

n with a clear notion of
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FIG 8. (a) Observation sequence (blue) and true state sequence (red) for a five-state HMM with
multinomial observations. (b) Histogram of the predictiveprobability of test sequences using the in-
ferred parameters sampled every100th iteration from Gibbs iterations 10,000 to 30,000 for the sticky
and original HDP-HMM. The Hamming distances over 30,000 Gibbs samples from three chains are
shown for the (c) sticky HDP-HMM and (d) original HDP-HMM.

closenessbetween observations under the Lebesgue measure, aiding ingrouping
observations under a single HMM state’s Gaussian emission distribution, even in
the absence of a self-transition bias.

To demonstrate the increased posterior uncertainty with discrete observations,
we generated data from a five-state HMM with multinomial emissions with a 0.98
probability of self-transition and equal probability of transitions to the other four
states. The vocabulary, or range of possible observation values, was set to 20. The
observation and true state sequences are shown in Fig.8(a). We placed a symmetric
Dirichlet prior on the parameters of the multinomial distribution, with the Dirichlet
hyperparameters equal to 2 (i.e., Dir(2, . . . , 2).)

From Fig.8, we see that even after burn-in, many fast-switching state sequences
have significant posterior probability under the non-sticky model leading to sweeps
through regions of larger Hamming distance error. A qualitative plot of one such in-
ferred sequence after 30,000 Gibbs iterations is shown in Fig.1(c). Such sequences
have negligible posterior probability under the sticky HDP-HMM formulation.

In some applications, such as the speaker diarization problem that is explored
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in Section8, one cares about the inferred segmentation of the data into aset of
state labels. In this case, the advantage of incorporating the sticky parameter is
clear. However, it is often the case that the metric of interest is the predictive power
of the fitted model, not the accuracy of the inferred state sequence. To study per-
formance under this metric, we simulated 10 test sequences using the same pa-
rameters that generated the training sequence. We then computed the likelihood
of each of the test sequences under the set of parameters inferred at every100th

Gibbs iteration from iterations 10,000 to 30,000. This likelihood was computed by
running the forward-backward algorithm ofRabiner(1989). We plot these results
as a histogram in Fig.8(b). From this plot, we see that the fragmentation of data
into redundant HMM states can also degrade the predictive performance of the in-
ferred model. Thus, the sticky parameter plays an importantrole in the Bayesian
nonparametric learning of HMMs even in terms of model averaging.

6.3. Comparison to Independent Sparse Dirichlet Prior.We have alluded to
the fact that thesharedsparsity of the HDP-HMM induced byβ is essential for in-
ferring sparse representations of the data. Although this is clear from the perspec-
tive of the prior model, or equivalently the generative process, it is not immediately
obvious how much this hierarchical Bayesian constraint helps us in posterior infer-
ence. Once we are in the realm of considering a fixed, truncated approximation to
the HDP-HMM, one might propose an alternate model in which wesimply place a
sparse Dirichlet prior, Dir(α/L, . . . , α/L) with α/L < 1, independently on each
row of the transition matrix. This is equivalent to settingβ = [1/L, . . . , 1/L] in
the truncated HDP-HMM, which can also be achieved by lettingthe hyperparame-
ter γ tend to infinity. Indeed, when the data do not exhibit shared sparsity or when
the likelihood cues are sufficiently strong, the independent sparse Dirichlet prior
model can perform as well as the truncated HDP-HMM. However,in scenarios
such as the one depicted in Fig.9, we see substantial differences in performance
by considering the HDP-HMM, as well as the inclusion of the sticky parameter.
We explored the relative performance of the HDP-HMM and sparse Dirichlet prior
model, with and without the sticky parameter, on such a Markov model with multi-
nomial emissions on a vocabulary of size 20. We placed a Dir(0.1, . . . , 0.1) prior
on the parameters of the multinomial distribution. For the sparse Dirichlet prior
model, we assumed a state space of size 50, which is the same asthe truncation
level we chose for the HDP-HMM (i.e.,L = 50). The results are presented in
Fig. 10. From these plots, we see that the hierarchical Bayesian approach of the
HDP-HMM does, in fact, improve the fitting of a model with shared sparsity. The
HDP-HMM consistently infers fewer HMM states and more representative model
parameters. As a result, the HDP-HMM has higher predictive likelihood on test
data, with an additional benefit gained from using the stickyparameter.
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FIG 9. (a) State transition diagram for a nine-state HMM with one main state (labeled 1) and eight
sub-states (labeled 2 to 9.) All states have a significant probability of self-transition. From the main
state, all other states are equally likely. From a sub-state, the most likely non-self-transition is a
transition is back to the main state. However, all sub-states have a small probability of transitioning
to another sub-state, as indicated by the dashed arcs. (b) Observation sequence (top) and true state
sequence (bottom) generated by the nine-state HMM with multinomial observations.

Note that the results of Fig.10(f) also motivate the use of the sticky parameter
in the more classical setting of a finite HMM with a standard Dirichlet sparsity
prior. A motivating example of the use of sparse Dirichlet priors for finite HMMs
is presented inJohnson(2007).

7. Multimodal Emission Densities. In many application domains, the data
associated with each hidden state may have a complex, multimodal distribution. We
propose to model such emission distributions nonparametrically, using a DP mix-
ture of Gaussians. This formulation is related to the nestedDP (Rodriguez et al.,
2008), which uses a Dirichlet process to partition data into groups, and then mod-
els each group via a Dirichlet process mixture. The bias towards self-transitions
allows us to distinguish between the underlying HDP-HMM states. If the model
were free to both rapidly switch between HDP-HMM states and associate multiple
Gaussians per state, there would be considerable posterioruncertainty. Thus, it is
only with the sticky HDP-HMM that we can effectively fit such models.

We augment the HDP-HMM statezt with a termst indexing the mixture com-
ponent of thezth

t emission density. For each HDP-HMM state, there is a unique
stick-breaking measureψk ∼ GEM(σ) defining the mixture weights of thekth

emission density so thatst ∼ ψzt . Given the augmented state(zt, st), the obser-
vationyt is generated by the Gaussian component with parameterθzt,st. Note that
both the HDP-HMM state index and mixture component index areallowed to take
values in a countably infinite set. See Fig.5(b).

7.1. Direct Assignment Sampler.Many of the steps of the direct assignment
sampler for the sticky HDP-HMM with DP emissions remain the same as for the
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FIG 10. (a) The true transition probability matrix (TPM) associated with the state transition diagram
of Fig.9. (b) and (c) The inferred TPM at the 30,000th Gibbs iterationfor the sticky HDP-HMM and
sticky sparse Dirichlet model, respectively, only examining those states with more than 1% of the
assignments. For the HDP-HMM and sparse Dirichlet model, with and without the sticky parameter,
we plot: (d) the Hamming distance error over 10,000 Gibbs iterations, (e) the inferred number of
states with more than 1% of the assignments, and (f) the predictive probability of test sequences
using the inferred parameters sampled every100th iteration from Gibbs iterations 5,000 to 10,000.

regular sticky HDP-HMM. Specifically, the sampling of the global transition dis-
tribution β, the table countsmjk andm̄jk, and the override variableswjt are un-
changed. The difference arises in how we sample the augmented state(zt, st).

The joint distribution on the augmented state, having marginalized the transition
distributionsπk and emission mixture weightsψk, is given by

p(zt = k, st = j | z\t, s\t, y1:T , β, α, σ, κ, λ) = p(st = j | zt = k, z\t, s\t, y1:T , σ, λ)

p(zt = k | z\t, s\t, y1:T , β, α, κ, λ).(7.1)

We then block-sample(zt, st) by first samplingzt, followed byst conditioned on
the sampled value ofzt. The termp(st = j | zt = k, z\t, s\t, y1:T , σ, λ) relies
on how many observations are currently assigned to thejth mixture component
of statek. These conditional distributions are derived in the Supplementary Mate-
rial (?), which also contains an outline of the resulting Gibbs sampler in Algorithm
2.

7.2. Blocked Sampler. To implement blocked resampling of(z1:T , s1:T ), we
use weak limit approximations to both the HDP-HMM and DP emissions, approx-
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imated to levelsL andL′, respectively. The posterior distributions forβ andπk

remain unchanged from the sticky HDP-HMM; that ofψk is given by

ψk | z1:T , s1:T , σ ∼ Dir(σ/L′ + n′k1, . . . , σ/L
′ + n′kL′),(7.2)

wheren′kℓ is the number ofst taking a valueℓ whenzt = k. (i.e., the number of
observations assigned to thekth state’sℓth mixture component.) The procedure for
sampling the augmented state(z1:T , s1:T ) is derived in the Supplementary Material
(see Algorithm 4,?).

7.3. Assessing the Multimodal Emissions Model.In this section, we evaluate
the ability of the sticky HDP-HMM to infer multimodal emission distributions rel-
ative to the model without the sticky parameter. We generated data from a five-state
HMM with mixture-of-Gaussian emissions, where the number of mixture compo-
nents for each emission distribution was chosen randomly from a uniform distri-
bution on{1, 2, . . . , 10}. Each component of the mixture was equally weighted
and the probability of self-transition was set to 0.98, withequal probabilities of
transitions to the other states. The large probability of self-transition is what dis-
ambiguates this process from one with many more HMM states, each with a single
Gaussian emission distribution. The resulting observation and true state sequences
are shown in Fig.11(a).

We once again used a non-conjugate base measure and placed a Gaussian prior
on the mean parameter and an independent inverse-Wishart prior on the variance
parameter of each Gaussian mixture component. The hyperparameters for these
distributions were set from the data in the same manner as in the fast-switching
scenario. Consistent with the sticky HDP-HMM concentration parametersγ and
(α + κ), we placed a weakly informative Gamma(1, 0.01) prior on the concentra-
tion parameterσ of the DP emissions. All results are for the blocked sampler with
truncation levelsL = L′ = 20.

In Fig.11, we compare the performance of the sticky HDP-HMM with DP emis-
sions to that of the original HDP-HMM with DP emissions (i.e., DP emissions, but
no bias towards self-transitions.) As with the multinomialobservations, when the
distance between observations does not directly factor into the grouping of obser-
vations into HMM states, there is a considerable amount of posterior uncertainty
in the underlying HMM state of the nonsticky model. Even after 30,000 Gibbs
samples, there are still state sequence sample paths with very rapid dynamics. The
result of this fragmentation into redundant states is a slight reduction in predictive
performance on test sequences, as in the multinomial emission case. See Fig.11(b).

8. Speaker Diarization Results. Recall thespeaker diarizationtask from Sec-
tion 2, which involves segmenting audio recordings from the NIST Rich Transcrip-
tion 2004-2007 database into speaker-homogeneous regionswhile simultaneously
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FIG 11. (a) Observation sequence (blue) and true state sequence (red) for a five-state HMM with
mixture-of-Gaussian observations. (b) Histogram of the predictive probability of test sequences using
the inferred parameters sampled every100th iteration from Gibbs iterations 10,000 to 30,000 for the
sticky and original HDP-HMM. The Hamming distance over 30,000 Gibbs samples from three chains
are shown for the (c) sticky HDP-HMM and (d) original HDP-HMM, both with DP emissions.

identifying the number of speakers. In this section we present our results on apply-
ing the sticky HDP-HMM with DP emissions to the speaker diarization task.

A minimum speaker duration of 500ms was set by associating two preprocessed
MFCCs with each hidden state. We also tied the covariances ofwithin-state mix-
ture components (i.e., each speaker-specific mixture component was forced to have
identical covariance structure), and used a non-conjugateprior on the mean and
covariance parameters. We placed a normal prior on the mean parameter with
mean equal to the empirical mean and covariance equal to 0.75times the empir-
ical covariance, and an inverse-Wishart prior on the covariance parameter with
1000 degrees of freedom and expected covariance equal to theempirical covari-
ance. Our choice of a large degrees of freedom is akin to an empirical Bayes ap-
proach in that it concentrates the mass of the prior in reasonable regions based on
the data. Such an approach is often helpful in high-dimensional applied problems
since our sampler relies on forming new states (i.e., speakers) based on param-
eters drawn from the prior. Issues of exploration in this high-dimensional space
increases the importance of the setting of the base measure.For the concentra-
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tion parameters, we placed a Gamma(12, 2) prior on γ, a Gamma(6, 1) prior on
α+ κ, and a Gamma(1, 0.5) prior onσ. The self-transition parameterρ was given
a Beta(500, 5) prior. For each of the 21 meetings, we ran 10 chains of the blocked
Gibbs sampler for 10,000 iterations for both the original and sticky HDP-HMM
with DP emissions. We used a sticky HDP-HMM truncation levelof L = 15,
where the DP-mixture-of-Gaussians emission distributionassociated with each of
theseLHMM states was truncated toL′ = 30 components. Our choice ofL signif-
icantly exceeds the typical number of speakers, which in theNIST database tends
to be between 4 and 6. In practice, our sampler never approached using the full set
of possible states and emission components.

In order to explore the importance of capturing the temporaldynamics, we also
compare our sticky HDP-HMM performance to that of a Dirichlet process mixture
of Gaussians that simply pools together the data from each meeting ignoring the
time indices associated with the observations. We considered a truncated Dirichlet
process mixture model withL = 50 components and a Gamma(6, 1) prior on the
concentration parameterγ. The base measure was set as in the sticky HDP-HMM.

For the NIST speaker diarization evaluations, the goal is toproduce a single
segmentation for each meeting. Due to the label-switching issue (i.e., under our
exchangeable prior, labels are arbitrary entities that do not necessarily remain con-
sistent over Gibbs iterations), we cannot simply integrateover multiple Gibbs-
sampled state sequences. We propose two solutions to this problem. The first,
which we refer to as thelikelihood metric, is to simply choose from a fixed set
of Gibbs samples the one that produces the largest likelihood given the estimated
parameters (marginalizing over state sequences), and thenproduce the correspond-
ing Viterbi state sequence. This heuristic, however, is sensitive to overfitting and
will, in general, be biased towards solutions with more states.

An alternative, and more robust, metric is what we refer to asthe minimum
expected Hamming distance. We first choose a large reference setR of state se-
quences produced by the Gibbs sampler and a possibly smallerset of test sequences
T . Then, for each sequencez(i) in the test setT , we compute the empirical mean
Hamming distance between the test sequence and the sequences in the reference
setR; we denote this empirical mean bŷHi. We then choose the test sequence
z(j∗) that minimizes this expected Hamming distance. That is,

z(j∗) = arg min
z(i)∈T

Ĥi.

The empirical mean Hamming distancêHi is alabel-invariant loss functionsince it
does not rely on labels remaining consistent across samples—we simply compute

Ĥi =
1

|R|

∑

z(j)∈R

Hamm(z(i), z(j)),
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FIG 12. (a)-(c) For each of the 21 meetings, comparison of diarizations using sticky vs. original
HDP-HMM with DP emissions. In (a) we plot the DERs corresponding to the Viterbi state sequence
using the parameters inferred at Gibbs iteration 10,000 that maximize the likelihood, and in (b) the
DERs using the state sequences that minimize the expected Hamming distance. Plot (c) is the same
as (b), except for running the 10 chains for meeting 16 out to 50,000 iterations. (d)-(f) Comparison
of the sticky HDP-HMM with DP emissions to the ICSI errors under the same conditions.

where Hamm(z(i), z(j)) is the Hamming distance between sequencesz(i) andz(j)

after finding the optimal permutation of the labels in test sequencez(i) to those in
reference sequencez(j). At a high level, this method for choosing state sequence
samples aims to produce segmentations of the data that aretypical samples from
the posterior.Jasra et al.(2005) provides an overview of some related techniques
to address the label-switching issue. Although we could have chosen any label-
invariant loss function to minimize, we chose the Hamming distance metric be-
cause it is closely related to the official NISTdiarization error rate(DER) that is
calculated during the evaluations. The final metric by whichthe speaker diariza-
tion algorithms are judged is theoverall DER, a weighted average over the set of
meetings based on the length of each meeting.

In Fig. 12(a), we report the DER of the chain with the largest likelihood given
the parameters estimated at the10, 000th Gibbs iteration for each of the 21 meet-
ings, comparing the sticky and original HDP-HMM with DP emissions. We see that
the sticky model’s temporal smoothing provides substantial performance gains. Al-
though not depicted in this paper, the likelihoods based on the parameter estimates
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under the original HDP-HMM are almost always higher than those under the sticky
model. This phenomenon is due to the fact that without the sticky parameter, the
HDP-HMM over-segments the data and thus produces parameterestimates more
finely tuned to the data resulting in higher likelihoods. Since the original HDP-
HMM is contained within the class of sticky models (i.e., when κ = 0), there
is some probability that state sequences similar to those under the original model
will eventually arise using the sticky model. Thus, since the parameters associ-
ated with these fast-switching sequences result in higher likelihood of the data, the
likelihood metric is not very robust—one would expect the performance under the
sticky model to degrade given enough Gibbs chains and/or iterations. In Fig.12(b),
we instead report the DER of the chain whose state sequence estimate at Gibbs
iteration 10,000 (this defines the test setT ) minimizes the expected Hamming dis-
tance to the sequences estimated every 100 Gibbs iteration,discarding the first
5,000 iterations (this defines the reference setR). Due to the slow mixing rate of
the chains in this application, we additionally discard samples whose normalized
log-likelihood is below 0.1 units of the maximum at Gibbs iteration 10,000. From
this figure, we see that the sticky model still significantly outperforms the original
HDP-HMM, implying that most state sequences produced by theoriginal model
are worse, not just the one corresponding to the most-likelysample. Example max-
imum likelihood and minimum expected Hamming distance diarizations are dis-
played in Fig.13. One noticeable exception to this trend is the NIST20051102-
1323 meeting (meeting 16). For the sticky model, the state sequence using the
maximum likelihood metric had very low DER (see Fig.13(b)); however, there
were many chains that merged speakers and produced segmentations similar to the
one in Fig.13(c), resulting in such a sequence minimizing the expected Hamming
distance. See Section9 for a discussion on the issue of merged speakers. Running
meeting 16 for 50,000 Gibbs iterations improved the performance, as depicted by
the revised results in Fig.12(c). We summarize our overall performance in Table1,
and note that (when using the 50,000 Gibbs iterations for meeting 16 and 10,000
Gibbs iterations for all other meetings2) we obtain an overall DER of 17.84% using
the sticky HDP-HMM versus the 23.91% of the original HDP-HMMmodel. Al-
ternatively, when constrained to single Gaussian emissions the sticky HDP-HMM
and original HDP-HMM have overall DERs of 34.97% and 36.89%,respectively,
which clearly demonstrates the importance of considering DP emissions. When
considering the DP mixture-of-Gaussians model (ignoring the time indices asso-

2On such a large dataset, running 10 chains for 50,000 iterations for each of the 21 meetings
would have represented a significant computational burden and thus we only ran the chains to 50,000
iterations for meeting 16, which clearly had not mixed after10,000 iterations (based on an exami-
nation of trace plots of log-likelihoods; see Fig.15). In meeting 16 the differences between two of
the speakers are especially subtle, and our sampler has difficulty in reliably finding parameters that
separate these speakers.
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FIG 13. Qualitative results for meetings AMI20041210-1052 (meeting 1, top), CMU20050228-
1615 (meeting 3, middle), and NIST20051102-1323 meeting (meeting 16, bottom). (a) True statese-
quence with the post-processed regions of overlapping- andnon- speech time steps removed. (b)-(c)
Plotted only over the time-steps as in (a), the state sequences inferred by the sticky HDP-HMM with
DP emissions at Gibbs iteration 10,000 chosen using the mostlikely and minimum expected Ham-
ming distance metrics, respectively. Incorrect labels areshown in red. For meeting 1, the maximum
likelihood and minimum expected Hamming distance diarizations are similar whereas in meeting 3
we clearly see the sensitivity of the maximum likelihood metric to overfitting. The minimum expected
Hamming distance diarization for meeting 16 has more errorsthan that of the maximum likelihood
due to poor mixing rates and many samples failing to identifya speaker.

ciated with the observations), the overall DER is 72.67%. Ifone uses the ground
truth labels to map multiple inferred DP mixture componentsto a single speaker
label, the overall DER drops to 54.19%. The poor performanceof the DP mixture-
of-Gaussians model, even when assuming that ground truth labels are available,
which would not be the case in practice, illustrates the importance of the temporal
dynamics captured by the HMM.

As a further comparison, the algorithm that was by far the best performer at the
2007 NIST competition—the algorithm developed by a team at the International
Computer Science Institute (ICSI) (Wooters and Huijbregts, 2007)—has an over-
all DER of 18.37%. The ICSI team’s algorithm uses agglomerative clustering, and
requires significant tuning of parameters on representative training data. In con-
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Overall DERs (%) Min Hamming Max Likelihood 2-Best 5-Best

Sticky HDP-HMM 19.01 (17.84) 19.37 16.97 14.61
Non-Sticky HDP-HMM 23.91 25.91 23.67 21.06

TABLE 1
Overall DERs for the sticky and original HDP-HMM with DP emissions using the minimum

expected Hamming distance and maximum likelihood metrics for choosing state sequences at Gibbs
iteration 10,000. For the maximum likelihood criterion, weshow the best overall DER if we
consider the top two or top five most-likely candidates. The number in the parentheses is the
performance when running meeting 16 for 50,000 Gibbs iterations. The overall ICSI DER is
18.37%, while the best achievable DER with the chosen acoustic pre-processing is 10.57%.

trast, our hyperparameters are automatically set meeting-by-meeting, as outlined
at the beginning of this section. An additional benefit of thesticky HDP-HMM
over the ICSI approach is the fact that there is inherent posterior uncertainty in this
task, and by taking a Bayesian approach we are able to provideseveral interpreta-
tions. Indeed, when considering the best per-meeting DER for the five most likely
samples, our overall DER drops to 14.61% (see Table1). Although not helpful
in the NIST evaluations, which requires a single segmentation, providing multiple
segmentations could be useful in practice.

To ensure a fair comparison, we use the same speech/non-speech pre-processing
and acoustic features as ICSI, so that the differences in ourperformance are due
to changes in the identified speakers. As depicted in Fig.14, both our performance
and that of ICSI depend significantly on the quality of this pre-processing step.
For the periods of non-speech that are incorrectly identified as speech during pre-
processing, we are forced to produce errors on these sections since they will be
assigned an HMM label (and thus a speaker label) that is separate from the label
assigned to the pre-processed sections labeled as non-speech. Another source of er-
rors are periods of overlapping speech, which impede our ability to clearly identify
a single speaker. In Fig.14(a), we compare the meeting-by-meeting DERs of the
sticky HDP-HMM, the original HDP-HMM, and the ICSI algorithm. If we use the
ground truth speaker labels for the post-processed data (assigning undetected non-
speech a label different than the pre-processed non-speech), the resulting overall
DER is 10.57% with meeting-by-meeting DERs displayed in Fig. 14(b). This num-
ber provides a lower bound on the achievable performance using the speech/non-
speech preprocessing, our block-averaging of features, and our assumptions of
minimum duration. Beyond these forced errors, it is clear from Fig.14(a) that the
sticky HDP-HMM with DP emissions provides performance comparable to that of
the ICSI algorithm while the original HDP-HMM with DP emissions performs sig-
nificantly worse. Overall, the results presented in this section demonstrate that the
sticky HDP-HMM with DP emissions provides an elegant and empirically effective
speaker diarization method.
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FIG 14. (a) Chart comparing the DERs of the sticky and original HDP-HMM with DP emissions to
those of ICSI for each of the 21 meetings. Here, we chose the state sequence at the10, 000th Gibbs
iteration that minimizes the expected Hamming distance. For meeting 16 using the sticky HDP-HMM
with DP emissions, we chose between state sequences at Gibbsiteration 50,000. (b) DERs associated
with using ground truth speaker labels for the post-processed data. Here, we assign undetected non-
speech a label different than the pre-processed non-speech.

9. Discussion. We have developed a Bayesian nonparametric approach to the
problem of speaker diarization, building on the HDP-HMM presented inTeh et al.
(2006). Although the original HDP-HMM does not yield competitivespeaker di-
arization performance due to its inadequate modeling of thetemporal persistence
of states, the sticky HDP-HMM that we have presented here resolves this problem
and yields a state-of-the-art solution to the speaker diarization problem.

We have also shown that this sticky HDP-HMM allows a fully Bayesian non-
parametric treatment of multimodal emissions, disambiguated by its bias towards
self-transitions. Accommodating multimodal emissions isessential for the speaker
diarization problem and is likely to be an important ingredient in other applications
of the HDP-HMM to problems in speech technology.

We also presented efficient sampling techniques with mixingrates that improve
on the state-of-the-art by harnessing the Markovian structure of the HDP-HMM.
Specifically, we proposed employing a truncated approximation to the HDP and
block-sampling the state sequence using a variant of the forward-backward algo-
rithm. Although the blocked samplers yield substantially improved mixing rates
over the sequential, direct assignment samplers, there arestill some pitfalls to these
sampling methods. One issue is that for each new considered state, the parameter
sampled from the prior distribution must better explain thedata than the parameters
associated with other states that have already been informed by the data. In high-
dimensional applications, and in cases where state-specific emission distributions
are not clearly distinguishable, this method for adding newstates poses a signif-
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FIG 15. Trace plots of (a) log-likelihood, (b) Hamming distance error, and (c) number of speakers
for 10 chains for two meetings: CMU20050912-0900 / meeting 5 (top) and NIST20051102-1323 /
meeting 16 (bottom). For meeting 5, which has behavior representative of the majority of the meet-
ings, we show traces over the 10,000 Gibbs iterations used for the results in Section8. For meeting
16, we ran the chains out to 100,000 Gibbs iterations to demonstrate the especially slow mixing rate
for this meeting. The dashed blue vertical lines indicate 10,000 iterations.

icant challenge. Indeed, both issues arise in the speaker diarization task and we
did have difficulties with mixing. Further evidence of this is presented in the trace
plots in Fig.15, where we plot log-likelihoods, Hamming distances, and speaker
counts for 10,000 Gibbs sampling iterations of meeting 5 and100,000 iterations of
meeting 16. As discussed previously, meeting 16 is the most problematic meeting
in our data set, and these plots provide clear evidence that our sampler is not mix-
ing on this meeting. But even on meeting 5, which is more representative of the
full set of meetings and which is segmented effectively by our procedure, we see a
relatively slow evolution of the sampler, particularly as measured by the number of
speakers. Our use of the minimum expected Hamming distance procedure to select
samples mitigates this difficulty, but further work on sampling procedures for the
sticky HDP-HMM is needed. One possibility is to consider split-merge algorithms
similar to those developed inJain and Neal(2004) for the DP mixture model.

A limitation of the HMM in general is that the observations are assumed condi-
tionally i.i.d. given the state sequence. This assumption is often insufficient in cap-
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turing the complex temporal dependencies exhibited in real-world data. Another
area of future work is to consider Bayesian nonparametric versions of models bet-
ter suited to such applications, like the switching linear dynamical system (SLDS)
and switching VAR process. A first attempt at developing suchmodels is presented
in Fox et al.(2009). An inspiration for the sticky HDP-HMM actually came from
considering the original HDP-HMM as a prior for an SLDS. In such scenarios
where one does not have direct observations of the underlying state sequence, the
issues arising from not properly capturing state persistence are exacerbated. The
sticky HDP-HMM presented in this paper provides a robust building block for de-
veloping more complex Bayesian nonparametric dynamical models.
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SUPPLEMENTARY MATERIAL

Notational Conventions, Chinese Restaurant Franchises, and Derivations
of Gibbs Samplers
(doi: ???http://lib.stat.cmu.edu/aoas/???/???; .pdf). We present detailed derivations
of the conditional distributions used for both the direct assignment and blocked
Gibbs samplers, as well as the associated pseudo-code. The description of these
derivations relies on the chinese restaurant analogies associated with the HDP and
sticky HDP-HMM, which are expounded upon in this supplementary material. We
also provide a list of notational conventions used throughout the paper.

http://dx.doi.org/???
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