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Granular association rules reveal patterns hidden in many-to-many relationships which are common in relational databases. In
recommender systems, these rules are appropriate for cold-start recommendation, where a customer or a product has just entered
the system. An example of such rules might be “40% men like at least 30% kinds of alcohol; 45% customers are men and 6%
products are alcohol.” Mining such rules is a challenging problem due to pattern explosion. In this paper, we build a new type of
parametric rough sets on two universes and propose an efficient rule mining algorithm based on the new model. Specifically, the
model is deliberately defined such that the parameter corresponds to one threshold of rules. The algorithm benefits from the lower
approximation operator in the new model. Experiments on two real-world data sets show that the new algorithm is significantly
faster than an existing algorithm, and the performance of recommender systems is stable.

1. Introduction

Relational data mining approaches [1–4] look for patterns
that include multiple tables in the database. These works
generate rules through two measures, namely, support and
confidence. Granular association rule mining [5, 6], com-
bined with the granules [7–14], is a new approach to look
for patterns hidden in many-to-many relationships. This
approach generates rules with four measures to reveal con-
nections between granules in two universes. A complete
example of granular association rules might be “40% men
like at least 30% kinds of alcohol; 45% customers are men
and 6% products are alcohol.” Here 45%, 6%, 40%, and
30% are the source coverage, the target coverage, the source
confidence, and the target confidence, respectively. With
these four measures, the strength of the rule is well defined.
Therefore, granular association rules are semantically richer
than other relational association rules.

Granular association rules [5, 6] are appropriate to
solve the cold-start problem for recommender systems [15,
16]. Recommender systems [17–20] suggest products of
interest to customers; therefore, they have gained much

success in E-commerce and similar applications. The cold-
start problem [15, 16] is difficult in recommender systems.
Recently, researchers have addressed the cold-start problem
where either the customer or the product is new. Naturally,
content-based filtering approaches [17, 21] are used for these
problems. However, the situation with both new customer
and new product has seldom been considered. A cold-start
recommendation approach has been proposed based on
granular association rules for the new situation. First, both
customers and products are described through a number
of attributes, thus forming different granules [8, 10, 22–24].
Then we generate rules between customers and products
through satisfying four measures of granular association
rules. Examples of granular association rules include “men
like alcohol” and “Chinese men like France alcohol.”They are
proposed at different degrees of granularity. Finally, wematch
the suitable rules to recommend products to customers.

A granular association rule mining problem is defined
as finding all granular association rules given thresholds on
four measures [5]. Similar to other relational association
rule mining problems (see, e.g., [25–27]), this problem is
challenging due to pattern explosion. A straightforward



2 Mathematical Problems in Engineering

sandwich algorithm has been proposed in [5]. It starts from
both entities and proceeds to the relation. Unfortunately, the
time complexity is rather high and the performance is not
satisfactory.

In this paper, we propose a new type of parametric rough
sets on two universes to study the granular association rule
mining problem. We borrow some ideas from variable preci-
sion rough sets [28] and rough sets on two universes [29–31]
to build the new model. The model is deliberately adjusted
such that the parameter coincides with the target confidence
threshold of rules. In this way, the parameter is semantic
and can be specified by the user directly. We compare our
definitions with alternative ones and point out that they
should be employed in different applications. Naturally, our
definition is appropriate for cold-start recommendation. We
also study some properties, especially themonotonicity of the
lower approximation, of our new model.

With the lower approximation of the proposed para-
metric rough sets, we design a backward algorithm for rule
mining. This algorithm starts from the second universe and
proceeds to the first one; hence it is called a backward
algorithm. Compared with an existing sandwich algorithm
[5], the backward algorithm avoids some redundant compu-
tation. Consequently, it has a lower time complexity.

Experiments are undertaken on two real-world data sets.
One is the course selection data from Minnan Normal
University during the semester between 2011 and 2012. The
other is the publicly available MovieLens data set. Results
show that (1) the backward algorithm is more than 2 times
faster than the sandwich algorithm; (2) the run time is linear
with respect to the data set size; (3) samplingmight be a good
choice to decrease the run time; and (4) the performance of
recommendation is stable.

The rest of the paper is organized as follows. Section 2
reviews granular association rules through some examples.
The rule mining problem is also defined. Section 3 presents
a new model of parametric rough sets on two universes. The
model is defined to cope with the formalization of granular
association rules. Then Section 4 presents a backward algo-
rithm for the problem. Experiments on two real-world data
sets are discussed in Section 5. Finally, Section 6 presents
some concluding remarks and further research directions.

2. Preliminaries

In this section, we revisit granular association rules [6]. We
discuss the data model, the definition, and four measures of
such rules. A rule mining problem will also be represented.

2.1.The DataModel. Thedata model is based on information
systems and binary relations.

Definition 1. 𝑆 = (𝑈, 𝐴) is an information system, where 𝑈 =
{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is the set of all objects, 𝐴 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
} is

the set of all attributes, and 𝑎
𝑗
(𝑥
𝑖
) is the value of𝑥

𝑖
on attribute

𝑎
𝑗
for 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑗 ∈ {1, 2, . . . , 𝑚}.

An example of information system is given by Table 1(a),
where𝑈 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5} and𝐴 = {Age, Gender, Married,

Country, Income, NumCars}. Another example is given by
Table 1(b).

In an information system, any𝐴󸀠 ⊆ 𝐴 induces an equiva-
lence relation [32, 33]

𝐸
𝐴
󸀠 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐴

󸀠
, 𝑎 (𝑥) = 𝑎 (𝑦)} (1)

and partitions 𝑈 into a number of disjoint subsets called
blocks or granules. The block containing 𝑥 ∈ 𝑈 is

𝐸
𝐴
󸀠 (𝑥) = {𝑦 ∈ 𝑈 | ∀𝑎 ∈ 𝐴

󸀠
, 𝑎 (𝑦) = 𝑎 (𝑥)} . (2)

The following definition was employed by Yao and Deng
[23].

Definition 2. A granule is a triple [23]

𝐺 = (𝑔, 𝑖 (𝑔) , 𝑒 (𝑔)) , (3)

where 𝑔 is the name assigned to the granule, 𝑖(𝑔) is a
representation of the granule, and 𝑒(𝑔) is a set of objects that
are instances of the granule.

𝑔 = 𝑔(𝐴
󸀠, 𝑥) is a natural name to the granule. The rep-

resentation of 𝑔(𝐴󸀠, 𝑥) is

𝑖 (𝑔 (𝐴
󸀠
, 𝑥)) = ⋀

𝑎∈𝐴
󸀠

⟨𝑎 : 𝑎 (𝑥)⟩ . (4)

The set of objects that are instances of 𝑔(𝐴󸀠, 𝑥) is

𝑒 (𝑔 (𝐴
󸀠
, 𝑥)) = 𝐸

𝐴
󸀠 (𝑥) . (5)

The support of the granule is the size of 𝑒(𝑔) divided by
the size of the universe, namely,

supp (𝑔 (𝐴󸀠, 𝑥)) = supp(⋀
𝑎∈𝐴
󸀠

⟨𝑎 : 𝑎 (𝑥)⟩)

= supp (𝐸
𝐴
󸀠 (𝑥)) =

󵄨󵄨󵄨󵄨𝐸𝐴󸀠 (𝑥)
󵄨󵄨󵄨󵄨

|𝑈|
.

(6)

Definition 3. Let𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and𝑉 = {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
}

be two sets of objects. Any𝑅 ⊆ 𝑈×𝑉 is a binary relation from
𝑈 to 𝑉. The neighborhood of 𝑥 ∈ 𝑈 is

𝑅 (𝑥) = {𝑦 ∈ 𝑉 | (𝑥, 𝑦) ∈ 𝑅} . (7)

When𝑈 = 𝑉 and 𝑅 is an equivalence relation, 𝑅(𝑥) is the
equivalence class containing 𝑥. From this definition we know
immediately that, for 𝑦 ∈ 𝑉,

𝑅
−1
(𝑦) = {𝑥 ∈ 𝑈 | (𝑥, 𝑦) ∈ 𝑅} . (8)

A binary relation is more often stored in the database as
a table with two foreign keys. In this way the storage is saved.
For the convenience of illustration, here we represented it
with an 𝑛 × 𝑘 Boolean matrix. An example is given in
Table 1(c), where 𝑈 is the set of customers as indicated
in Table 1(a) and 𝑉 is the set of products as indicated in
Table 1(b).

With Definitions 1 and 3, we propose the following
definition.



Mathematical Problems in Engineering 3

Table 1: A many-to-many entity-relationship system.

(a) Customer

CID Name Age Gender Married Country Income NumCars
𝑐1 Ron 20–29 Male No USA 60 k–69 k 0-1
𝑐2 Michelle 20–29 Female Yes USA 80 k–89 k 0-1
𝑐3 Shun 20–29 Male No China 40 k–49 k 0-1
𝑐4 Yamago 30–39 Female Yes Japan 80 k–89 k 2
𝑐5 Wang 30–39 Male Yes China 90 k–99 k 2

(b) Product

PID Name Country Category Color Price
𝑝1 Bread Australia Staple Black 1–9
𝑝2 Diaper China Daily White 1–9
𝑝3 Pork China Meat Red 1–9
𝑝4 Beef Australia Meat Red 10–19
𝑝5 Beer France Alcohol Black 10–19
𝑝6 Wine France Alcohol White 10–19

(c) Buys

CID\PID 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

𝑐1 1 1 0 1 1 0
𝑐2 1 0 0 1 0 1
𝑐3 0 1 0 0 1 1
𝑐4 0 1 0 1 1 0
𝑐5 1 0 0 1 1 1

Definition 4. A many-to-many entity-relationship system
(MMER) is a 5-tuple ES = (𝑈,𝐴, 𝑉, 𝐵, 𝑅), where (𝑈, 𝐴) and
(𝑉, 𝐵) are two information systems and 𝑅 ⊆ 𝑈×𝑉 is a binary
relation from 𝑈 to 𝑉.

An example of MMER is given in Tables 1(a), 1(b), and
1(c).

2.2. Granular Association Rules with Four Measures. Now we
come to the central definition of granular association rules.

Definition 5. A granular association rule is an implication of
the form

(GR) : ⋀
𝑎∈𝐴
󸀠

⟨𝑎 : 𝑎 (𝑥)⟩ 󳨐⇒ ⋀

𝑏∈𝐵
󸀠

⟨𝑏 : 𝑏 (𝑦)⟩ , (9)

where 𝐴󸀠 ⊆ 𝐴 and 𝐵󸀠 ⊆ 𝐵.

According to (6), the set of objects meeting the left-hand
side of the granular association rule is

LH (GR) = 𝐸
𝐴
󸀠 (𝑥) , (10)

while the set of objects meeting the right-hand side of the
granular association rule is

RH (GR) = 𝐸
𝐵
󸀠 (𝑦) . (11)

From the MMER given in Tables 1(a), 1(b), and 1(c), we
may obtain the following rule.

Rule 1. One has

⟨Gender: Male⟩ 󳨐⇒ ⟨Category: Alcohol⟩ . (12)

Rule 1 can be read as “men like alcohol.” There are some
issues concerning the strength of the rule. For example, we
may ask the following questions on Rule 1.

(1) How many customers are men?
(2) How many products are alcohol?
(3) Do all men like alcohol?
(4) Do all kinds of alcohol favor men?

An example of complete granular association rules with
measures specified is “40% men like at least 30% kinds
of alcohol; 45% customers are men and 6% products are
alcohol.” Here 45%, 6%, 40%, and 30% are the source
coverage, the target coverage, the source confidence, and the
target confidence, respectively.These measures are defined as
follows.

The source coverage of a granular association rule is

scov (GR) = |LH (GR)|
|𝑈|

. (13)

The target coverage of GR is

tcov (GR) = |RH (GR)|
|𝑉|

. (14)
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There is a tradeoff between the source confidence and the
target confidence of a rule. Consequently, neither value can
be obtained directly from the rule. To compute any one of
them, we should specify the threshold of the other. Let tc be
the target confidence threshold.The source confidence of the
rule is

sconf (GR, tc)

=
|{𝑥 ∈ LH (GR) | |𝑅 (𝑥) ∩ RH (GR)| / |RH (GR)| ≥ tc}|

|LH (GR)|
.

(15)

Let sc be the source confidence threshold, and

|{𝑥 ∈ LH (GR) | |𝑅 (𝑥) ∩ RH (GR)| ≥ 𝐾 + 1}|

< sc × |LH (GR)|

≤ |{𝑥 ∈ LH (GR) | |𝑅 (𝑥) ∩ RH (GR)| ≥ 𝐾}| .

(16)

This equationmeans that sc×100% elements in LH(GR) have
connectionswith at least𝐾 elements in RH(GR), but less than
sc×100% elements in LH(GR) have connections with at least
𝐾 + 1 elements in RH(GR). The target confidence of the rule
is

tconf (GR, sc) = 𝐾

|RH (GR)|
. (17)

In fact, the computation of 𝐾 is nontrivial. First, for any
𝑥 ∈ LH(GR), we need to compute tc(𝑥) = |𝑅(𝑥) ∩ RH(GR)|
and obtain an array of integers. Second, we sort the array in
a descending order. Third, let 𝑘 = ⌊sc × | LH(GR)|⌋; 𝐾 is the
kth element in the array.

The relationships between rules are interesting to us. As
an example, let us consider the following rule.

Rule 2. One has

⟨Gender: Male⟩ ∧ ⟨Country: China⟩

󳨐⇒ ⟨Category: Alcohol⟩ ∧ ⟨Country: France⟩ .
(18)

Rule 2 can be read as “Chinese men like France alcohol.”
One may say that we can infer Rule 2 from Rule 1 since
the former one has a finer granule. However, with the four
measures we know that the relationships between these two
rules are not so simple. A detailed explanation of Rule 2
might be “60% Chinese men like at least 50% kinds of France
alcohol; 15% customers are Chinesemen and 2% products are
France alcohol.” Comparing Rules 1 and 2 is stronger in terms
of source/target confidence; however it is weaker in terms of
source/target coverage. Therefore if we need rules covering
more people and products, we prefer Rule 1; if we need more
confidence on the rules, we prefer Rule 2. For example, if the
source confidence threshold is 55%, Rule 2 might be valid
while Rule 1 is not; if the source coverage is 20%, Rule 1 might
be valid while Rule 2 is not.

2.3. The Granular Association Rule Mining Problem. A
straightforward rule mining problem is as follows.

Input. An ES = (𝑈, 𝐴, 𝑉, 𝐵, 𝑅), a minimal source coverage
threshold ms, a minimal target coverage threshold mt, a
minimal source confidence threshold sc, and aminimal target
confidence threshold tc.

Output. All granular association rules satisfying scov(GR) ≥
ms, tcov(GR) ≥ mt, sconf(GR) ≥ sc, and tconf(GR) ≥ tc.

Since both sc and tc are specified, we can choose either
(15) or (17) to decide whether or not a rule satisfies these
thresholds. Equation (15) is a better choice.

3. Parametric Rough Sets on Two Universes

In this section, we first review rough approximations [32]
on one universe. Then we present rough approximations on
two universes. Finally we present parametric rough approx-
imations on two universes. Some concepts are dedicated to
granular association rules. We will explain in detail the way
they are defined from semantic point of view.

3.1. Classical Rough Sets. The classical rough sets [32, 34] are
built upon lower and upper approximations on one universe.
We adopt the ideas and notions introduced in [35] and define
these concepts as follows.

Definition 6. Let 𝑈 be a universe and 𝑅 ⊆ 𝑈 × 𝑈 an indis-
cernibility relation. The lower and upper approximations of
𝑋 ⊆ 𝑈 with respect to 𝑅 are

𝑅 (𝑋) = {𝑥 ∈ 𝑋 | 𝑅 (𝑥) ⊆ 𝑋} , (19)

𝑅 (𝑋) = {𝑥 ∈ 𝑋 | 𝑅 (𝑥) ∩ 𝑋 ̸= 0} , (20)

respectively.

These concepts can be employed for set approximation
or classification analysis. For set approximation, the interval
[𝑅(𝑋), 𝑅(𝑋)] is called rough set of 𝑋, which provides an
approximate characterization of 𝑋 by the objects that share
the same description of its members [35]. For classification
analysis, the lower approximation operator helps finding
certain rules, while the upper approximation helps finding
possible rules.

3.2. Existing Parametric Rough Sets. Ziarko [28] pointed out
that the classical rough sets cannot handle classification with
a controlled degree of uncertainty or amisclassification error.
Consequently, he proposed variable precision rough sets [28]
with a parameter to indicate the admissible classification
error.

Let 𝑋 and 𝑌 be nonempty subsets of a finite universe 𝑈,
and 𝑌 ⊆ 𝑋. The measure 𝑐(𝑋, 𝑌) of the relative degree of
misclassification of the set 𝑋 with respect to set 𝑌 is defined
as

𝑐 (𝑋, 𝑌) =
{

{

{

1 −
|𝑋 ∩ 𝑌|

|𝑋|
, |𝑋| > 0,

0, |𝑋| = 0,

(21)

where | ⋅ | denotes set cardinality.
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The equivalence relation 𝑅 corresponds to a partitioning
of𝑈 into a collection of equivalence classes or elementary sets
𝑅
∗ = {𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
}. The 𝛼-lower and 𝛼-upper approxima-

tion of the set 𝑈 ⊇ 𝑋 are defined as

𝑅
𝛼
(𝑋) = ⋃{𝐸 ∈ 𝑅

∗
| 𝑐 (𝐸,𝑋) ≤ 𝛼} ,

𝑅
𝛼
(𝑋) = ⋃{𝐸 ∈ 𝑅

∗
| 𝑐 (𝐸,𝑋) < 1 − 𝛼} ,

(22)

where 0 ≤ 𝛼 < 0.5.
For the convenience of discussion, we rewrite his defini-

tion as follows.

Definition 7. Let 𝑈 be a universe and 𝑅 ⊆ 𝑈 × 𝑈 an indis-
cernibility relation. The lower and upper approximations of
𝑋 ⊆ 𝑈 with respect to 𝑅 under precision 𝛽 are

𝑅
𝛽
(𝑋) = {𝑥 ∈ 𝑈 |

|𝑅 (𝑥) ∩ 𝑋|

|𝑅 (𝑥)|
≥ 𝛽} ,

𝑅
𝛽
(𝑋) = {𝑥 ∈ 𝑈 |

|𝑅 (𝑥) ∩ 𝑋|

|𝑅 (𝑥)|
> 1 − 𝛽} ,

(23)

respectively. 𝑅(𝑥) is the equivalence class containing 𝑥.

Note that 0.5 < 𝛽 ≤ 1 indicate the classification accuracy
(precision) threshold rather than the misclassification error
threshold as employed in [28]. Wong et al. [31] extended the
definition to an arbitrary binary relation which is at least
serial.

Ziarko [28] introduced variable precision rough sets with
a parameter. The model had seldom explanation about the
parameter. Yao and Wong [36] studied the condition of
parameter and introduced the decision theoretic rough set
(DTRS) model. DTRS model is a probabilistic rough sets in
the framework of Bayesian decision theory. It requires a pair
of thresholds (𝛼, 𝛽) instead of only one in variable precision
rough sets. Its main advantage is the solid foundation based
on Bayesian decision theory. (𝛼, 𝛽) can be systematically
computed by minimizing overall ternary classification cost
[36].Therefore this theory has drawnmuch research interests
in both theory (see, e.g., [37, 38]) and application (see, e.g.,
[39–41]).

Gong and Sun [42] firstly defined the concept of the
probabilistic rough set over two universes. Ma and Sun [43]
presented the parameter dependence or the continuous of
lower and upper approximations about two parameters 𝛼
and 𝛽 for every type probabilistic rough set model over two
universes in detail. Moreover, a new model of probabilistic
fuzzy rough set over two universes [44] is proposed. These
theories have broad and wide application prospects.

3.3. Rough Sets on Two Universes for Granular Association
Rules. Since our datamodel is concerned with two universes,
we should consider computationmodels for this type of data.
Rough sets on two universes have been defined in [31]. Some
later works adopt the same definitions (see, e.g., [29, 30]).
We will present our definitions which cope with granular
association rules.Thenwe discuss why they are different from
existing ones.

Definition 8. Let 𝑈 and 𝑉 be two universes and 𝑅 ⊆ 𝑈 × 𝑉 a
binary relation. The lower and upper approximations of 𝑋 ⊆

𝑈 with respect to 𝑅 are

𝑅 (𝑋) = {𝑦 ∈ 𝑉 | 𝑅
−1
(𝑦) ⊇ 𝑋} , (24)

𝑅 (𝑋) = {𝑦 ∈ 𝑉 | 𝑅
−1
(𝑦) ∩ 𝑋 ̸= 0} , (25)

respectively.
From this definition we know immediately that, for 𝑌 ⊆

𝑉,

𝑅
−1
(𝑌) = {𝑥 ∈ 𝑈 | 𝑅 (𝑥) ⊇ 𝑌} ,

𝑅−1 (𝑌) = {𝑥 ∈ 𝑈 | 𝑅 (𝑥) ∩ 𝑌 ̸= 0} .

(26)

Nowwe explain these notions through our example.𝑅(𝑋)
contains products that favor all people in𝑋, 𝑅−1(𝑌) contains
peoplewho like all products in𝑌,𝑅(𝑋) contains products that
favor at least one person in 𝑋, and 𝑅−1(𝑌) contains people
who like at least one product in 𝑌.

We have the following property concerning the mono-
tonicity of these approximations.

Property 1. Let𝑋
1
⊂ 𝑋
2
:

𝑅 (𝑋
1
) ⊇ 𝑅 (𝑋

2
) , (27)

𝑅 (𝑋
1
) ⊆ 𝑅 (𝑋

2
) . (28)

That is, with the increase of the object subset, the lower
approximation decreases while the upper approximation
increases. It is somehow ad hoc to people in the rough set
society that the lower approximation decreases in this case.
In fact, according to Wong et al. [31], Liu [30], and Sun et al.
[44], (24) should be rewritten as

𝑅
󸀠
(𝑋) = {𝑦 ∈ 𝑉 | 𝑅

−1
(𝑦) ⊆ 𝑋} , (29)

where the prim is employed to distinguish between two
definitions. In this way, 𝑅󸀠(𝑋

1
) ⊆ 𝑅󸀠(𝑋

2
). Moreover, it would

coincide with (19) when 𝑈 = 𝑉.
We argue that different definitions of the lower approx-

imation are appropriate for different applications. Suppose
that there is a clinic systemwhere𝑈 is the set of all symptoms
and𝑉 is the set of all diseases [31].𝑋 ⊆ 𝑈 is a set of symptoms.
According to (29), 𝑅󸀠(𝑋) contains diseases that induced by
symptoms only in 𝑋. That is, if a patient has no symptom in
𝑋, she never has any diseases in 𝑅󸀠(𝑋). This type of rules is
natural and useful.

In our example presented in Section 2, 𝑋 ⊆ 𝑈 is a group
of people. 𝑅󸀠(𝑋) contains products that favor people only in
𝑋. That is, if a person does not belong to 𝑋, she never likes
products in 𝑅󸀠(𝑋). Unfortunately, this type of rules is not
interesting to us. This is why we employ equation (24) for
lower approximation.

We are looking for very strong rules through the lower
approximation indicated in Definition 8. For example, “all
men like all alcohol.” This kind of rules are called complete
match rules [6]. However, they seldom exist in applications.
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On the other hand, we are looking for very weak rules
through the upper approximation. For example, “at least one
man like at least one kind of alcohol.” Another extreme
example is “all people like at least one kind of product,” which
hold for any data set. Therefore this type of rules is useless.
These issues will be addressed through a more general model
in the next section.

3.4. Parametric Rough Sets on Two Universes for Granular
Association Rules. Given a group of people, the number of
products that favor all of them is often quite small. On the
other hand, the number of products that favor at least one of
them is not quite meaningful. Similar to probabilistic rough
sets, we need to introduce one or more parameters to the
model.

To cope with the source confidence measure introduced
in Section 2.2, we propose the following definition.

Definition 9. Let 𝑈 and 𝑉 be two universes, 𝑅 ⊆ 𝑈 × 𝑉 a
binary relation, and 0 < 𝛽 ≤ 1 a user-specified threshold.The
lower approximation of𝑋 ⊆ 𝑈with respect to𝑅 for threshold
𝛽 is

𝑅
𝛽
(𝑋) = {𝑦 ∈ 𝑉 |

󵄨󵄨󵄨󵄨󵄨
𝑅−1 (𝑦) ∩ 𝑋

󵄨󵄨󵄨󵄨󵄨

|𝑋|
≥ 𝛽} . (30)

We do not discuss the upper approximation in the new
context due to lack of semantic.

From this definition we know immediately that the lower
approximation of 𝑌 ⊆ 𝑉 with respect to 𝑅 is

𝑅
−1

𝛽
(𝑌) = {𝑥 ∈ 𝑈 |

|𝑅 (𝑥) ∩ 𝑌|

|𝑌|
≥ 𝛽} . (31)

Here 𝛽 corresponds with the target confidence instead. In
our example, 𝑅

𝛽
(𝑋) are products that favor at least 𝛽 × 100%

people in𝑋, and𝑅−1
𝛽
(𝑌) are people who like at least𝛽×100%

products in 𝑌.
The following property indicates that 𝑅

𝛽
(𝑋) is a general-

ization of both 𝑅(𝑋) and 𝑅(𝑋).

Property 2. Let 𝑈 and 𝑉 be two universes and 𝑅 ⊆ 𝑈 × 𝑉 a
binary relation:

𝑅
1
(𝑋) = 𝑅 (𝑋) , (32)

𝑅
𝜀
(𝑋) = 𝑅 (𝑋) , (33)

where 𝜀 ≈ 0 is a small positive number.

Proof. One has
󵄨󵄨󵄨󵄨󵄨
𝑅−1 (𝑦) ∩ 𝑋

󵄨󵄨󵄨󵄨󵄨

|𝑋|
≥1⇐⇒

󵄨󵄨󵄨󵄨󵄨
𝑅
−1
(𝑦) ∩ 𝑋

󵄨󵄨󵄨󵄨󵄨
= |𝑋|⇐⇒𝑅

−1
(𝑦) ⊇ 𝑋,

󵄨󵄨󵄨󵄨󵄨
𝑅−1 (𝑦) ∩ 𝑋

󵄨󵄨󵄨󵄨󵄨

|𝑋|
≥𝜀⇐⇒

󵄨󵄨󵄨󵄨󵄨
𝑅
−1
(𝑦) ∩ 𝑋

󵄨󵄨󵄨󵄨󵄨
> 0⇐⇒𝑅

−1
(𝑦) ∩ 𝑋 ̸= 0.

(34)

The following property shows themonotonicity of𝑅
𝛽
(𝑋).

Property 3. Let 0 < 𝛽
1
< 𝛽
2
≤ 1:

𝑅
𝛽
2

(𝑋) ⊆ 𝑅
𝛽
1

(𝑋) . (35)

However, given 𝑋
1
⊂ 𝑋
2
, we obtain neither 𝑅

𝛽
(𝑋
1
) ⊆

𝑅
𝛽
(𝑋
2
) nor 𝑅

𝛽
(𝑋
1
) ⊇ 𝑅

𝛽
(𝑋
2
). The relationships between

𝑅
𝛽
(𝑋
1
) and 𝑅

𝛽
(𝑋
2
) depend on 𝛽. Generally, if 𝛽 is big,

𝑅
𝛽
(𝑋
1
) tends to be bigger; otherwise 𝑅

𝛽
(𝑋
1
) tends to be

smaller. Equation (27) indicates the extreme case for 𝛽 ≈ 0,
and (28) indicates the other extreme case for 𝛽 = 1.

𝛽 is the coverage of 𝑅(𝑥) (or 𝑅−1(𝑦)) to 𝑌 (or 𝑋). It does
not mean precision of an approximation. This is why we call
this model parametric rough sets instead of variable precision
rough sets [28] or probabilistic rough sets [45].

Similar to the discussion in Section 3.3, in some cases, we
would like to employ the following definition:

𝑅
󸀠

𝛽
(𝑋) = {𝑦 ∈ 𝑉 |

󵄨󵄨󵄨󵄨󵄨
𝑅−1 (𝑦) ∩ 𝑋

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑅
−1 (𝑦)

󵄨󵄨󵄨󵄨
≥ 𝛽} . (36)

It coincides with 𝑅
𝛽
(𝑋) defined in Definition 7 if 𝑈 = 𝑉.

Take the clinic system again as the example. 𝑅󸀠
𝛽
(𝑋) is the set

of diseases that are caused mainly (with a probability no less
than 𝛽 × 100%) by symptoms in𝑋.

4. A Backward Algorithm to Granular
Association Rule Mining

In our previous work [5], we have proposed an algorithm
according to (15). The algorithm starts from both sides and
checks the validity of all candidate rules. Therefore it was
named a sandwich algorithm.

To make use of the concept proposed in the Section 3, we
should rewrite (15) as follows:
sconf (GR, tc)

=
|{𝑥 ∈ LH (GR) | |𝑅 (𝑥) ∩ RH (GR)| / |RH (GR)| ≥ tc}|

|LH (GR)|

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑥 ∈ 𝑈 |

|𝑅 (𝑥) ∩ RH (GR)|
|RH (GR)|

≥ tc} ∩ LH (GR)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× (|LH (GR)|)−1

=

󵄨󵄨󵄨󵄨󵄨
𝑅−1tc (RH (GR)) ∩ LH (GR)󵄨󵄨󵄨󵄨󵄨

|LH (GR)|
.

(37)

With this equation, we propose an algorithm to deal with
Problem 1.The algorithm is listed inAlgorithm 1. It essentially
has four steps.

Step 1. Search in (𝑈, 𝐴) all granules meeting the minimal
source coverage threshold ms. This step corresponds to Line
1 of the algorithm, where SG stands for source granule.

Step 2. Search in (𝑉, 𝐵) all granules meeting the minimal
target coverage threshold mt. This step corresponds to Line
2 of the algorithm, where TG stands for target granule.
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Input: ES = (𝑈, 𝐴, 𝑉, 𝐵, 𝑅), ms, mt.
Output: All complete match granular association rules satisfying given constraints.
Method: complete-match-rules-backward

(1) SG(ms) = {(𝐴󸀠, 𝑥) ∈ 2𝐴 × 𝑈 | |𝐸
𝐴
󸀠 (𝑥)|/|𝑈| ≥ ms}; //Candidate source granules

(2) TG(mt) = {(𝐵󸀠, 𝑦) ∈ 2𝐵 × 𝑉 | |𝐸
𝐵
󸀠 (𝑦)|/|𝑉| ≥ mt}; //Candidate target granules

(3) for each 𝑔󸀠 ∈ TG(ms) do
(4) 𝑌 = 𝑒(𝑔󸀠);
(5) 𝑋 = 𝑅−1tc(𝑌);
(6) for each 𝑔 ∈ SG(mt) do
(7) if (𝑒(𝑔) ⊆ 𝑋) then
(8) output rule 𝑖(𝑔) ⇒ 𝑖(𝑔󸀠);
(9) end if
(10) end for
(11) end for

Algorithm 1: A backward algorithm.

Step 3. For each granule obtained in Step 1, construct a block
in 𝑈 according to 𝑅. This step corresponds to Line 4 of the
algorithm.The function 𝑒 has been defined in (5). According
to Definition 9, in our example, 𝑅−1tc(𝑌) are people who like
at least tc × 100% products in 𝑌.

Step 4. Check possible rules regarding 𝑔󸀠 and 𝑋, and output
all rules. This step corresponds to Lines 6 through 10 of the
algorithm. In Line 7, since 𝑒(𝑔) and 𝑋 could be stored in
sorted arrays, the complexity of checking 𝑒(𝑔) ⊆ 𝑋 is

𝑂 (
󵄨󵄨󵄨󵄨𝑒 (𝑔)

󵄨󵄨󵄨󵄨 + |𝑋|) = 𝑂 (|𝑈|) , (38)

where | ⋅ | denotes the cardinality of a set.

Because the algorithm starts from the right-hand side
of the rule and proceeds to the left-hand side, it is called
a backward algorithm. It is necessary to compare the time
complexities of the existing sandwich algorithm and our new
backward algorithm. Both algorithms share Steps 1 and 2,
which do not incur the pattern explosion problem.Therefore
we will focus on the remaining steps. The time complexity of
the sandwich algorithm is [5]

𝑂 (|SC (ms)| × |TC (𝑚𝑡)| × |𝑈| × |𝑉|) , (39)

where | ⋅ | denotes the cardinality of a set.
According to the loops, the time complexity of Algo-

rithm 1 is

𝑂 (|SG (ms)| × |TG (mt)| × |𝑈|) , (40)

which is lower than the sandwich algorithm.
Intuitively, the backward algorithm avoids computing

𝑅(𝑥) ∩ RH(GR) for different rules with the same right-
hand side. Hence it should be less time consuming than the
sandwich algorithm. We will compare the run time of these
algorithms in the next section through experimentation.

The space complexities of these two algorithms are also
important. To store the relation 𝑅, a |𝑈| × |𝑉| Boolean matrix
is needed.

5. Experiments on Two Real-World Data Sets

The main purpose of our experiments is to answer the
following questions.

(1) Does the backward algorithm outperform the sand-
wich algorithm?

(2) How does the number of rules change for different
number of objects?

(3) How does the algorithm run time change for different
number of objects?

(4) How does the number of rules vary for different
thresholds?

(5) How does the performance of cold-start recommen-
dation vary for the training and testing sets?

5.1. Data Sets. We collected two real-world data sets for
experimentation. One is course selection, and the other is
movie rating. These data sets are quite representative for
applications.

5.1.1. A Course Selection Data Set. The course selection
system often serves as an example in textbooks to explain
the concept of many-to-many entity-relationship diagrams.
Hence it is appropriate to produce meaningful granular
association rules and test the performance of our algorithm.
We obtained a data set from the course selection system of
Minnan Normal University. (The authors would like to thank
Mrs. Chunmei Zhou for her help in the data collection.)
Specifically, we collected data during the semester between
2011 and 2012. There are 145 general education courses in the
university. 9,654 students took part in course selection. The
database schema is as follows.

(i) Student (student ID, name, gender, birth-year,
politics-status, grade, department, nationality, and
length of schooling).
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(ii) Course (course ID, credit, class-hours, availability,
and department).

(iii) Selects (student ID, course ID).

Our algorithm supports only nominal data at this time.
For this data set, all data are viewed nominally and directly.
In this way, no discretization approach is employed to convert
numeric ones into nominal ones. Also we removed student
names and course names from the original data since they
are useless in generating meaningful rules.

5.1.2. A Movie Rating Data Set. The MovieLens data set
assembled by the GroupLens project is widely used in recom-
mender systems (see, e.g., [15, 16] (GroupLens is a research lab
in the Department of Computer Science and Engineering at
the University of Minnesota. (http://www.grouplens.org/))).
We downloaded the data set from the Internet Movie
Database (http://www.movielens.org/). Originally, the data
set contains 100,000 ratings (1–5) from 943 users on 1,682
movies, with each user rating at least 20 movies [15]. Cur-
rently, the available data set contains 1,000,209 anonymous
ratings of 3,952 movies made by 6,040 MovieLens users who
joined MovieLens in 2000. In order to run our algorithm, we
preprocessed the data set as follows.

(1) Removemovie names.They are not useful in generat-
ing meaningful granular association rules.

(2) Use release year instead of release date. In this way the
granule is more reasonable.

(3) Select the movie genre. In the original data, the
movie genre is multivalued since one movie may
fall in more than one genre. For example, a movie
can be both animation and children’s. Unfortunately,
granular association rules do not support this type
of data at this time. Since the main objective of this
work is to compare the performances of algorithms,
we use a simple approach to deal with this issue, that
is, to sort movie genres according to the number of
users they attract and only keep the highest priority
genre for the current movie. We adopt the following
priority (from high to low): comedy, action, thriller,
romance, adventure, children, crime, sci-Fi, horror,
war,mystery,musical, documentary, animation, west-
ern, filmnoir, fantasy, and unknown.

Our database schema is as follows.

(i) User (user ID, age, gender, and occupation),
(ii) Movie (movie ID, release year, and genre),
(iii) Rates (user ID, movie ID).

There are 8 user age intervals, 21 occupations, and 71
release years. Similar to the course selection data set, all
these data are viewed nominally and processed directly. We
employ neither discretization nor symbolic value partition
[46, 47] approaches to produce coarser granules. The genre
is a multivalued attribute. Therefore we scale it to 18 Boolean
attributes and deal with it using the approach proposed in
[48].

5.2. Results. We undertake five sets of experiments to answer
the questions proposed at the beginning of this section.

5.2.1. Efficiency Comparison. We compare the efficiencies of
the backward and the sandwich algorithms. We look at only
the run time of Lines 3 through 11, since these codes are the
difference between two algorithms.

For the course selection data set, when ms = mt = 0.06,
sc = 0.18, and tc = 0.11, we obtain only 40 rules. For higher
thresholds, no rule can be obtained. Therefore we use the
following settings: sc = 0.18, tc = 0.11, ms = mt, and ms ∈
{0.02, 0.03, 0.04, 0.05, 0.06}. Figure 1(a) shows the actual run
time in miniseconds. Figure 2(a) shows the number of basic
operations, including addition and comparison of numbers.
Here we observe that, for different settings, the backward
algorithm is more than 2 times faster than the sandwich
algorithm; it only takes less than 1/3 operations than the
sandwich algorithm.

For the MovieLens data set, we employ the data set
with 3,800 users and 3,952 movies. We use the following
settings: sc = 0.15, tc = 0.14, ms = mt, and ms ∈

{0.01, 0.02, 0.03, 0.04, 0.05}. Figure 1(b) shows the actual run
time in miniseconds. Figure 2(b) shows the number of basic
operations, including addition and comparison of numbers.
Here we observe that, for different settings, the backward
algorithm is more than 3 times faster than the sandwich
algorithm; it only takes less than 1/4 operations than the
sandwich algorithm.

5.2.2. Change of Number of Rules for Different Data Set Sizes.
Now we study how the number of rules changes with the
increase of the data set size. The experiments are undertaken
only on theMovieLens data set.We use the following settings:
sc = 0.15, tc = 0.14, ms ∈ {0.01, 0.02}, and |U| ∈

{500, 1, 000, 1, 500, 2, 000, 2, 500, 3, 000, 3, 500}. The number
of movies is always 3,952. While selecting 𝑘 users, we always
select from the first user to the 𝑘th user.

First we look at the number of concepts satisfying the
source confidence threshold ms. According to Figure 3(a),
the number of source concepts decreases with the increase of
the number of users. However, Figure 3(b) indicates that this
trendmay not hold. In fact, fromFigure 3, themost important
observation is that the number of source concepts does not
vary much with the change of the number of objects. When
the number of users is more than 1,500, this variation is no
more than 3, which is less than 5% of the total number of
concepts.

Second we look at the number of granular association
rules satisfying all four thresholds. Figure 4 indicates that
the number of rules varies more than the number of source
concepts. However, this variation is less than 20%when there
are more than 1,500 users or less than 10% when there are
more than 2,500 users.

5.2.3. Change of Run Time for Different Data Set Sizes. We
look at the run time changewith the increase of the number of
users. The time complexity of the algorithm is given by (40).
Since the number of movies is not changed, |SG(mt)| is fixed.
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Figure 1: Run time information: (a) course selection, (b) MovieLens (3,800 users).
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Figure 2: Basic operations information: (a) course selection, (b) MovieLens (3,800 users).

Moreover, according to our earlier discussion, |SC(ms)| does
not vary much for different number of users. Therefore the
time complexity is nearly linear with respect to the number
of users. Figure 5 validates this analysis.

5.2.4. Number of Rules for Different Thresholds. Figure 6(a)
shows the number of rules decreases dramatically with the
increase of 𝑚𝑠 and 𝑚𝑡. For the course selection data set, the
number of rules would be 0 when ms = mt = 0.07. For the

MovieLens data set, the number of rules would be 0 when
ms = mt = 0.06.

5.2.5. Performance of Cold-Start Recommendation. Now we
study how the performance of cold-start recommendation
varies for the training and testing sets The experiments are
undertaken only on the MovieLens data set. Here we employ
two data sets. One is with 1,000 users and 3,952 movies, and
the other is with 3,000 users and 3,952 movies. We divide
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Figure 3: Number of concepts on users for MovieLens: (a) ms = 0.01, (b) ms = 0.02.
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Figure 4: Number of granular association rules for MovieLens: (a) ms = 0.01, (b) ms = 0.02.

user into two parts as the training and testing set. The other
settings are as follows: the training set percentage is 60%,
sc = 0.15, and tc = 0.14. Each experiment is repeated 30
times with different sampling of training and testing sets, and
the average accuracy is computed.

Figure 7 shows that with the variation of ms and mt, the
recommendation performs different. Now we observe some
especially interesting phenomena from this figure as follows.

(1) Figures 7(a) and 7(b) are similar in general. As the
user number increases, the accuracy of recommender
also increases. The reason is that we get more infor-
mation from the training sets to generate much better
rules for the recommendation.

(2) When ms and mt are suitably set (0.03), the recom-
mender of both data sets has the maximal accuracy.
With the increase or decrease of these thresholds,

the performance of the recommendation increases or
decreases rapidly.

(3) The performance of the recommendation does not
change much on the training and the testing sets.
This phenomenon figures out that the recommender
is stable.

5.3. Discussions. Now we can answer the questions proposed
at the beginning of this section.

(1) The backward algorithm outperforms the sandwich
algorithm. The backward algorithm is more than 2
times and 3 times faster than the sandwich algorithm
on the course selection and MovieLens data sets,
respectively. Therefore our parametric rough sets on
two universes are useful in applications.
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Figure 5: Run time on MovieLens: (a) ms = 0.01, (b) ms = 0.02.
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Figure 6: Number of granular association rules: (a) course selection, (b) MovieLens.
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Figure 7: Accuracy of cold-start recommendation on MovieLens: (a) 1,000 users and 3,952 movies, (b) 3,000 users and 3,952 movies.
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(2) The number of rules does not change much for differ-
ent number of objects.Therefore it is not necessary to
collect too many data to obtain meaningful granular
association rules. For example, for the MovieLens
data set, 3,000 users are pretty enough.

(3) The run time is nearly linear with respect to the
number of objects.Therefore the algorithm is scalable
from the viewpoint of time complexity. However, we
observe that the relation table might be rather big;
therefore this would be a bottleneck of the algorithm.

(4) The number of rules decreases dramatically with the
increase of thresholds ms and mt. It is important to
specify appropriate thresholds to obtain useful rules.

(5) The performance of cold-start recommendation is
stable on the training and the testing sets with the
increase of thresholds ms and mt.

6. Conclusions

In this paper, we have proposed a new type of parametric
rough sets on two universes to deal with the granular
association rule mining problem. The lower approximation
operator has been defined, and its monotonicity has been
analyzed. With the help of the new model, a backward
algorithm for the granular association rule mining problem
has been proposed. Experimental results on two real-world
data sets indicate that the new algorithm is significantly
faster than the existing sandwich algorithm.Theperformance
of recommender systems is stable on the training and the
testing sets. To sum up, this work applies rough set theory to
recommender systems and is one step toward the application
of rough set theory and granular computing. In the future,
we will improve our approach and compare the performance
with other recommendation approaches.
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