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NEAR COHERENCE OF FILTERS. II: 
APPLICATIONS TO OPERA TOR IDEALS, THE STONE-tECH 

REMAINDER OF A HALF-LINE, ORDER IDEALS 
OF SEQUENCES, AND SLENDERNESS OF GROUPS 

ANDREAS BLASS 

ABSTRACT. The set-theoretic principle of near coherence of filters (NCF) is known to 
be neither provable nor refutable from the usual axioms of set theory. We show that 
NCF is equivalent to the following statements, among others: (1) The ideal of 
compact operators on Hilbert space is not the sum of two smaller ideals. (2) The 
Stone-Cech remainder of a half-line has only one composant. (This was first proved 
by J. Mioduszewski.) (3) The partial ordering of slenderness classes of abelian 
groups, minus its top element, is directed upward (and in fact has a top element). 
Thus, all these statements are also consistent and independent. 

1. Introduction. The primary purpose of this paper is to present applications, in 
rather diverse areas of mathematics, of the set-theoretic principle of near coherence 
of filters, NCF, that was introduced in [6] and proved to be consistent in [7]. The 
remainder of this introduction will give a brief survey of these applications. 
Terminology used without explanation here will be explained either in §2, which also 
contains a review of NCF and related information, or in the later sections, §3 
through §6, that deal with the individual applications. These later sections can be 
read independently of each other except that §6 depends on §5. 

NCF first arose in my joint work [5] with G. Weiss on a problem of A. Brown, C. 
Pearcy, and N. Salinas [9]: Is the ideal of compact operators, in the ring of bounded 
operators on Hilbert space, the sum of two properly smaller ideals? We proved in [5] 
that an affirmative answer follows from the continuum hypothesis and in fact from 
any of several weaker hypotheses, the weakest of which, called (**) in [5, p. 414], is 
precisely the negation of NCF. The proof that this hypothesis suffices for the result 
of [5], and also the (more recent) proof of the converse, are given in §3 below. 

Wanting to prove (**) and thus remove all special hypotheses from [5], I 
mentioned the question to numerous set theorists. At the 1977 Toronto meeting in 
honor of Rothberger, E. van Douwen informed me that (**) was the hypothesis 
needed to prove, by the method of Rudin [19], that the indecomposable continuum 
f3 R + - R +, the Stone-tech remainder of a half-line, has more than one compos ant. 
It turned out that this hypothesis is needed not just for Rudin's proof but for the 
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result itself. In other words, f3R + - R + has only one composant if and only if NCF 
holds. I learned later (at Oberwolfach in 1985) that this equivalence had been 
obtained earlier by J. Mioduszewski [15] as a consequence of his general study [16] 
of f3R. Nevertheless, a proof is given in §4 below, which avoids this general theory 
and relies instead on the methods of Bellamy [2] and Rudin [19]. 

In May, 1984, I gave a series of lectures about NCF in Berlin. My audience 
included B. Wald, who conjectured that NCF might be related to his joint work with 
R. Gobel [12, 13] on the partial ordering P of growth types (or, equivalently, of 
slenderness classes of abelian groups). They had shown that P has at least four 
elements. Theorem 6.3 below implies that, if P has only four elements, then NCF 
holds. The converse is still an open problem, but Theorem 6.3 does provide some 
equivalents for NCF in terms of P. §6 also includes some results about P that are 
not directly related to NCF. All the material in §6 is based on a similar analysis in 
§5 of a somewhat larger ordering than P, which seems combinatorially more natural 
and easier to handle, but which lacks the connection to group theory that motivated 
the study of P. 

2. Notation and preliminaries. We write w for the set of natural numbers and 
w 7' w for the set of nondecreasing functions from w to w. A function h: w -+ w (not 
necessarily monotone) is said to be finite-to-one if h-1{ n} is finite for all n. 

LEMMA 2.1. If h: w -+ w is finite-to-one, then w can be partitioned into finite 
intervals so that any n and its image h (n) are either in the same interval or in adjacent 
intervals of the partition. 

PROOF. Let the first interval in the partition be {O}. After an interval [a, b] in the 
partition has been defined, let the next one be [b + 1, c] where c is the largest 
element of {b + I} U h([a, b D U h-1([a, b D. 0 

The sum of two functions w -+ w is defined, as usual, by (f + g)(n) = f(n) + 
g( n). Other operations, for example the binary maximum operation, are similarly 
defined for functions. 

If A is an infinite subset of w and nEw, then next(A, n) denotes the smallest 
a E A such that a ~ n. 

By an ultrafilter, we always mean a nonprincipal ultrafilter on w. For background 
information on ultrafilters, see [10]. In addition to the definition, we shall need the 
following characterization of ultrafilters, whose proof is elementary. 

LEMMA 2.2. A nonempty family of subsets of w is an ultrafilter if and only if it is 
closed under supersets, it contains no two disjoint sets, it contains no finite sets, and, 
whenever it contains the union of two disjoint sets, then it contains one of those two sets. 
o 

Ultrafilters can be identified with points in the Stone-Cech remainder f3w - w of 
the discrete topological space w; ultrafilter U is identified with the unique point that 
is in the closure, in f3w, of every X E U. 
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An ultrafilter U is a Q-point if every finite-to-one function h: w ~ w is one-to-one 
on some set in U. For this it suffices that every such h be at-most-two-to-one on 
some X E U, for then X = Xl U X 2 with h one-to-one on each Xi' and one of the 
Xi is in U. (At-most-n-to-one, for any fixed n, also suffices, but we shall not need 
this.) 

LEMMA 2.3. If U is a Q-point and f: w ~ w, then there is X E U such that, 
whenever x < yare in X, thenf(x) < y. 

PROOF. Replacing f(x) with max{j(x), x}, we may assume that f is finite-to-one 
and apply Lemma 2.1 to it. Applying the definition of Q-point with an h that is 
constant on exactly the intervals of the partition given by Lemma 2.1, we obtain an 
Xo E U that contains at most one point from each of these intervals. Partition Xo 
into Xl and X 2 by putting every second member of Xo into Xl. Then no two 
elements of Xl are in the same interval or adjacent intervals of our partition, and the 
same holds of X 2 • As U is an ultrafilter and contains Xo, it contains either Xl or X 2 , 

and this set clearly serves as the desired X. 0 
If U is an ultrafilter and f: w ~ w is not constant on any set in U, then f(U) is 

the ultrafilter 

f(U) = {X~ wlf-I(X) E U}. 

f(U) contains all the sets f(Y) for Y E U, and it is generated by these sets, i.e., 
every X E f(U) has a subset of the form f(Y) with Y E U. If f and g agree when 
restricted to some set in U, then f(U) = g(U). If f is one-to-one on some set in U, 
then there exists a bijection g: w ~ w that agrees with f on a (possibly smaller) set 
in U; we say that f(U) = g(U) is isomorphic to U. In particular, if U is a Q-point 
and f is finite-to-one, then f(U) is isomorphic to U and is therefore also a Q-point. 

Two ultrafilters, U and V, are said to be cofinally equivalent if there are 
finite-to-one functions f and g with f(U) = g(V). It is shown in [6], where this 
concept was introduced, that one can equivalently require in the definition that 
f = g and that f is nondecreasing. 

LEMMA 2.4. If U and V are cofinally equivalent and if V is a Q-point, then 
V= h(U) for somefinite-to-one h: w ~ w. 

PROOF. By hypothesis, we have f(U) = g(V) with f and g finite-to-one. As V is a 
Q-point, g is one-to-one on a set in V and is therefore equal, on some set in V, to a 
bijection b: w ~ w. Then V = b-lg(V) = b-Y(U), so h = b-If works. 0 

LEMMA 2.S. Let U and V be ultra filters that are not cofinally equivalent, and let w be 
partitioned into finite intervals. Then there exist X E U and Y E V such that no union 
of two adjacent intervals from the partition intersects both X and Y. 

PROOF. Let hEw 7' w be the function that is constant with value n on the nth 
interval of our partition, for each n. Let h-(x) (resp. h+(x» be the result of 
rounding h(x)/2 down (resp. up) to an integer. h- is finite-to-one, so, as U and V 
are not cofinally equivalent, h-(U) =1= h-(V). So there are X-E U and Y-E V with 
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h-(X-) disjoint from h-(Y-). Similarly, find X+E U and Y+E V with disjoint 
h+-images. Then X = X+n X- and Y = y+n Y- are as desired, because, on every 
union of two adjacent intervals, either h - or h + is constant. 0 

Near coherence of filters, abbreviated NCF, is the assertion that every two 
ultrafilters are cofinally equivalent. Its name comes from the following equivalent 
formulation given in [6, Theorem 8]. 

LEMMA 2.6. NeF holds if and only if, for every two filters Fl , F2 on w that contain 
all cofinite sets, there exists a partition of w into finite intervals such that, for each 
Xl E Fl and X 2 E F2, some interval of the partition meets both Xl and X2. 0 

In §§5 and 6, we shall need some facts about non-standard models of arithmetic 
and their relationship with ultrafilters. General references for this material are [1, 8, 
17, 18]. By a model of arithmetic, we mean an elementary extension M of the 
standard model consisting of w and all (finitary) relations and functions on it. That 
is, M is a superset of w, equipped with a canonical extension to M of every relation 
and function on w, such that all first-order sentences true in w remain true in M. We 
usually use the same symbol for a relation or function on wand its extension to M. 
These extensions are called the standard relations and functions on M. In the case of 
unary relations A, we use the notation x E A synonymously with A(x). 

Any element a in a model M of arithmetic generates a submodel consisting of all 
the elements f(a) where f ranges over (the canonical extensions to M of) all unary 
functions f: w --+ w. This submodel is itself a model of arithmetic and is canonically 
isomorphic to the ultrapower U-prod w, where U is the ultrafilter 

U= {X~ wla EX}, 

called the (complete) type of a (in M), and where the isomorphism sends an 
equivalence class [/] E U-prod w to f(a) E M. (Note that, in the definition of U, 
the first" X" refers to a subset of w, the second to its extension in M.) 

Two elements of M that generate the same submodel are said to be in the same 
constellation. This equivalence relation can also be defined by saying that one 
element is sent to the other by a standard bijection or by saying that each of the two 
elements is the image of the other by a standard function. The weaker equivalence 
relation saying only that each of two elements is majorized (with respect to the 
canonical extension of the standard order of w) by a standard function of the other, 
i.e. that the submodels generated by the two elements are cofinal in the same initial 
segment of M, is expressed by saying that the two elements are in the same sky. 
Each sky is a union of constellations and is an order-convex set in M; thus, the set 
of skies inherits from M a natural ordering. The union of any sky with all the skies 
below it is a submodel of M; thus, each sky is the highest sky in some submodel. The 
image of a under (the canonical extension of) any finite-to-one function w --+ w is in 
the same sky as a. Conversely [4, 17], any two elements in the same sky have a 
common image via a finite-to-one function. Two ultrafilters are cofinally equivalent 
if and only if they occur as the types of two elements in the same sky of some model 
of arithmetic. This is the same as saying that the corresponding ultrapowers of w can 
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both be cofinally embedded in a single model; it is also equivalent to saying that 
these ultrapowers have cofinal submodels that are isomorphic [6]. 

An ultrafilter V is a Q-point if and only if the highest sky in V-prod w is a single 
constellation. An equivalent condition is that, if a has type V in a model M, then 
every f(a), with f standard, in the sky of a is in fact in the constellation of a. It 
follows that, for such a and f, the type f(V) of f(a) is isomorphic to V and 
therefore also a Q-point. 

LEMMA 2.7. If V is a Q-point, then no sky contains two distinct elements of type V. 

PROOF. Suppose a, b were a counterexample. By the result from [4, 17] quoted 
above, since a and b are in the same sky, there would be a finite-to-one f: w --+ w 
such that f(a) = f(b). As V is a Q-point, there is a bijection g: w --+ w that agrees 
with f on a set in V. It follows that g(a) = f(a) = f(b) = g(b), and therefore 
a = g-l(g(a» = g-l(g(b» = b. 0 

If two models Ml and M2 have isomorphic submodels Ml == M2, then they can 
both be embedded in a third model in such a way that Ml and M2 are identified 
(along any prescribed isomorphism). In particular, if a1 E Ml and a2 E M2 have 
the same type, then Ml and M2 can be embedded in another model so that a1 and 
a 2 have the same image. 

If cP is any set of first-order formulas with, say, free variables x and y, then the 
compactness theorem provides a model of arithmetic containing two elements a, b 
that satisfy all these formulas (one says that they realize the (partial) type CP) unless 
there is a finite subset of cP that cannot be simultaneously satisfied on w. More 
generally, suppose cP and 'I' are sets of formulas with x, y free, such that whenever 
cP is satisfied by two elements in any model of arithmetic then 'I' is also satisfied in 
that model by the same two elements; then each of the formulas !f;(x, y) E 'I' is a 
consequence, in w, of finitely many formulas cp(x, y) E CP. (The finite set of cp's can 
depend on !f;.) A typical example of a set of formulas to which such considerations 
might be applied is the set "saying" that x has type V, y has type V, and x is in a 
lower sky than y; this set consists of all formulas of the forms x E A, y E B, and 
f(x) < y, where A ranges over V, B over V, and f over the set of all functions 
w --+ W. 

3. Decomposition of operator ideals. Let .Yf' be an infinite-dimensional, separable, 
complex Hilbert space, and let .P be the algebra of bounded linear operators on .Yf'. 
We shall be concerned with proper two-sided ideals in this algebra, called simply 
ideals in this section. Among these ideals, there is a largest one, r, consisting of the 
compact operators. There is also a smallest nonzero ideal, .'IF, consisting of all 
operators of finite rank. Various sorts of intermediate ideals have been extensively 
studied; see for example [21]. Brown, Pearcy, and Salinas [9] asked whether r is the 
sum of two properly smaller ideals. 

It was proved in [5] that the continuum hypothesis implies an affirmative answer 
to this question and, indeed, implies that every ideal that properly includes .'IF is the 
sum of two properly smaller ideals. It was also stated in [5], but with only a hint 
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toward a proof, that the continuum hypothesis can be replaced with (what in our 
present terminology is) the negation of NCF (see (**) on p. 414 of [5]). The purpose 
of the present section is to prove this result and its converse. 

THEOREM 3.1. The following are equivalent. 
(a) :£ is not the sum of two properly smaller ideals. 
(b) Some ideal that properly includes ofF is not the sum of two properly smaller ideals. 
(c) NCF. 

Of course, (a) = (b) is trivial. The nontrivial implications (b) = (c) = (a) both 
use the representation developed in [5] of ideals in terms of certain sets of sequences 
of natural numbers. We therefore begin by reviewing those aspects of the representa-
tion that we shall need. 

Recall that w J1 w is the set of nondecreasing sequences of natural numbers, 
viewed as functions w --+ w. A nonempty subset I of w J1 w will be called a 
shift-ideal if it satisfies the following conditions. 

(i) If f E I and g E w J1 wand g(n) ~ f(n) for all n, then gEl. 
(ii) If f E I and gEl, then f + gEl. 
(iii) If f E I and g(n) = f(n + 1) for all n, then gEl. 

In (iii), g is f shifted one step to the left; hence the name" shift-ideal." It is proved 
in the first part of [5] that there is a canonical isomorphism between the lattice of 
ideals of .fR and the lattice of shift-ideals. The ideal :£ corresponds to the shift-ideal 
w J1 w, while the ideal ofF corresponds to the shift-ideal of all bounded sequences. 
(Although we shall not need it, we indicate how the isomorphism is defined. Given 
an ideal, associate to each positive selfadjoint operator A in it the sequence 
fEw J1 w, where f(n) is the number of eigenvalues ~ 1/2n of A, counted with 
multiplicity. The sequences so obtained from all the positive selfadjoint operators in 
the ideal constitute the corresponding shift-ideal.) The correspondence with shift-
ideals makes it easy to verify the known fact that the lattice of ideals of .fR is 
distributive. 

In view of this representation of the lattice of ideals, Theorem 3.1 can be 
reformulated as follows; this is the form we shall prove. 

THEOREM 3.2. The following are equivalent. 
(a) w J1 w is not the sum of two properly smaller shift-ideals. 
(b) Some shift-ideal that contains an unbounded sequence is not the sum of two 

properly smaller shift-ideals. 
(c) NCF. 

PROOF. (a) = (b) is trivial. 
(b) = (c). We begin by recalling the relevant part of the proof in [5] that the 

continuum hypothesis implies the negation of (b). If nEw and if A is any infinite 
subset of w then next( A, n) was defined in §2 to be the smallest element of A that is 
~ n. The first part of the proof in [5] used the continuum hypothesis to construct 

two families, PAl and PA2 of infinite subsets of w such that 
(i) If X and Y belong to the same PA;, then some Z in that PA; is almost included 

(i.e., included except for a finite subset) in both X and Y. 
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(ii) For every fEw 7' w, there exist Xl E fJl1 and X 2 E fJl2 such that, for all 
nEw, 

f ( n) ~ max { next( Xl' n ), next( X 2 , n) } . 

(Actually, (i) was established in the stronger form that, if X and Y belong to the 
same fJli , then one of X and Y is almost included in the other. However, only the 
weaker form stated above was actually used.) The second part of the proof used fJl1 

and fJl2 to contradict (b) as follows. Let I be a shift-ideal containing an unbounded 
g E W 7' w. Let hEw 7' w be unbounded yet so small that, for any a, b, c E w, 

ah(n+c)+b<g(n) 

for all but finitely many n. (Such an h is easily constructed by diagonalization; see 
the lemma on p. 410 of [5].) Let ,; for i = 1,2 be the set of all fEW 7' w which are 
majorized by a linear function of h on some set X E fJli , i.e., for all n E X, 
f(n) ~ ah(n) + b. Let 1; be the closure of ,; under leftward shifting; thus, f E 1; if 
and only if for some a, b, c E w 

f(n-c)~ah(n)+b 

for all n in some set X E fJli • Then each 1; is a shift-ideal not containing g, and, 
thanks to (ii), '1 + '2 = w 7' w. Therefore, the shift-ideals 1; n I are properly 
included in I, and their sum is, by distributivity of the lattice, I. Thus, (b) fails. 

To prove (b) => (c), it therefore suffices to produce, under the assumption that 
NCF fails, two families fJl1 and fJl2 as above; then (b) will also fail, by the same 
proof as in [5]. The failure of NCF means that there exist two uItrafilters on w with 
no common finite-to-one image. We take these uItrafihers as fJl1 and fJl2• Then (i) is 
clearly satisfied, and it remains only to prove (ii). 

So let an arbitrary fEw 7' w be given. By Lemma 2.1, partition w into blocks so 
that any natural number n and its image f( n) are in the same block or adjacent 
blocks. By Lemma 2.5, there exist Xl E fJl1 and X2 E fJl2 such that no union of two 
adjacent blocks meets both Xl and X 2 • Consider an arbitrary nEw. The union U of 
its block and the next is disjoint from Xi for at least one of the two values of i. This 
means that next(Xj , n) > max(U). Therefore, 

max{next(X1,n),next(X2 ,n)} > max(U) >f(n), 

where the second inequality comes from the specification of the blocks. TIns 
completes the verification of (ii) and thus the proof of (b) => (c). 

(c) => (a). Assume NCF, and let '1 and '2 be shift-ideals properly included in 
w 7' w. Our goal is to show that '1 + '2 *- w 7' w. This is obvious if one of the 'j is 
{O} (where 0 means the constant function with value 0), so we assume that neither 1; 
is {O}. This means that each 1; contains a function that is eventually positive (as the 
functions in 1; are nondecreasing), hence a function that is everywhere positive (by 
shift closure), hence all bounded functions (by closure under addition and down-
ward closure). Another application of closure under addition and downward closure 
of 1; now shows that, if f E 1; and g differs from f at only finitely many places, 
then g E 1;; we refer to this property of 1; as closure under finite changes. 
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As each .I; is properly included in w ? w, let g E (w ? w) -.I;. We can assume 
that g is the same for both values of i, as two different g's could be replaced by 
their maximum (as the .I;'s are closed downward). For each fEw? w, let 

Xf = {n E wlf(n) < g(n)}. 

For f E .1;, the set Xf is nonempty, as otherwise downward closure would require 'i 
to contain g. Furthermore, 

Xf n XI' = Xmax(f,j') ;;2 Xf +I" 

As .I; is closed uI?-der addition, the sets Xf for f E .I; generate a filter F;. As 'i is 
closed under finite changes, each of the two filters F; includes all cofinite subsets of 
w. By NCF, these two filters nearly cohere; that is, w can be partitioned into blocks 
of consecutive integers so that each set in Fl and each set in F2 both meet some 
block (see Lemma 2.6). 

Apply this to the sets XI! and Xh ' where fl and f2 are arbitrary members of '1 
and '2' respectively. There exist m 1 E XI! and m 2 E Xh such that m 1 and m 2 are 
in the same block. Suppose, without loss of generality, that m 1 ~ m 2 • Then 

fl(m 1 ) < g(ml) ~ g(m2), 

as m 1 E Xfl and g is nondecreasing, and 

f2(m 1 ) ~ f2(m 2) < g(m 2), 

as f2 is nondecreasing and m 2 E Xf , Thus, if we define 

h (n) = 2 . g( the last element of the block containing n), 
then adding the two inequalities above yields, as g is nondecreasing and m 1 and m 2 

are in the same block, 

fl(ml) + f2(ml) < 2g(m2) ~ h(ml)' 

Since the f/s were arbitrary members of the .I;'s, this proves that h $. '1 + '2' so '1 + '2 i= w ? w 0 
In view of the independence of NCF [7], we immediately obtain a "solution" of 

the question posed by Brown, Pearcy, and Salinas. 

COROLLARY 3.3. Whether1' is the sum of two properly smaller ideals is independent 
ofZFC. 0 

4. The Stone-tech remainder of a half-line. Let R + be the closed half-line [0,00) 
and let PR + be its Stone-Cech compactification. We shall be concerned with the 
remainder, that is, the part at infinity, PR + - R +, of this compactification. It is not 
hard to verify that PR + - R + is a continuum, i.e., a compact connected Hausdorff 
space. Bellamy [2] proved that it is indecomposable, which means that it is not the 
union of two proper sub continua. On any indecomposable continuum, the binary 
relation" there is a proper subcontinuum containing both x and y" is an equiva-
lence relation (indecomposability being used to ensure transitivity), and its equiva-
lence classes are called the composants of the continuum. Metrizable indecomposable 
continua always have uncountably many composants, but Bellamy [2] showed that 
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fiR + - R + is not metrizable; he asked how many composants it has and in particular 
whether it might be an example of an indecomposable continuum with only one 
compos ant. (He later found a different example [3].) Rudin [19] showed, however, 
that the continuum hypothesis implies that fiR + - R + has 2KJ composants. 

Her proof shows, in fact, that cofinally inequivalent ultrafilters, considered as 
points of fiw ~ f3R +, are in different composants of fiR + - R +. (This was pointed 
out to me by van Douwen.) In particular, if fiR + - R + has only one composant, 
then NCF holds. The converse of this was announced by Mioduszewski [15]; it is 
easily deduced from his detailed results in [16] on the structure of fiR +, though it is 
not explicitly stated in [16]. In this section, we give a proof of this equivalence 
between NCF and the existence of only one composant in fiR + - R +. The proof is 
based on the same construction as Bellamy's proof of indecomposability. In one 
direction it is essentially the same as Rudin's proof; in the other direction, it seems a 
bit simpler than Mioduszewski's, because it is directed specifically toward this one 
result whereas Mioduszewski develops a general structure theory for fiR +. 

THEOREM 4.1 (RUDIN, MIODUSZEWSKI). NCF is equivalent to the assertion that 
f3 R + - R + has only one composant. 

PROOF. We begin by considering an arbitrary proper subcontinuum K of fiR +-
R +. Let P be a point of (fiR + - R +) - K, and let G and H be open neighborhoods 
of K and p with disjoint closures in f3R +; such neighborhoods exist since f3R + is a 
compact Hausdorff space. Since R+ is dense in fiR+, G n R+ is dense in G, and 
similarly for H. In particular, each of G n R + and H n R + contains arbitrarily large 
real numbers. Following Bellamy [2], we inductively define real numbers Pn < qn < 
rn < Sn < Pn+l' for all nEw, by 

P 11 = inf( G n [s 11 _ l' 00)) (where [s -1' 00) means R + ) , 

qn = sup{x E Glx > Pn and [Pn'x] is disjoint from H}, 
rn = inf( H n [qn' 00)), and 

Sn = sup { X E H I x > rn and [rll , x] is disjoint from G}. 

Because the closures G and Ii are disjoint, it is easy to see that these numbers satisfy 
the inequalities asserted above. The p's and q's are in G while the r's and s 's are in 
Ii. It follows that the sequence of p's, q's, r's, and s's must tend to infinity, for 
otherwise its limit would be in both G and Ii which are disjoint. From this it follows 
easily that the intervals [Pn,qn] cover G n R+ and that the intervals [rn,sn] cover 
H n R+ except for H n [0, Po]. We remove this initial segment from H and assume 
henceforth that the intervals [rn' sn] cover H n R +. 

Let us write 12n for lPn' qn]' 12n+1 for [rn' sn], and I x for Un E Xln' where X ~ w. 
Thus, for example, G n R + ~ I Even' where "Even" stands for the set of even 
numbers. Let U = {X ~ w I K ~ Ix}, where the closure of I x is taken in f3 R +. Since 
I Even includes G n R+, which is dense in G, which includes K, the set Even is in U. 
U is clearly closed under supersets. It does not contain two disjoint sets, for if X and 
Yare disjoint then I x and I yare disjoint closed sets in R +, so their closures in fiR + 
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are also disjoint, by a basic property of Stone-Cech compactifications [11, Theorem 
6.5]. If U contains the union of two disjoint sets, then it contains one of those sets, -- - -
because I xu y = Ix U I y = Ix U I y and, if the connected set K lies in the union of 
the disjoint closed sets I x and I y. then it lies in one of them. U contains no finite set, 
for when X is finite then I x is compact and Ix = I x is disjoint from fJ R + - R +. 
According to Lemma 2.2, the preceding five sentences establish that U is an 
ultrafilter. Thus, we have shown that any proper subcontinuum K of fJR + - R + is 
included in nXEulx = nXEUUnExln for some sequence of disjoint closed intervals 
I N ~ R + and some ultrafilter U. 

Suppose now that K contains a point v E fJw - w ~ fJR + - R +; we can identify 
v with an ultrafilter Von w. Let f: w -+ w be a finite-to-one function whose value 
on w n In is n. (It does not matter how f is defined on w - In as long as it is 
finite-to-one.) Then, for each X E U and each Y E V we have that v lies in both Ix 
and Y. Since disjoint closed sets in R + have disjoint closures in fJR +, the closed sets 
Ix and Y cannot be disjoint. This means that f(Y) meets X. Since X was an 
arbitrary set in U and since U is an ultrafilter, it follows that f(Y) E U. Since Y was 
an arbitrary set in V, it follows that f(V) = U. 

If v'is a second point of (fJw - w) n K, identified with an ultrafilter V' on w, 
then V and V' are cofinally equivalent, because U is a finite-to-one image of each of 
them. Since K was an arbitrary proper subcontinuum of fJR + - R +, we see that any 
two ultrafilters that, viewed as points of fJ R + - R +, lie in the same composant, must 
be cofinally equivalent. In particular, if there is only one composant, then all 
ultrafilters are cofinally equivalent, which means that NCF holds. 

To prove the converse, assume that NCF holds, and let p and q be two distinct 
points in fJR+ - R+. Applying thefirst part of this proof with {q} as K (and with p 
as p), we find a sequence of disjoint closed intervals In' where In+l always lies to 
the right of In' such that q E nXEulx and similarly p E nXEvlx for suitable 
ultrafilters U and V (with Even E U and Odd E V). By NCF, let f: w -+ w be a 
finite-to-one nondecreasing function such that f(U) = f(V) = W, for a certain 
ultrafilter W. For each n, let In be the convex hull of Irl{n}' Thus, each In is a 
closed interval (since f is finite-to-one), and I n + 1 lies strictly to the right of I n (since 
f is nondecreasing). Let Jx = UnE XJn' and observe that, for any X ~ w, Ix ~ Jf(X)' 
As X ranges over U (or V), f(X) ranges over a basis for W (in fact all of W if we 
take f to map onto w). Thus, 

q E n Ix ~ n Jf(X) = n J y 
XEU XEU YEW 

and similarly p E nYE wJy. Thus, to prove that p and q lie in the same composant 
of fJR+- R+, it suffices to show that nYEWJy is a proper subcontinuum of 
fJ R + - R +. It is obviously compact. It is included in fJ R + - R + because W is 
nonprincipal and the intervals I n tend to infinity (as the In's did). It is a proper 
subset of fJR + - R + because it is disjoint from Jz for any Z $. W, and Jz meets 
fJ R + - R + whenever Z is infinite. All that remains is to prove that n Y E wJ y is 
connected. 
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Suppose it were not, and partition it into two disjoint nonempty closed subsets Co 
and C 1. Being closed also in f3 R +, these sets have disjoint neighborhoods Go and G 1 

in f3R+. The closed sets Jx - (Go U G1) for X E W cannot all be nonempty, for 
then, as they form a directed family, compactness would make their intersection 
(n XE wJx) - (Go U G1) nonempty, contrary to our choice of the C's and G's. So fix 
an X E W with Jx ~ Go U G1• Each of the intervals Jk ~ Jx, for k E X, must lie 
entirely within one of the two G;'s because Jk is connected. As W is an ultrafilter, it 
contains the set 

for one of the two values of i; fix this i and write simply Y for 1';. Then J y ~ G;, so 

n Jx ~ Jy ~ G;. 
XEW 

But this is absurd, because C1 -; is a nonempty subset of nXE wJx disjoint from G;. 
This contradiction completes the proof that n x E wJ x is a proper subcontinuum of 
f3R + - R + and thus completes the proof of the theorem. 0 

The theorem allows us to apply the consistency proof from [7]. 

COROLLARY 4.2. It is consistent, relative to ZFC, that f3R + - R + has only one 
composant. 0 

5. Ideals in the lattice w 7' w. A nonempty subset Iof w 7' w is an ideal if it is 
closed downward and closed under binary maxima. That is, 

(i) if f E I and g(n) ~ fen) for all n, then gEl, and 
(ii) if f, gEl, then max.(j, g) E I, 

where max(j, g)(n) = max{!(n), g(n)} for all n. In this section, we study a certain 
pre-ordering on the class of ideals in w 7' w. This ordering, restricted to a certain 
subclass of the ideals, was introduced for group-theoretic purposes in [12]. Consider-
ation of all ideals, rather than a restricted class, seems more natural from a 
combinatorial point of view and simplifies some of the work. To obtain information 
relevant to the group-theoretic study in [12], one must pass to the restricted class, 
and this will be done in the next section. 

If I and J are two ideals in w 7' w, we define I ~ J to mean that there exists 
r E w 7' w such that, for each f E I, there exists g E J with f( n) ~ g( r( n)) for all 
sufficiently large n. That is, if all the functions in J are composed on the right with 
r, then each function in I is eventually majorized by one in the modified J. Notice 
that, if r is as required by the definition of I ~ J, then so is any r' that eventually 
majorizes r. 

The following lemma says that, instead of modifying J, we could have modified I 
by composing with a sort of inverse to r. 

LEMMA 5.1. Let I and J be ideals in w 7' w. Then I ~ J if and only if there exists an 
unbounded sEw 7' w such that, for each f E I, there exists g E J with f( s( n )) ~ g( n ) 
for all sufficiently large n. 
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PROOF. For "if," use the fact that s is unbounded and nondecreasing to define 
r(n) as the first integer greater than every k for which s(k) < n. Then r E w /' w, r 
is unbounded, and s(r(n)) ~ n for all n. Thus, if f(s(n)) ~ g(n) for all large n, 
then 

f{n) ~ f{s{r{n))) ~ g{r{n)) 

for all large n. For the converse, define sen) to be the largest k for which r(k) ~ n; 
if there is no such k, i.e., if n < reO), set sen) = O. Then sEw /' w, s is 
unbounded, and r(s(n)) ~ n for all n ~ reO). Thus, if fen) ~ g(r(n)) for all large 
n, then f(s(n)) ~ g(r(s(n)))~. g(n) for all large n. 0 

It is clear that the relation ~ on ideals is reflexive (take r = identity) and 
transitive (compose the r's). It therefore induces an equivalence relation on the 
ideals and a partial ordering of the equivalence classes. We shall sometimes abuse 
language by referring to ideals when we mean equivalence classes; for example, we 
may refer to the partial ordering of ideals. This purpose of this section is to present a 
connection between NCF and the structure of this ordering. Although the connec-
tion involves phenomena near the top of the ordering, we first give, for the sake of 
completeness, some elementary facts about the bottom. 

Define the ideals 

B k = {fEw/,wl foralln,f{n)~k}, foreachkEw, 

B = {f E w /' w I f is bounded} = U B k' and 
kEw 

L = {fE w /' wi for all n, f{n) ~ n}. 

It is easy to compute, directly from the definition of ~ , that for every ideal [, 

Bo ~ [, 
B k + 1 ~ [<=> [CZ B k , 

[ ~ Bk <=> [ ~ Bk, 
B ~ [<=> for all k, [CZ Bk , 

[ ~ B <=> [ ~ B, 
L ~ [ <=> [ CZ B, and 
[ ~ L <=> [ is dominated, i.e. there exists r E w /' w such that, for 

each f E [, f ( n) ~ r ( n) for all sufficiently large n. 

From these facts, it immediately follows that the bottom of the ordering of ideals is 
Bo < Bl < ... < Bk < ... < B < L, and that every ideal not equivalent to any of 
these is undominated and > L. 

Turning to the top of the ordering, we have first the obvious greatest element, 
w /' w. The ideals [ equivalent to this one are, as one easily verifies using Lemma 
5.1, those such that every fEw /' w is eventually majorized by a member of [ and 
therefore eventually equal to a member of [. 

The equivalence classes of ideals described in the last two paragraphs are the only 
ones that admit a simple description, in the following precise sense. If an ideal [ is a 
Borel subset, or even an analytic subset, of w /' w (with respect to the topology 
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induced by the product topology on the product Ww of countably many copies of w, 
each copy having the discrete topology), then either J ~ L or J is equivalent to 
w ? w. The proof, which we only sketch here because it is peripheral to our main 
subject, rests on the result of Kechris [14] and Saint-Raymond [20] that every 
analytic subset of w ? w (or equivalently Ww ) either is included in a K" set or has a 
superperfect subset. A K" set is precisely a dominated set, so if it is an ideal then it 
is ~ L. On the other hand, given any superperfect subset S of w ? w and any 
lEw? w, we can produce two elements sand t of S such that max(s, t) eventually 
majorizes I. (s and t are obtained by inductively defining increasing sequences of 
nodes Sn and tn' in the superperfect tree T of finite sequences associated to S, so that 
each Sn and each tn is a superb ranching node, i.e., one with infinitely many 
immediate successors. Let So be any superbranching node and to any superbranch-
ing extension of it. If sn' tn have been defined and have lengths a and b, where 
a < b, then as sn is superbranching we can extend it to S' E T with s'(a) ;:, I(b) 
and then extend it further to a superbranching sn+l' of length c > b. This ensures 
that s ;:, I on [a, b]. As tn is superb ranching, extend it to t' E T with t(b);:' I(c), 
and extend it further to a superb ranching tn+l of length d> c. This ensures that 
t ;:, I on [b, c ].) It follows that any ideal that includes a superperfect S eventually 
majorizes all functions, hence is equivalent to w ? w. The assumption of analyticity 
can be weakened under suitable hypotheses (e.g. to projectivity if one assumes 
projective determinacy). 

To obtain ideals not equivalent to those already listed, one therefore needs some 
highly nonconstructive approach. Gobel and Wald [13] showed (in the context of 
their restricted sort of ideals) that a nonprincipal ultrafilter on w provides such an 
approach; it yields a new equivalence class of ideals. (I know of no essentially 
different way to obtain such ideals.) 

For any nonprincipal ultrafilter U on w, define 

J{U) = {IE w? wi for some A E U, I~ identity on A}. 

This is clearly an ideal. It contains, for each A E U, the function next(A, -) defined 
in §2, since this function equals the identity on A. For any I E J(U), if A E U is as 
in the definition of J(U) then for all n 

I{n) ~ l{next{A, n)) ~ next{A, n), 

the first inequality being because I is nondecreasing and the second because 
next(A, n) is in A where I ~ identity. This shows that J(U) is the downward closure 
of the family of functions next(A, -) where A ranges over U. 

The ideal J(U) is not equivalent to any of those exhibited earlier. No function in 
it eventually majorizes n H n + 1, so it is not equivalent to w ? w. That it is not 
dominated and therefore not ~ L is shown by the following argument from [22]. 
Suppose r E w ? w eventually majorizes next(A, -) for all A E U. Inductively 
define natural numbers ao, aI ,... by setting ao = 0 and an+1 = 1 + 
max{ an' r(an)}. Then for any A E U, for all sufficiently large n, 

next{A, an) ~ r{an) < an+I , 
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so A intersects all but finitely many of the intervals [an, an+ 1). Thus, neither the set 
Uneven[an, an + 1) nor its complement is in U, which contradicts the fact that U is an 
ultrafilter. 

Thus, we have at least one ideal J(U) (possibly many, if we vary U) strictly 
between Land W 7' w. We next show that at least some of these ideals are high in 
the ordering. 

PROPOSITION 5.2. Every ideal J < W 7' W is ~ J(U) for some U. 

PROOF. Given J < W 7' w, fix a function r E W 7' W not eventually majorized by 
any element of J. Increasing r, if necessary, we assume that r is strictly monotone 
and we record, for future reference, that this implies 

r(next(A, n» = next(r(A), r{n» 

for all nEw and all infinite A ~ w. 
For each f E J, the set 

Mf = {nEwlf(n)<r(n)} 

is, by our choice of r, infinite. As J is an ideal and M f n Mg = Mmax(f,g)' we see 
that the sets Mf for f E J generate a filter of infinite sets. Let U' be any ultrafilter 
extending this filter. Thus, each f E J is < r on a set in U'. We shall show that 
U = r(U') is as required, i.e. that J ~ J(U). The function r required by the 
definition of ~ will be the r that we have already been using. To see that it works, 
consider any f E J, and let A = Mf E U'. Then r(A) E r(U') = U and we have, by 
definition of Mf and monotonicity of f, for all n, 

f(n) ~f(next{A,n» < r(next{A,n» = next{r{A),r(n» = g(r{n», 

where g = next(r(A), -) E J(U). 0 
The J(U)'s, as U varies, are therefore cofinal in our ordering minus its top 

element. The remainder of this section is concerned primarily with the relative 
ordering of the various J(U)'s. We shall obtain among other results, the following 
equivalents of NCF. 

THEOREM 5.3. The following are equivalent. 
(a) NCF. 
(b) The ideals J(U) are all equivalent. 
(c) The ideals J(U) are pairwise comparable under ~ . 
(d) The ordering of equivalence classes of ideals, minus its top element w 7' w, has a 

largest element. 

The preceding proposition gives (b) => (d), and of course (b) => (c) is trivial. To 
prove the rest of the theorem, we develop a criterion, in terms of ultrapowers of w, 
for J(U) ~ J(V). 

THEOREM 5.4. Let U and V be ultra filters. Then J(U) ~ J(V) if and only if, in 
some model of arithmetic, there exist elements u ~ v, of types U and V respectively, 
and lying in the same sky. 
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PROOF. Since /(U) is the downward closure of the functions next(A, -) for 
A E U, and similarly for V, the definition of /(U) ~ /(V) reduces to 

(3r E w ~ w)(V'A E U)(3B E V) 

(V' sufficiently large n )next( A, n) ~ next( B, r ( n )) . 

By removing finitely many elements from B, we can improve (V' sufficiently large n) 
to (V' n), obtaining the equivalent form 

(3r E w ~ w)(V'A E U)(3B E V)B is disjoint from U [r(n),next(A,n)). 
nEw 

As V is an ultrafilter, to say that it contains a set B disjoint from a certain X is the 
same as to say that every B E V contains points outside X. Thus, /(U) ~ /(V) if 
and only if 

(3r E w ~ w)(V'A E U)(V'B E V)(3b E B)b f/. U [r(n),next(A,n)). 
nEw 

To put "b f/. UnEw[r(n),next(A,n))" into a more useful form, consider for a 
moment a fixed b, and let a be the last element of A that is ~ b. (We can ignore the 
finitely many b's for which no such a exists.) Then clearly b f/. [r(n), next(A, n)) for 
n ~ a, since then next(A, n) ~ a ~ b. For n > a, however, we have b < next(A, n), 
so in order to have b f/. [r(n),next(A,n)), we must have b < r(n). Having this for 
all n > a is equivalent, since r is nondecreasing, to having it for n = a + 1. Thus, 
b f/. UnEw[r(n),next(A, n)) if and only if there exists a E A with a ~ b < r(a + 1). 
Writing s(n) for r(n + 1), we have that /(U) ~ /(V) if and only if 

(3s E w ~ w)(V'A E U)(V'B E V)(3a E A)(3b E B)a ~ b < s(a). 

This is equivalent to saying that, for some sEw ~ w, the 2-type in arithmetic saying 
"x has type U, y has type V, and x ~ y < s(x)" is consistent, hence has a model. 
Thus, /(U) ~ /(V) if and only if, for some sEw ~ w, there is a model of 
arithmetic containing elements u of type U and v of type V with u ~ v < s( u). 0 

COROLLARY 5.5. /(U) and /(V) are comparable under ~ if and only if U and V 
are cofinally equivalent. 

PROOF. By the theorem, /(U) and /(V) are ~ -comparable if and only if, in 
some model of arithmetic, there are elements of types U and V in the same sky. This 
sky may be assumed to be the top one, by truncating the model after it. Then the 
submodels generated by the two specified elements are both cofinal in the ambient 
model and are isomorphic to U-prod wand V-prod w respectively. So U and V are 
cofinally equivalent. The converse is proved by reversing these steps, using Corollary 
2 of [6]. 0 

This corollary immediately gives us (a) = (c) in Theorem 5.3. It also gives us 
(d) = (a), as follows. Suppose that, among the equivalence classes of ideals other 
than that of w ~ w, there is a greatest one. By Proposition 5.2, this greatest 
equivalence class must contain /(U) for some ultrafilter U. Now the preceding 
corollary tells us that all ultrafilters are cofinally equivalent to U, hence to each 
other. 
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The parts of Theorem 5.3 established so far can be summarized as (b) ~ (d) ~ (a) 
= (c). The proof will be completed if we prove (a) ~ (b). 

The preceding corollary tells us that the ideals I(U) are ordered by ~ as a 
disjoint union of chains, namely the cofinal equivalence classes, such that elements 
of different chains are incomparable. To complete the analysis of the ordering of the 
I(U)'s, we study the chains individually. They tum out to look quite different, 
depending on whether or not the corresponding cofinal equivalence class of ultra-
filters contains a Q-point. We begin with the case that it does not, since this is the 
case that is relevant to Theorem 5.3. 

PROPOSITION 5.6. If U and V are cofinally equivalent ultrafUters whose cofinal-
equivalence ciass contains no Q-point, then I(U) is equivalent to I(V). 

PROOF. Suppose U and V form a counterexample. As they are cofinally equiva-
lent, there is a model M of arithmetic containing elements u and v, of types U and V 
respectively, in the same sky. Assume without loss of generality that u ~ v. By 
Theorem 5.4, I(U) ~ I(V). But I(U) and I(V) are assumed to be inequivalent, so 
I(V) 4;, I(U). Thus, there is no model M' of arithmetic with two elements u' and v', 
of types U and V respectively, in the same sky, with v' ~ u'. 

Since u and v are in the same sky, fix an s: w ~ w such that v ~ s( u). If there 
were a model Mil of arithmetic containing two elements U l and u2 , both of type U, 
in the same sky, with s(ul ) ~ u2 , then we could amalgamate it with M, identifying 
u E M with ul E Mil, obtaining an M' containing U 2 and v, of types U and V 
respectively, in the same sky (as both are in the sky of u l = u), with v ~ s(u) = 
s( ul ) ~ u2• By the preceding paragraph, no such M' exists; therefore no such Mil 
exists. 

This means that, whenever the 2-type saying "Xl and X 2 both have type U and 
s(xl ) ~ x 2" is realized by U l and U 2 in a model of arithmetic, so is the type saying 
"X2 is in a higher sky than Xl'" Thus, every formula in the latter type must be a 
consequence in arithmetic of the former type. In other words, 

(Vf: w ~ w)(3A E U)(Va l , a 2 E A)(s( a l ) ~ a 2 ~ f(a l ) < a 2 ). 

Partition w into blocks so that, for any n, s(n) is in the next block after n, or earlier. 
Thus, if al < a 2 are not in the same block and not in adjacent blocks, then 
s(al ) < a 2 . Thus, 

(Vf: w ~ w)(3A E U)(Va l < a 2 in A) 

If al and a 2 are not in the same block or adjacent blocks, 
then f( al ) < a 2• 

Define h: w ~ w to map all elements of the nth block to n, for all nEw. Let g 
be any finite-to-one function on w (viewed as the range of h). Apply the result of the 
preceding paragraph with 

f(n) = the largest k such that g(h(k» = g(h(n)), 

and let A E U be as there. Thus, if al < a 2 are in A and h(al ) differs from h(a2 ) 

by more than 1, then f(a l ) < a 2 , which means that g(h(al » *" g(h(a 2». Thus, on 
h(A), g takes each value at most twice (and if twice then at adjacent arguments). As 
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h(A) E h(U) and h(U) is an ultrafilter, there exists BE h(U) such that g is 
one-to-one on B. As g was an arbitrary finite-to-one function, h(U) is a Q-point. 
But h is finite-to-one, so h(U) is in the cofinal-equivalence class of U, which was 
assumed to contain no Q-point. 0 

Since NCF implies that there are no Q-points [6, Corollary 15(d)], the proposition 
just proved clearly yields (a) ~ (b) in Theorem 5.3, thus completing the proof of that 
theorem. 0 

We tum now to the complementary case, where the cofinal-equivalence class 
under consideration contains a Q-point, and we again describe completely the chain 
of associated ideals. 

PROPOSITION 5.7. Let U be a Q-point. The ~ -ordering of the ideals J(V), for V 
cofinally equivalent to U, is canonically isomorphic to the Dedekind completion of the 
top sky S of the ultrafilter U-prod w. The ideals J(V), for V isomorphic to U, are 
pairwise inequivalent and correspond, under this isomorphism, to the members of s. 

PROOF. Consider first the ultrafilters V isomorphic to U, say V = f(U). Then in 
the ultrapower U-prod w, the elements u = [identity] and v = [f] have types U and 
V respectively and are in the top sky. We shall show that if u < v, then J(U) < J(V). 
It then follows, by interchanging the roles of U and V, that v < u implies 
J(V) < J(U). Thus, we shall have an order-isomorphism between {J(V) I V isomor-
phic to U} and the subset {[f] I f one-to-one} of U-prod w. As U is a Q-point, this 
latter set is just the top sky S, so the ideals J(V) for V isomorphic to U will be 
ordered as the proposition asserts. 

Suppose, therefore, that u < v. Then J(U) ~ J(V) by Theorem 5.4, and to show 
that J(U) < J(V) it suffices, by that same theorem, to prove that no model M' of 
arithmetic can contain, in its top sky S', two elements v' ~ u' of types V and U 
respectively. If M' were such a model, we could amalgamate it with U-prod w, 
identifying v with v'. In the resulting model, u and u' are in the same sky, and they 
are distinct because u < v = v' ~ u'. Since they both have type U, a Q-point, this 
contradicts Lemma 2.7 so M' cannot exist. This completes the proof that the 
ordering of the J(V)'s for V isomorphic to U is canonically isomorphic to S; the 
isomorphism associates to each element v of S the ideal J(V) where V is the type of 
v. 

For W cofinally equivalent but not isomorphic to U, the ideal J(W) must, by 
Corollary 5.5, be either below all the J(V)'s considered above (i.e. for V == U) or 
above all these J(V)'s, or equivalent to an J(V), or between two consecutive J(V)'s, 
or in a gap of the ordering of J(V)'s. (By a gap, we mean that there is no largest 
J(V) below, and no smallest J(V) above J(W). Note that each element of S has an 
immediate predecessor and an immediate successor, so the five possibilities listed are 
exhaustive.) We shall complete the proof of the proposition by showing that only the 
last of the five possibilities occurs, that every gap in the ordering of the J(V)'s is 
filled by an J(W), and that any two J(W)'s lying in the same gap are equivalent. 

Consider an arbitrary W that is cofinally equivalent but not isomorphic to U. 
Thus, the ultrapower M = U-prod w does not have an element of type W in its top 
sky S, but some cofinal extension M' of it does have such an element w in its top 
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sky S' :::) S. If v E S and v < w, then v + 1 < w because w $. M. Thus, writing V 
and V' for the types of v and v + 1, we have J(V) < J(V') ~ J(W), where the strict 
inequality is from the first part of this proof (as V and V' are isomorphic to U) and 
the other inequality is from Theorem 5.4. Similarly, if v E S and v> w then 
J(V) > J(W). Thus, J(W) fills the gap in the ordering of J(V)'s that corresponds to 
the gap in S filled by w. 

Every gap in the ordering of J(V)'s is filled by some J(W), because, by an easy 
compactness argument, every gap in S is filled in some model of arithmetic 
extending M. 

Finally, to show that all J(W)'s that fill the same gap are equivalent, suppose W 
and Z are two ultrafilters cofinally equivalent to U, such that J(W) < J(Z). We 
shall show that they fill different gaps by finding a V isomorphic to U such that 
J(W) ~ J(V) ~ J(Z). As W is cofinally equivalent to U and U is a Q-point, Lemma 
2.4 shows that W maps to U by a finite-to-one function f. Similarly, Z maps to U 
by a finite-to-one function, and we may assume that it is the same function f. (If we 
had two different functions, we could use an f that agrees with the one on a set in W 
and agrees with the other on a disjoint set in Z. Such sets exist as W and Z are 
distinct ultrafilters.) Thus, f(W) = f( Z) = U. This means that in both W-prod w 
and Z-prod w, the equivalence class of f has type U, while of course the equivalence 
class of the identity has type W in the one model and Z in the other. Amalgamate 
these two models to obtain a model M' containing elements w, z, U, of types W, Z, 
U respectively, and satisfying f(w) = f(z) = u. 

There cannot be a model of arithmetic containing elements w', z', of types W, Z 
and satisfying both f(w') = f(z') and z' ~ w', for in such a model w' and z' would 
be in the same sky (with f(w') = f(z'), as f is finite-to-one) and Theorem 5.4 would 
then give J(Z) ~ J(W) contrary to hypothesis. So the 2-type saying "x has type W, 
y has type Z, f(x) = f(y), and y ~ x" is inconsistent with arithmetic. Thus, there 
are sets A E Wand B E Z such that, in the standard model of arithmetic, 
(1) VaEAVbEB(f(a)=f(b)=a<b). 

Since f(W) = f(Z), we can arrange, by intersecting both A and B with f-l(f(A) 
n f(B» which is in both Wand Z, that f(A) = f(B). Define g: f(A) ~ w by 

g( n) = the largest a E A with f( a) = n; 
this makes sense because f is finite-to-one. Then obviously 
(2) (Va E A)a ~ g(f(a)). 

Furthermore, given any n Ef(A) = f(B), we can apply (1) to a = g(n), obtaining, 
as f(a) = n, 

(Vb E B)(n = f(b) = g(n) < b) 

which simplifies to 
(3) (Vb E B)g(f(b)) < b. 

Both (2) and (3), being true in the standard model of arithmetic, are true in all 
models of arithmetic, in particular in our model M' containing w, z, and U as above. 
The type Wof w contains A, so (2) is applicable with a = w. The type Z of z 
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contains B, SO (3) is applicable with b = z. Since I( w) = I( z) = u, we obtain 
w ~ g(f( w)) = g(u) = g(f(z)) < z. 

Since g is one-to-one on the set I(A) E U, the type V = g(U) of g(u) is isomorphic 
to U. And the inequalities w ~ g(u) ~ z imply, by Theorem 5.4, that I(W) ~ I(V) 
~ I(Z), as required. 0 

6. Slenderness classes of groups. We shall apply the results of the previous section, 
whose notation we continue to use, to show the relevance of NCF to the ordering P 
studied by Gobel and Wald [12, 13]. Although we shall not need the connection 
between this ordering and slenderness of groups, we include a brief summary of it 
for the sake of completeness and motivation. For details, see [12, 13] and the papers 
cited there. 

A growth type is defined [12, 23] to be a subset of w ~ w, closed under pointwise 
addition, closed downward, and containing all bounded elements of w ~ w. (The 
last requirement can be replaced by "nonempty" if one considers only positive-val-
ued functions; we consider all of w ~ w for the sake of coherence with the previous 
section.) In the presence of downward closure, closure under pointwise addition is 
clearly equivalent to closure under pointwise maximum and doubling. Thus, a 
growth type is an ideal in w ~ w that is closed under doubling. Of the ideals 
discussed in the last section, B and w ~ w are growth types. L is not a growth type 
but is equivalent (in the sense of the previous section) to the growth type 

+ L = {I E w ~ w I I is majorized by a linear function} , 
because L ~ + L and + L is dominated by the function n ~ n 2. 

Quite generally, any ideal I generates a growth type, 
+ I = {I E w ~ w I for some c E wand some gEl, c . g majorizes I}, 

which is the smallest growth type that includes I. in particular, every nonprincipal 
ultrafilter U yields a growth type 

+ I ( U) = {I E w ~ w I I is majorized by a linear function on some set in U } . 

Since growth types are ideals, the collection of growth types is preordered by the 
relation ~ studied in the last section. The partially ordered set of equivalence 
classes of growth types is called P. It was introduced in [12] and studied further in 
[13] because of the following connection with group theory. 

Each growth type T determines a subgroup [T] of the product ZW of countably 
many copies of the additive group Z of integers, namely, 

[T] = {I: w ..... Z I the function n ~ max { I I (i) II i ~ n } is in T } . 
Subgroups that arise in this way are called monotone subgroups of Zw. A group G is 
said to be [T]-slender if every homomorphism [T] ..... G annihilates all but finitely 
many of the functions In defined by the Kronecker delta, In(i) = 8n j. (This 
definition was motivated by Specker's theorem [23] that Z is ZW-slender.) It is 
proved in [12] that Tl ~ T2 if and only if every [Td-slender group is also [T2]-slender. 
Thus, the study of P amounts to the study of the inclusion ordering on the 
slenderness classes of groups obtained from various growth types. 
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The top and bottom of the ordering P of growth types have even simpler 
descriptions than for ideals. Using the corresponding results for ideals, we find that 
B is the smallest growth type (since Bk is not a growth type), that B is not 
equivalent to any other growth type, that + L is an immediate successor of B, that 
the growth types equivalent to + L are the dominated ones other than B, and that 
all undominated growth types are above L. The growth type w 7' w is not equivalent 
to any other (since growth types, unlike ideals, are always closed under finite 
alterations of functions) and is, of course, at the top of the ordering. The growth 
types + J(U), which are clearly undominated but < w 7' w, for all ultrafilters U, are 
cofinal in P - {w 7' w }; indeed, they are cofinal among the ideals < w 7' w 
because the J(U)'s are (Proposition 5.2) and J(U) <;;;; + J(U). The growth types 
J(U) were introduced in [13] to show that P has at least 4 members. 

D 

LEMMA 6.1. For any ideals, if J ~ J then + J ~ +J. 

PROOF. If r is as in the definition of J ~ J, then the same r witnesses + J ~ +J. 

PROPOSITION 6.2. For any ultrafilters U and V, the following are equivalent. 
(a) + J(U) and + J(V) are comparable in P. 
(b) + J(U) and + J(V) have an upper bound in P - {w 7' w}. 
(c) U and V are cofinally equivalent. 

PROOF. (a) = (b) is trivial 
(b) = (c). The upper bound, considered as an ideal, is ~ J(W) for some non-

principal ultrafilter W. Then both J( U) and J( V) are comparable with (in fact ~) 

J(W), so both U and V are cofinally equivalent with W, hence with each other. 
(c) = (a). J(U) and J(V) are comparable, by Corollary 5.5, and Lemma 6.1 gives 

(a). D 

THEOREM 6.3. The following are equivalent: 
(a) NCF. 
(b) The growth types + J (U) are all equivalent. 
(c) The growth types + J(U) are all comparable in P. 
(d) P - {w 7' w} has a top element. 

PROOF. The preceding proposition gives (a) - (c) and (d) = (a). Obviously, 
(b) = (c). To complete the proof, it suffices to show that (a) implies both (b) and (d). 
Assume (a). By Theorem 5.3 and Proposition 5.2, all of the ideals J(U) are 
equivalent, and their common equivalence class is at the top of the ideal ordering 
minus the class of w 7' w. Since + J(U) includes J(U) and is not equivalent to 
w 7' w, all of the + J(U)'s must be in this equivalence class also. Now (b) and (d) are 
obvious. D 

The remainder of this section is devoted to a complete description of the ordering 
of the growth types + J(U) for ultrafilters U. By Proposition 6.2, this ordering is a 
disjoint union of chains, where the chains correspond to the cofinal-equivalence 
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classes of ultrafilters, and where growth types from different chains are incompara-
ble and in fact have no common upper bound. It thus suffices to consider each 
chain, and its associated cofinal-equivalence class, separately. 

PROPOSITION 6.4. 1/ a co/inal-equivalence class contains no Q-point, then the 
corresponding chain in P consists 0/ a single element. 

PROOF. For U and V in such a cofinal-equivalence class, the ideals I(U) and I(V) 
are equivalent, by Proposition 5.6. Then the growth types + I(U) and + I(V) are 
equivalent, by Lemma 6.1. 0 

We turn now to the more difficult case of a cofinal-equivalence class that contains 
a Q-point. The ordering of the I(U)'s, for U in such a class, is described by 
Proposition 5.7 as being canonically isomorphic to the Dedekind completion of the 
top sky of the Q-point ultrapower. Lemma 6.1 implies that the ordering of the 
+ I(U)'s is obtained from that of the I(U)'s by collapsing certain intervals to points. 
That is, :s:;; is preserved by the passage from I to + I, but < need not be 
preserved. Our task is to determine which inequivalent pairs among the I(U)'s 
become equivalent when we apply + to them. 

Fix a Q-point U and an element u of type U in some model M of arithmetic; for 
example we could take u = [id] in U-prod w. Let V be the type of n . u for an 
arbitrary standard positive integer n. Then we can show that + I(V) and + I(U) are 
equivalent. Of course + I(U):s:;; + I(V) by Theorem 5.4 and Lemma 6.1 so it 
suffices to prove the reverse inequality, which reduces to I(V):s:;; + I(U) by Lemma 
6.1, since + + I = + I. Thus, what must be shown is 

(3r E w? w)(VA E V)(3B E U)(3c E w) 
(V sufficiently large x E w )next( A, x) :s:;; c . next( B, r (x) ) . 

To show this, take r to be the identity and, given A E V so n· u E A, take 
B = {m E win· mEA}. Thus u E B so BE U. Finally take c = n. Then for any 
x, c· next(B, r(x» = n . next(B, x) is an element of n . B ~ A greater than or 
equal to x and therefore greater than or equal to next(A, x), as required. 

Under the identification of the chain of I(W)'s, W cofinally equivalent to U, with 
the Dedekind completion of the constellation of u, as given by Proposition 5.7, the 
+ operation has just been shown to identify u with all its multiples n . u by 
standard positive integers n. Since + preserves :S:;;, it identifies u with all v that lie 
between u and any of these n . u. It also identifies u with all elements that lie 
between lu/nJ and u for any n, since the type of lu/nJ is (by the remarks 
preceding Lemma 2.7) a Q-point that could have been used in place of U in the 
preceding discussion. Thus, the + operation collapses the whole interval, in the 
Dedekind completion of the constellation of u, of elements that differ from u by 
only a finite factor. 

We shall show that the right endpoint of this interval (in the Dedekind comple-
tion) is also identified with u but the left endpoint is not. It follows, of course, that 
nothing below the left endpoint is identified with u (as + preserves order). It also 
follows that nothing above the right endpoint is identified with u. To see this, let w 
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be this right endpoint and let v > w. There is a u' in the constellation of u (not 
merely in the Dedekind completion) between wand v. No l u'ln J can be < w, for, 
by definition of w, its set of predecessors is closed under multiplication by any 
standard n. So the left endpoint of the interval of elements differing from u' by a 
finite factor is ~ w. (In fact, it is > w, but we do not need this.) Nothing below this 
endpoint gets identified with u'; in particular, u is not identified with u', nor, a 
fortiori, with v. 

Thus, once we verify our claims about identifications involving the endpoints, we 
shall know exactly which intervals in the chain of ideals (corresponding to our fixed 
cofinal-equivalenoe class of ultrafilters) are collapsed to form single elements in the 
chain of growth types. In terms of the isomorphism with the Dedekind completion 
of the constellation of u, they are exactly the intervals gotten by taking an arbitrary 
element v of that constellation, forming the smallest interval that contains l v In J 
and n . v for all standard positive n, and adding to this interval its right endpoint. 
Clearly each element of the constellation of u is in a unique such interval. Some 
elements of the Dedekind completion are in no such interval; these are not identified 
with anything else under the + operation (because every nontrivial interval in the 
Dedekind completion contains points from the constellation of u). 

It therefore remains only to verify our assertions about identifications at the 
endpoints of our intervals. 

Consider first the right endpoint leW) of the interval containing leU), where U 
is our fixed Q-point. W is the type of an element w, in some extension M' of M, 
such that w > n . u for all finite n but w < u' for all u' in the constellation of u 
such that u' > n . u for all n. That is, w lies in the gap, of the constellation of u, 
that comes immediately after the elements n . u. Our objective is to show that 
+ leW) ~ + leU), which reduces, as before, to leW) ~ + leU), i.e., 

(3r E w l' w)('v'A E W)(3B E U)(3c E w) 
('v' sufficiently large x E w )next( A, x) ~ c . next( B, r (x) ) . 

To establish this, first fix an X E U such that, whenever x < y are in X, then 
x 2 < y. Such an x exists, by Lemma 2.3 since U is a Q-point. Since U is the type of 
u, we have u E X. All elements of X above u are, by our choice of X, also above u 2 

which is > n . u for all finite n (as u is infinite) and therefore > w (because w fills 
the gap right after the n . u's). Thus, u is the last element of X before w. 

Now let r be the identity function and let an arbitrary A E W be given; we seek 
Band c as in the formula defining leW) ~ + leU). As w has type W, we have 
w E A and therefore next(A, u) ~ w. But next(A, u) is in the constellation of u 
(being defined from u and being ~ u), so next(A, u) ~ n . u for some finite n. Set 
c = n and set 

B = {b E X I next( A, b ) ~ c . b } . 
This B is in U, because next(A, u) ~ c . u and U is the type of u. For an arbitrary 
x E w, we have 

next( A, x) ~ next( A, next( B, x» ~ c . next( B, x), 
as required. This completes the proof that + leW) ~ + leU). 
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We tum now to the left endpoint I(V) of the interval containing I(U). V is the 
type of an element v, in some extension of M, such that v fills the gap, of the 
constellation of u, immediately before the elements l u/n J for finite n. Thus, an 
element of the constellation of u is > v if and only if it is ~ lu/nj for some finite 
n. Our objective is to prove + leU) 1;. + I(V), i.e., 

(Vr E w ~ w)(3A E U)(VB E V)(Vc E w) 

(3 arbitrarily large x E w )next( A, x) > c . next( B, r( x)). 
As in the previous argument, fix X E U such that whenever x < yare in X then 

x 2 < y. Then u E X and the next smaller element of X is ~ llU j which is < l u/n j 
for all finite n (as u is infinite) and in the constellation of u, hence < v. So 
u = next(X, v). 

For any given r E w ~ w, let A E U be a subset of X such that 
p < q in A ~ next(X,r(p + 1)) < q; 

such an A exists by Lemma 2.3 because U is a Q-point. We shall show that this A 
has the properties required in the formula expressing + I( U) 1;. + I(V). Let arbi-
trary B E V and c E w be given. We must find arbitrarily large values of x for 
which next(A, x) > c . next(B, rex»~. 

Since c is finite, v < l u/ c 1. so 
cv < u = next(X,v) E A, 

where we have also used that A is in the type U of u. Thus, the type Vof v contains 
the set 

B' = {b E B I c . b < next( X, b) E A}, 
since it contains B. 

Consider an arbitrary bE B'. Let q = next(X, b). As bE B', we have q E A, 
and, since A ~ X, we infer that q = next(A, b). Let p be the largest element of A 
that is < q, and let x = p + 1. Our choice of A ensures that next(X, rex»~ < q. 
This inequality together with q = next(X, b) implies r(x) < b. Thus, next(B, rex»~ 
~ b, and therefore 

c' next(B, r(x)) ~ c' b < next(X, b) = q = next(A, x), 
where the strict inequality comes from the fact that b E B' and the last equality 
comes from the choice of p and x. 

Since B' is in V, it has arbitrarily large members b, and these clearly yield 
arbitrarily large values of x. Since all such values of x have been shown to satisfy 
next(A, x) > c . next(B, rex»~, the proof of + leU) 1;. + I(V) is complete. 

This completes the computation of the order type of the chain of growth types 
associated to a cofinal-equivalence class that contains a Q-point. The description can 
be slightly simplified by the following considerations. Each of the intervals 
Un E ,.,[ l u/n J, n . u], which, together with its right endpoint, was collapsed by the + 
operation, contains elements of M of the form 2v, with v in the constellation of u; 
indeed, we need only take v = flog u 1. where" log" refers to base 2, and we have 
u ~ 2V < 2u. Under the logarithm operation, the interval under discussion corre-
sponds to the interval Un E ,.,[ V - n, v + n], i.e., to the galaxy of v. Thus, the results 
of the preceding computation can be put into the following form. 
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PROPOSITION 6.5. Let U be a Q-point. The chain of growth types associated to the 
cofinal-equivalence class of U is order-isomorphic to the chain obtained from the 
Dedekind-completion of the top sky of U-prod w by collapsing each galaxy together 
with its right endpoint. D 

COROLLARY 6.6. (a) P - {w /' w} has a maximal element if and only if there is a 
nonprincipal ultrafilter that cannot be mapped to any Q-point by any finite-to-one 
function. 

(b) Every element of P - {w /' w} is below a maximal one if and only if there are 
no Q-points. 

PROOF. Both assertions follow from Propositions 6.4 and 6.5 and the fact that the 
+ /(U)'s are cofinal in P - {w /' w}. For (a), recall (Lemma 2.4) that an ultrafilter 
is cofinally equivalent to a Q-point if and only if it is mapped to that Q-point by a 
finite-to-one function. D 

Let S be the set of countable transfinite sequences of zeros and ones, 
S = {f I for some countable ordinal a, f: a ~ {a, I} }, 

linearly ordered lexicographically. Using the saturation property [1] of uitrapowers, 
it is easy to embed S order-isomorphically into the top sky of U-prod w for any 
ultrafilter U; in addition, one can arrange that distinct elements of S are mapped 
into distinct galaxies of U-prod w. It follows that the chain described in Proposition 
6.5 includes a copy of the Dedekind-completion of S, which is easily seen to have 
cardinality at least 21'\ Thus, if there is a Q-point, then P has cardinality at least 2K,. 

Gobel and Wald [13] obtained the stronger conclusion that P has cardinality 22KO 

from the stronger assumption that Martin's axiom holds. 
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