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In wireless sensor networks (WSNs), homogeneous or heterogenous sensor nodes are deployed at a certain area to monitor our
curious target. The sensor nodes report their observations to the base station (BS), and the BS should implement the parameter
estimation with sensors’ data. Best linear unbiased estimation (BLUE) is a common estimator in the parameter estimation. Due
to the end-to-end packet delay, it takes some time for the BS to receive sufficient data for the estimation. In some soft real-time
applications, we expect that the estimation can be completed before the deadline with a probability. The existing approaches usually
guarantee the real-time constraint through reducing the number of hops during data transmission. However, this kind of approaches
does not take full advantage of the soft real-time property. In this paper, we proposed an energy-efficient scheduling algorithm
especially for the soft real-time estimations in WSNs. Through the proper assignment of sensors’ state, we can achieve an energy-

efficient estimation before the deadline with a probability. The simulation results demonstrate the efficiency of our algorithm.

1. Introduction

Wireless sensor networks (WSNs) are emerging technologies,
which can be widely applied in medicine, military, surveil-
lance, and aerospace fields. Several sensors collaborate to
accomplish high-level tasks. A WSN typically consists of a
Base Station (BS) and several homogeneous or heterogenous
sensor nodes. The sensor nodes are responsible for sampling
the analog signal and transmit their local data to the BS. The
BS acquires data from sensor nodes and does some relevant
applications.

The parameter estimation is an important task in WSNs.
Because the sensors’ observations are corrupted by the noise,
the BS should estimate the real value with the corrupted
observed data. An estimator which achieves an acceptable
estimation Mean Square Error (MSE) should be designed
at the BS. Best Linear Unbiased Estimation (BLUE) [1] is
a popular estimator in parameter estimation. Due to the
bandwidth constraint in WSNs, authors in [2] propose the
Quasi-Best Linear Unbiased Estimation (Quasi-BLUE). The
estimator is simple and can give unbiased estimation. The

works [2-6] are examples that employ Quasi-BLUE as the
estimator in WSNG.

Since sensors may be deployed in hostile or remote areas,
sometimes, the batteries replacement is impossible. To a
certain sensor network, there is an upper bound on the
lifetime [7]. Therefore, energy saving is very important in
the applications of WSNs. The communication is the primary
source of energy consumption [8]. The data transmission
from sensor nodes to the BS can be directly sensor-to-
destination scheme or multihop routing scheme. Due to the
transmission power is proportional to the ath power of the
transmission distance [9, 10], multihop routing scheme is
widely applied in WSN. In order to save energy, not all the
sensor nodes in the network need to send their observations
to the BS. In [11], the authors proposed a new topology man-
agement scheme by switching the state of the sensors. The
radios of nodes can be turned off in a so-called “monitoring”
state and will be switched to the “transfer” state when
required. The transfer state nodes report their observations to
the BS and the monitoring state nodes will not send any
packet to the BS. Many works employ the idea of [11] and



schedule the state of sensor nodes to reduce energy consump-
tion [12-15]. In this paper, an energy-efficient state scheduling
scheme is designed especially for Quasi-BLUE in WSN.

The BS should collect sufficient data from sensor nodes to
implement the Quasi-BLUE. Because of the delay during data
transmission, it takes some time for the BS to implement the
Quasi-BLUE. The performance metric event detection delay
(EDD) is used to describe the time when sufficient number
of packets are delivered to the BS [16]. Because of stochastic
behavior of end-to-end delay in WSNs, the previous works
usually use a probabilistic model to describe the delay
[17,18]. The probability distribution of the end-to-end delay is
researched in [17, 18]. That the EDD is less than a bound also
satisfies a probability distribution. In some real-time appli-
cations, long EDD is not expected. However, the existing
researches of Quasi-BLUE in WSNs do not consider the
timing constraint. It calls for a scheme that can implement
the real-time Quasi-BLUE. The real-time can be classified
into hard real-time and soft real-time. In hard real-time, the
system needs to finish a task before a hard deadline. The
soft real-time, on the other hand, just requires the task be
accomplished before the deadline with a probability. In this
paper, we focus on the scheduling for the soft real-time
estimation. Because the more number of hops during data
transmission results in longer delay [19], the existing works
usually reduce the number of hops during data transmission
[20-24]. However, these approaches do not take advantage of
property of soft real-time estimation. The soft timing con-
straint only requires a task to be finished before the deadline
with a probability. In the Quasi-BLUE with an MSE con-
straint, more sensor nodes’” data will increase the probability
that the timing constraint is satisfied. Through turning some
redundant nodes to transfer state, the soft timing constraint
can still be guaranteed. In this paper, we add some redundant
transfer state nodes to guarantee the soft timing constraint
rather than reducing the number of hops during data trans-
mission.

In this paper, we focus on soft real-time parameter esti-
mation of WSNs. We employ Quasi-BLUE to implement the
parameter estimation at the BS. The packets that carry the
observations of sensors are transmitted the BS through mul-
tihop. The multihop path is the energy minimum path that
can be obtained through Dijkstra’s algorithm. We propose the
MSE constraint function based nodes assignment (MBNA)
algorithm to schedule the state of sensor nodes. MBNA
schedules the state of sensor nodes to implement the soft real-
time estimation with an MSE constraint. The contributions of
this paper can be concluded as follows.

(i) We first consider the real-time for the Quasi-BLUE in
WSN:s.

(ii) The probability that the EDD is less than the timing
constraint is quite difficult to calculate. Our approach
takes advantage of linear property of Quasi-BLUE and
calculates the probability in a heuristic way.

(iii) Our MBNA can achieve low energy consumption
under MSE and soft timing constraints.
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The paper is organized as follows. Section 2 provides
some related works. In Section 3, we introduce the system
model and give some assumptions in this paper. In Section 4,
we show the possibility of energy reduction through adding
redundant transfer state nodes. In Section 5, the energy-
efficient scheduling algorithm for soft real-time estimation,
MBNA, is introduced; the performance of MBNA is shown
in Section 6. In Section 7, we conclude the paper.

2. Related Works

A lot of researches have been done on parameter estimation
in WSNs. BLUE is a popular estimator for the parameter
estimation [1, 25]. Luo makes some adjustments on BLUE,
and proposes the Quasi-BLUE [2]. In Quasi-BLUE, the data is
quantized to several bits, and the estimation is implemented
with the quantized data. Although MSE through Quasi-BLUE
increases compared to BLUE, Quasi-BLUE is quite suitable
for the digital communication environment. In order to save
energy, not all the sensor node will send their observations.
Only part of sensors will report the observations to the BS
according to the demand [11]. The estimation cannot be
implemented until the BS receives sufficient data from sensor
nodes, because the packet that is transmitted from source to
the BS suffers an end-to-end delay. In some real-time applica-
tions, the estimation should be finished before a deadline. It
requires sufficient data arrives at the BS before the deadline,
and the packet delay should be considered.

Because of the randomness of wireless communication,
the end-to-end packet delay shows the stochastic character-
ization. Many researches try to describe the delay through
statistics method. In the studies in [26-28], the worst case
end-to-end delay is analyzed. The low delay routing algo-
rithms always guarantee the worst case of delay. But due to the
large variance of end-to-end delay in WSNs, the worst case
cannot accuratly describe the end-to-end delay. The works in
[16-18, 29] employ a probability distribution to describe the
delay. The delay distribution is built in [17, 18, 29], and the
probabilistic description is quite suitable for the delay analy-
sis. In this paper, we follow the probabilistic model of delay
and implement our scheduling based on the results in [16-
18, 29].

In order to guarantee the timing constraint, many works
focus on designing the low delay routing algorithm [20-
22,24]. In WSNSs, the delay during data transmission consists
of the queueing delay, the transfer delay and the processing
delay. Since more number of hops will increase the delay, the
routing scheme decreases the delay by decreasing the number
of hops. However, the energy consumption increases at
the same time. The tradeoff between delay and energy is the
major topic. But most low delay routing schemes do not
take advantage of the probabilistic property of the delay.
The approaches in [20-22, 24] are designed for the fixed
delay bound and are not suitable for soft real-time scenario.
The energy consumption sometimes can drop a lot while
employing the soft timing constraint [30]. Through a proper
scheduling scheme, heterogenous sensor nodes can coop-
eratively implement tasks under soft timing constraint. The
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works in [13, 15, 30] are examples that implement the opti-
mization.

In this paper, we guarantee the soft timing constraint of
Quasi-BLUE through adding redundant transfer state nodes.
The BS just requires sufficient data from sensors in an area
for the estimation but does not specify a certain sensor. So
one sensors data can be replaced by the other sensors. If
there are enough transfer state nodes, the estimation can
still be finished before the deadline with a high probability.
The depth-first search method is suitable for the multilevel
soft real-time scheduling problem [15, 30, 31]. However, the
node state scheduling problem of Quasi-BLUE is a single-
level scheduling problem, and there are multiple equivalent
nodes in the same level. The approaches in [15, 30, 31] are not
suitable for this kind of problem. The problem is also not easy
to solve through breadth-first search because a huge number
of node state combinations should be listed. Our MBNA
algorithm, on the other hand, does not employ the traditional
search method to implement the optimization. It exploits the
properties of Quasi-BLUE in WSNs, and provides the energy-
efficient scheduling in a heuristic way.

3. System Model

3.1. Network Model. In this paper, we assume the WSN
consists of many sensor nodes and a BS. The sensors are
uniformly distributed in the sensing area. The sensor node
has two states: transfer state and monitoring state. In transfer
state, sensors detect the environment and transmit the
observed value to the BS. In monitoring state, sensors detect
the environment but do not communicate with others. The
mode of a sensor node can be switched according to the
command from the BS. The transfer sensors will send their
observations to the BS, and the BS implements the estimation
with the observed data. The state of sensor nodes is deter-
mined by the BS. Based on some performance metrics, the BS
comes up with the scheduling of sensor nodes and sends the
scheduling command to the sensor nodes. The sensor nodes
change their states according to the command.

The sensor nodes can communicate with each other in the
network. In order to save energy, the packets will be transmit-
ted to the BS through multihop. Some nodes will be selected
as the intermediate nodes during multihop packet relay.
Because the BS is usually powered by the external electric
source, we do not care about the energy consumption of
the BS. Therefore, the BS communicates with sensor nodes
directly without any intermediate nodes. In the wireless
communications, we assume that the quadrature amplitude
modulation (QAM) is employed. The sensor node or the BS
sends an L-bit message by using QAM with a constellation
size 2L,

3.2. Quasi-BLUE. The sensors keep observing the curious
parameters. The observation z; on the real-value x made
by the kth sensor s; is corrupted by noise 6;, which can be
interpreted as

Zp =X+ Gk. (1)

If the variance o}, of the noise 0, is known, the BLUE estimator
[1] for the real-value x is

Y (Xk/alf)

=" =7 (2)
Yiar (1/0%)
The MSE of BLUE estimator is
_ 2 1
EX-x)'= ————~ (3)

- Va1 (1/01%).

The BLUE gives us a relatively accurate estimation, but it
is impractical in a WSN system because of the bandwidth and
energy limitation [2]. Therefore, the data is quantized to some
bits at each sensor, and the estimations are implemented with
the quantized data.

Suppose the value z; observed by sensor s is bounded by
[-W, W], and it is quantized to L, bits

W +iM, |2 —iM| < 0.5M

my (21> Ly) =
-W+(i+1)M, 0.5M < |z —iM| <M,
(4)
where 0 <i <25 -2, M = 2w/(2% - 1).
We employ Quasi-BLUE to construct a linear estimator

of x similar to BLUE estimator, and the estimator X based on
quantization is [5]

py- (mk/ (‘713 + 61%))

X=—; , (5)
T L (U0 )
where 6,% = (W?/(2% - 1)?), and the variance is
n 2 2
D=E®-x) =~ (Bomc ) /(o + &) ) (6)

T (1/ (0 + )

If we round the quantized value to the nearest endpoint of 2
intervals, the MSE is [2]

1
D = .
S (1 (02 +2) @)

From (7), it can be found that more sensors lead to more
accurate estimation.

3.3. Energy Model. The energy consumption of a sensor node
contains two main parts: (1) the communication energy and
(2) the circuit energy. In long-range application, the data
transmission consumes most of the energy in a WSN and
the other energy can be neglected compared to the commu-
nication energy. Therefore, we only consider the communi-
cation energy in this paper.

When a sensor s, finishes detecting and quantization, an
L,-bit length data will be transmitted to the BS. In a sim-
plified model, the transmission energy can be described as a
function of the data length and the transmission distance. The



channel between two nodes experiences a pathloss propor-
tional to a = d*, where d is the transmission distance and
pathloss « > 2 is the pathloss exponent. If an L,-bit packet is
transmitted with the distance of d, the energy consumption
using QAM with a constellation size 2k 5 9, 10]

E=ca(2" -1), 8)

where E is the energy consumption and c is a constant during
transmission. Equation (8) is the energy consumption to
transmit L-bit length data for one hop. The energy con-
sumption to send a packet from source node to the BS is the
summation of multihop energy consumption. We denote by
E, the energy consumption which corresponds to the source
node s.

3.4. Probabilistic Delay. Within the communication range,
a link can be built between two nodes. For two sensor
nodes s; and s;, we denote (i, j) the link between s; and
s:. In a WSN, each link (i, j) is associated with an end-to-
end delay T(; ;). T(; ) is not stationary, and it will change
during the system running. Because of the randomness
in wireless communication, the end-to-end packet delay is
usually described as a probabilistic model [16-18, 29]. If we
know the probability density function (PDF) of T ;, the
delay of (i, j) satisfies

T
P(T(i,j) < T) = L Pa.j () dt, 9)

where py; ;) is the PDF of T(; ;). A packet is transmitted from
the source node to the BS through a multihop path, and the
packet will suffer the multihop end-to-end packet delay. We
denote by T} the delay of the packets transmitted from the
sensor node s;. The delay satisfies a probability distribution.
We denote by g, the cumulative density functions (CDF) of
Tk.

The probability that the delay T, satisfies timing con-
straint is

P(Ty < Ty) = gi (Ty), (10)

where T, is the timing constraint.

4. Node State Scheduling for Soft
Real-Time Estimation

4.1. Motivational Example. In the multihop transmission,
increasing the number of hops will increase the delay.
More hop means extra processing delay, queueing delay, and
transmission delay. Transmitting the packets along a path
with less number of hops is a method to guarantee the timing
constraint [20-24]. We call this kind of approaches the delay
sensitive energy aware (DSEA) routing scheme. Through the
tradeoft between energy and delay, a path will be generated
based on the timing constraint. However, this method has the
two drawbacks.

(1) The energy minimum path planning with timing
constraint is an NP-complete problem. The existing
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FIGURE 1: A simple sensor network.

approaches can only provide the near-optimal solu-
tion.

(2) In order to decrease the path delay, the path that
satisfies the soft timing constraint has less number of
hops, which will increase the communication energy.

In this paper, on the other hand, we try to guarantee the
soft timing constraint through adding redundant nodes. In
the estimation process, the BS only requires sufficient data
but does not care for the source of the data. Transmitting
redundant data is able to increase the P(EDD < T;). Some-
times this approach is more energy-efficient compared to
planning a new path. It can be illustrated in the following
example. As shown in Figure 1, there is a sensor network that
consists of three sensor nodes and one BS. The BS requires at
least one piece of data from sensors in the area A. Either s;
or s; is candidate to send observations to the BS. The energy
consumption for transmitting the packet through each link
is shown in Figure 1. In the energy minimum routing, both
the two sensor nodes transmit their data to s at first. Then s,
relays the data to the BS.

The delay of the two paths with the intermediate node s
is denoted by T; and T);. Assume the BS requires that the data
from A within 50 ms with the probability 0.7. 1f T; and T'; have
the following probability

P(T; < 50) = 0.5,

(1)
P(T; <50) =05,

these two paths cannot guarantee soft timing constraint. The
conventional approach is to generate a new path that satisfies
the soft timing constraint. In this example, either s; or s; will
transmit data directly to the BS. The direct data transmission
will consume 6] energy per sensor. However, if both s; and s;
transmit data to the BS through the energy minimum path,
the probability that the BS receive the packet from s; or s;
within 50 ms is

P(T<50)=1-P(T,25)P(T;250)=075.  (12)

The soft timing constraint is satisfied when redundant data is
transmitted to the BS. The total energy consumption that both
s; and s; transmit data to the BS along the energy minimum
path is 4]. It can be found that adding redundant nodes can
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achieve low energy consumption while satisfies the soft
timing constraint.

We should still note that the approach through adding
redundant transfer state nodes may not perform better than
DSEA routing. The performance is tightly related to the value
of end-to-end packet delay. In the Section 6, we will discuss
the problem in detail.

4.2. CDF of End-to-End Delay. For a source node, the energy
minimum path to the BS can be obtained through Dijkstra’s
algorithm with energy metric. Each path is associated with
an end-to-end delay distribution. Because each sensor node
corresponds to a path, we can assume that the end-to-end
packet delay distributions with the same source node are
identical.

The packets are sent from source node to the BS through
multihop relay. In the end-to-end delay analysis, the CDFs
of multihop end-to-end delay are similar among the works
in [17, 29]. Because there is a physical limit in how short
a delay can be (shorter than that it is impossible that a
message arrives at the other end), the end-to-end delay will be
larger than a lower bound. The lower bound of delay is
denoted by T,,;, in this paper. A packet may be lost during
transmission. In this situation, the end-to-end packet delay
can be thought as infinite. Based on the experimental results
in [17, 29], the end-to-end delay approximately satisfies the
negative exponential distribution in the range [T,;,, +00).
For the packets transmitted from the source node s, the CDF
of multihop end-to-end delay satisfies

Ge(t)=1—e™ 4T .. (13)

The parameter y can be estimated through moment esti-
mation method. During the network system running, the BS
can record the end-to-end delay with different source nodes.
When a sensor node send a packet, the time information
will be added to the packet. The BS calculate the end-to-end
packet delay based on the time information. If the the delay
of different packets from s, is T}, T5, . . ., T,,, the estimated /i,
through moment estimation is

1

Xk =<n Tmin'
Zi=1 Ti

(14)
The value of fi, is always updated during the system running.

4.3. Guarantee Soft Timing Constraint with Redundant Nodes.
Suppose the BS requires data from an area A to implement
the estimation on a parameter. The MSE constraint for the
estimation is D,. Multiple transfer state nodes will provide
the observed data for the estimation. We will add several
redundant transfer state nodes to guaranteed the soft timing
constraint.

We denote on S 4 the set that contains all the sensor nodes
in the area A. With the PDFs of different path delays and
the timing constraint T;, we can calculate P(T, > T,) of the
sensor s;. If P(T, > T,;) = 1, it means the path can never
satisfy the timing constraint. This kind of node will never be
selected to send data to the BS. We delete this kind of node

from S,. Then we randomly select several nodes from S,
to guarantee the soft timing constraint. We denote by S, the
transfer state sensor node set. The node s, € S, will transmit
data to the BS. At first, we should choose several transfer
state nodes to implement the BLUE while satisfying the MSE
constraint. If the soft timing constraint is satisfied with the
set S,, no redundant node are required. Otherwise, we should
add some redundant nodes to S,. We define a subset Q € S,,
and the sensors in ) can provide the sufficient data for the
estimation, that is,

1
<D..
S /(2 +00) =

If the data from the sensors in Q) can guarantee the soft timing
constraint, we have

HP (Tk < Td) > . (16)

5,.€Q

(15)

For the set S,, we can find more than one Q) that satisfies (15).
Therefore, the probability P(EDD < T) can be expressed as

P(EDD<T,) = Y []P(Tx <Ty). 17)

QCS, 5,.€Q

Through scheduling the state of sensor nodes, P(EDD < T)
can be controlled to a certain level and the soft timing con-
straint can be guaranteed.

4.4. Energy-Efficient Soft Real-Time Parameter Estimation. In
the parameter estimation process, the BS should provide
the accurate estimation with sensors’ data. In this paper, we
employ the MSE between the estimated value and the actual
value to evaluate the accuracy of the estimation. In order to
save energy, not all the sensor nodes need to send data to
the BS. We just need some sensors’ data to accomplish the
estimation with a certain MSE constraint.

The BS collects sufficient data from different sensors,
and implements the estimation. There is an event detection
delay (EDD) for the WSNs [32]. The EDD is the time when
sufficient number packets are delivered to the BS for the data
fusion. In some real-time applications, the EDD should not
be too large. A packet that is transmitted from source node to
the BS corresponds to an end-to-end delay distribution [16,
17, 29]. In the network, the transfer state nodes send their
packets to the BS, and the EDD is determined by the end-to-
end delay distribution of each packet. In order to guarantee
the soft timing constraint, the EDD should be less than a
bound with a probability, that is,

P(EDD < Ty) >y, (18)

where T} is the timing constraint.

The assignment of transfer state nodes will affect EDD.
If the transfer state nodes are not enough, the Quasi-BLUE
cannot be finished within the soft timing constraint. On the
other hand, if we turn too many nodes to transfer state, the
energy consumption will increase. We need to schedule the
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FIGURE 2: The MSEPF with static D, .

state of node to achieve low energy soft real-time estimation,
that is,

min z E,,

SKES,

st. D<D, (19)

P(EDD < Ty) > v,

where S, is the transfer state node set, D, is the MSE con-
straint, and T, is the timing constraint.

5. Redundant Nodes Assignment

P(EDD < Tj) is the summation of all the probability of
[1;,caP(Ti < T,). Before calculating [, .o P(T < Tj), we
must list all the possible Q. The process is time consuming. In
this paper, we use a heuristic method to calculate P(EDD <
T;). We propose the MSE constraint function (MSECF) and
calculate P(EDD < T) through the MSECE. Then the trans-
fer state node set can be determined based on P(EDD < T;).

5.1. MSE Constraint Function. In Quasi-BLUE, more sensors’
data results in small MSE. Under a certain MSE constraint,
the BS has to wait for sufficient data to guarantee the MSE
constraint. Thus, the timing constraint for Quasi-BLUE is not
satisfied and can also be expressed as the estimation cannot be
finished with the data that arrives before the deadline. There-
fore, P(EDD < T) is equivalent to the probability that the esti-
mation cannot be finished before the deadline.

In this paper, we define the MSE constraint function
(MSECF) f(x) as

f(x)=P<Din>. (20)

r

The function means the probability that the reciprocal of MSE
constraint is larger than x. Within the timing constraint, the
MSE achieved is denoted by D. Then f(1/D) is the probability
that the MSE constraint is not satisfied, and P(EDD < T,) =
fQ/D).
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If the MSE constraint is a static value, we have

1
1, x<—,

f )= D, (21)

0, else.

The function (21) can be plotted as shown in Figure 2.

The Quasi-BLUE is implemented with sensors’” data, and
there is an estimation MSE D. If 1/D > 1/D,, we have
f(1/D) = 0. It means that the D can guarantee the MSE
constraint with the probability 1.

In the Quasi-BLUE of WSNs, the MSE constraint is usu-
ally a certain value, and the MSECF can be formulated as
(21). In order to guarantee the MSE constraint, we should
determine a S, that satisfies

1 Z 1 N 1
Do PR VIRt (22)
D o} +6; D,

When a packet from s, is transmitted to the BS, two pos-
sible events may happen.

(i) Gg: the packet reaches the BS before the deadline.

(ii) Gk: the packet does not reach the BS before the
deadline.

We denote the probability that G, happens as p, and the
probability G, happens as g;. With the CDF of end-to-end
delay, p; and g, can be calculated.

P =9x (Ty),

4 =1-pe

where g is the CDF of end-to-end packet delay whose source
node is s.

The missing data will not be used while calculating 1/D.
Since the packet from each transfer state sensor node corre-
sponds to probabilistic delay, there is a corresponding p; for
the packet transmitted from s, € S,.

(23)

5.2. Probability for Satisfying MSE Constraint. At first, we
assume that all the packets can reach the BS before the
deadline, and original reciprocal MSE is

1
D ZS 740 24)
If one packet transmitted from a transfer state node does not
reach the BS before the deadline, it can be thought that the
packet is missing. The BS has to implement the estimation
without the data in that packet. Then the data will not
make contribution to the estimation. If the missing packet
is transmitted from s, the contribution of s, should be
subtracted from (1 /D)(O). The achieved 1/D without data
from s, is (l/D)(O) - 1/(0,3 + 62). The process is equivalent
to add the MSE constraint by 1/ (0,3 + 62). Thus, the MSECF
will be converted to

1
fx) = D, o7 +8” (25)
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The function (25) right shifts (21) for 1/ (0,3 +62%). Because the

probability for G is g;, the MSECF that considers possible
data missing of s, is

1
fx) = pkf(O) (x) + Qkf(O) (x - O-I% AFy) ) ’ (26)

where f(o)(x) is the MSECF without considering the data
missing. We introduce the operator “®”, and express (26) as

P =2 eG,. (27)

After one @ operation, the MSECF is converted to Figure 3.

f M (1/D) is the probability that the estimation cannot be
finished within timing constraint while considering the
possibility of Gy.

Theorem 1. Consider the following:
f(x)eaGiean=f(x)eBGjeG,-. (28)
Proof. Consider the following:
fx)eG oG,

1
= (Pif(x)+q1-f<x— m))éﬁ(ﬁ

1 1

1
=p; (pif(x)+qif<x_ 01'2+8i2>>

1
t4; (Pif (x— m) (29)
J J
1 1
1 1 ] ]

1 ))
PR @G,
2 2 1
oj+5j

= (ij (x)+q,f <x -

=f(x)®G; G,
O

According to Theorem 1, the order of & operation will not
affect the final MSECE. All the packets in S, may arrive at the
BS after the deadline, so the above process should be applied
to all sensors. After n@® operation, the MSECEF is converted to

)= 2% eG 0G,0---0G, (30)
Hence,
P(EDD < T,) = f" <%> (31)

5.3. Nodes Assignment through MSECF. P(EDD < T,)
can be calculated through MSECE Based on the probability
P(EDD < T,), we propose the MSECF based nodes assign-
ment (MBNA) algorithm to determine the transfer state
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FIGURE 3: The MSEPF after one & operation.

nodes to implement the soft real-time BLUE. The detail steps
of MBNA is shown in Algorithm 1. At first, an original S, is
generated. The sensor nodes in S, can provide sufficient data
for the Quasi-BLUE with the MSE constraint. The original
S, does not have redundant nodes. So all data of sensors in
S, should arrive before the deadline. Then we calculate the
probability P(EDD < T,) through £ (1/D). If f*(1/D) >
y, the estimation under the MSE constraint D, can be
implemented with the soft timing constraint. Otherwise,
we should add a redundant node to S, and check whether
f =+ (1/D) > y. The process continues until we obtaina f(x)
that satisfies f(1/D) > y.

6. Simulation Results

In this section, we present the simulation results for the
MBNA algorithms.

6.1. Simulation Setup. In the simulations, we randomly
deploy 100 sensor nodes in a 1000 m x 1000 m area. We make
the BS located at the (500,500). The two constants of the
communication energy in (8) is set as ¢ = 1 and « = 2. The
maximum communication range of the sensor node is set as
500 m. The nodes can communicate with others within the
communication range.

We assume that the sensors observe a parameter with
the range of [—16, 16] and the observations are quantized to
4-bit. The noise variance is assumed to be a stochastic value
between [1, 4]. Each sensor corresponds to a noise variance.
We schedule the states of the sensor nodes to implement
Quasi-BLUE. The transfer state nodes will report their obser-
vations to the BS. At first, an original transfer state sensor
set can be generated without considering the timing con-
straint. We randomly generate some transfer state nodes that
are able to provide sufficient data for the Quasi-BLUE, and
these nodes formulate the original transfer state sensor set.
In soft real-time estimations, the EDD should be less than the
timing constraint T;; with a probability y. The DSEA routing
approaches usually reduce the number of hops to guarantee
the timing constraint and construct a low delay path. The
packets travel along the low delay path so that the EDD can be
reduced. This kind of scheme guarantees the timing con-
straint by considering the worst case end-to-end delay. The
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Require: observed value range [-W, W], quantization data
length L, timing constraint T, with probability y, and

MSE constraint D, ;
mé=w/(2"-1);
(3)S, = 0;

(4) do

(7) while 1/D < 1/D,;
(9) for s, €S,

10)  f(x) = f(x) ® Gy
(11) end for

(12) while f (1/D) <y
(14) for s, €S,

(16)  end for

(18) end while

Ensure: transfer state sensor set S,;

(2) calculate p; of every sensor node;

(5) adda transfer state node to S,;
(6) 1/D=Y, . 1/(op+8);

(8) calculate f(x) according to (21);

(13)  add a transfer state node to S,;
(15) fx) = f(x)® Gy

(17) 1/D=Y, . 1/ (o7 +8);

ALGORITHM 1: MSECF Based Nodes Assignment (MBNA) Algorithm.

MBNA, on the other hand, tries to guarantees the soft timing
constraint through turning redundant nodes to the transfer
state. The path of MBNA is still the energy minimum path.
In this paper, we employ the approach in [19] to implement
DSEA routing. We simulate the energy consumption for
our MBNA and compare the results of MBNA with DSEA
routing. Because the worst case of single hop delay is required
for DSEA routing, we assume that the largest single hop delay
is

t = F'(0.99) + rand, (32)

where F(x) is the CDF of single hop delay, Fl(x) is the
inverse function of F(x), and rand is a random value between
0 and L In (32), the single hop delay will be larger than
F(0.99) with the probability 0.99. While considering the
variation of single hop delay, we add a random value rand to
F7(0.99) and approximate the worst case of single hop delay
as (32).

6.2. Normal Distribution Single Hop Delay Case. Normal
distribution single hop delay is a common assumption in the
delay analysis in WSNs. In this subsection, we simulate the
performance of MBNA with the normal distribution single
hop delay. The single hop delay is assumed to satisfy the

normal distribution with the PDF (1/ \/E)e(tfls)z/ ¥ In the
soft real-time parameter estimation in WSNs, three factors
will affect the system’s energy consumption: (1) timing
constraint Ty; (2) MSE constraint D,; (3) probability for
satisfying timing constraint y.

We investigate the performance of MBNA versus T);, D

r

and y. We make y = 0.8 and the MSE constraint D, = 0.3 and

Energy (n])

50 60 70 80 90 100
Timing constraint (ms)

—o— DSEA
—=— MBNA

FIGURE 4: Energy consumption versus timing constraint. y = 0.8
and D, = 0.3.

investigate the energy consumption versus T};. The simulation
is repeated for 100 times and the result is shown in Figure 4.
The two curves in Figure 4 represent the average energy
consumption required to implement the Quasi-BLUE. Short
timing constraint means the low probability that the packet
can reach the BS before the deadline. Therefore, when
the timing constraint increases, the energy consumption
decreases. Compared to DSEA routing, MBNA has lower
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FIGURE 5: Number of successful estimation before deadline. y = 0.8
and D, = 0.3.

energy consumption when the timing constraint is small. In
Figure 4, DSEA routing achieves lower energy consumption
than MBNA when T; > 82ms. The phenomenon is easy
to understand. Because T} is large, the packets will travel
along the energy minimum path through DSEA routing.
Therefore, with the same source node, the multihop path is
identical for both DSEA routing and MBNA. Because MBNA
requires extra transfer state nodes to guarantee the soft timing
constraint, MBNA may consume more energy for Quasi-
BLUE when T}, is large.

MBNA is designed for the soft timing constraint. We
need the estimation to be implemented before the deadline
with a probability y. To verify that MBNA can guarantee the
soft timing constraint, the number of successful estimations
should be investigated. The successful estimation can be
expressed as the MSE constraint is satisfied when the data
arrives before the deadline. Figure 5 shows the number of
successful estimations before deadline. We choose 11 different
timing constraints from 50 ms to 100 ms and simulate the
estimation process for 1000 times per timing constraint. We
let D, = 1and y = 0.8 during simulation. We record the
number of successful estimations in the 100 times estima-
tions. In Figure 5, the height of the bar represents the number
of successful estimations. We can find that the number of
successful estimation is larger than 800 for each timing
constraint. It means that the Quasi-BLUE can be finished
before the deadline with the probability that is larger than 0.8.
The soft timing constraint can be guaranteed through MBNA.

Then we investigate the MSE constraint’s influence on the
performance of MBNA. We make y = 0.8 and the timing
constraint T; = 100ms. y and T, keep unchanged during
simulation. The energy consumption with different MSE
constraints is shown in Figure 6.

The result in Figure 6 represents the average energy con-
sumption with MBNA and DSEA routing. MBNA can achieve
lower energy consumption when D, < 4.6. When D, > 4.6,

x10°
12

Energy (nJ)

MSE constraint

—— DSEA
—8— MBNA

FIGURE 6: Energy consumption versus MSE constraint. y = 0.8 and
T, =100 ms.
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FIGURE 7: Energy consumption versus y for T,; = 100 ms.

MBNA and DSEA routing have the same energy consump-
tion. The reason is that when the MSE constraint is large, the
Quasi-BLUE can be finished with few sensors’ data. Accord-
ing to (17), P(EDD < T,) will increase when the size of S,
is small. When D, is large enough, DSEA routing does not
need to reduce the number of hops and MBNA will not add
redundant transfer state node.

The probability y affects the number of redundant transfer
state nodes. We make T,; = 100 ms and compare the results
of MBNA with different y. We choose three value of y and
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FIGURE 8: Energy consumption with normal distribution single hop
delay.
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FIGURE 9: Energy consumption with negative exponential distribu-
tion single hop delay.

simulate our MBNA with different y. For each y, the simula-
tions is repeated for 100 times. We record the average energy
consumption for the Quasi-BLUE. The simulation results
is shown in Figure7. y represents the probability that the
estimation should be finished before the deadline. If y is
small, MBNA will not add many redundant nodes to guaran-
tee the timing constraint. As a result, the energy consumption
will decrease as y decreases.
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FIGURE 10: Energy consumption with uniform distribution single
hop delay.

6.3. Simulation for Different Single Hop Delay Distributions.
The single hop delay distribution will affect the performance
of DSEA routing. In DSEA routing, the worst case of single
hop delay is used in the route planning. If the worst case is not
far away from the common case, DSEA routing may achieve
lower energy consumption than MBNA. The general hypoth-
esis of single hop delay distribution are normal distribution,
negative exponential distribution and uniform distribution.
We make D, = 1, y = 0.8 and simulate the performance of
DSEA routing and MBNA under the three single hop delay
distributions. The performances of DESA and MBNA with
different single hop delay distributions are shown in Figures
8, 9 and 10. Figure 8 shows the energy consumption for
normal distribution single hop delay, Figure 9 shows the
energy consumption for negative exponential distribution
single hop delay, and Figure 10 shows the energy consump-
tion for uniform distribution single hop delay.

In the normal distribution case, the single hop distribu-
tion is assume to satisfy the N(15, ), 8 is the variance of the
distribution. In Figure 8, when 8 = 3, 5,10, MBNA achieves
lower energy consumption than DSEA routing. When 8 = 1,
DSEA routing performs better than MBNA. In the negative
exponential distribution case, the CDF single hop distribu-
tion is assumed to be 1 — ™. With different values of A, the
performances of DSEA routing and MBNA changes. When A
is small, MBNA shows great energy-efficiency over DSEA
routing. When A = 0.3, MBNA and DSEA routing have
similar energy consumption. In the uniform distribution
case, we let the single hop delay vary in a range. In Figure 10,
the single hop delay varies in [10,15], [5, 15], and [5,20],
respectively. In the uniform distribution case, we find that
MBNA shows no advantage when the single hop delay varies
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in [10, 15] and [5, 15]. When the single hop delay varies in
[5,20], MBNA provides lower energy consumption.

The above results reflect the fact that DSEA routing
guarantees the hard timing constraint. In DSEA routing, the
packets travel along a path whose maximum end-to-end
delay is less than the timing constraint. In general, the worst
case will happen with a small probability, and DSEA routing
over considers the end-to-end delay. Therefore, DSEA routing
is not energy-efficient compared to MBNA. However, if the
end-to-end packet delay varies in a small range, that is, the
variance of delay distribution is small, the worst case of delay
will not be far from the mean value of delay. In this case, the
property of soft timing constraint is not notable, and DSEA
routing may achieve lower energy consumption than MBNA.
In the three single hop distribution cases, MBNA can reduce
the energy consumption a lot when the variance is large. For
the network traffic with large uncertainty, the single hop delay
usually varies in a large range. And our MBNA can achieve
lower energy consumption in this situation.

7. Conclusion

In this paper, we focused on the energy-eflicient scheduling
for soft real-time parameter estimation in WSNs. The esti-
mator at the BS is Quasi-BLUE, which is a quite common
estimator in WSNs. In order to save energy, not all the sensor
nodes will send the data to the BS. Only part of sensor
nodes will be at the transfer state so that the Quasi-BLUE
can be implemented with an MSE constraint. In some real-
time applications, we always expect the estimation can be
finished before a deadline with a high probability. The EDD
describes the time that the BS receives sufficient data from
sensor nodes to implement the estimation. The traditional
approaches usually try to reduce the number of hops to
decrease the end-to-end packet delay, which will increase the
communication energy. However, in the scenario of Quasi-
BLUE, the BS just needs the data from an area instead of
a unique sensor. A sensor node’s data can be replaced by
another sensors. Therefore, adding some redundant transfer
state nodes will increase the probability that EDD is less than
the timing constraint, that is, P(EDD < T,) > y.

Because a packet from a sensor node corresponds to a
delay distribution, the calculation of P(EDD < T,) > y with
packets from different sensor nodes is difficult. In this paper,
we proposed the MSEPF and employ the MSEPF to calculate
P(EDD < T,;) > y. The approach takes advantages of the
linear property of Quasi-BLUE and it is easy to implement.
Once P(EDD < T,;) > vy is obtained, we proposed the
MBNA algorithm to schedule the transfer state sensor nodes
for the soft real-time Quasi-BLUE. We compared our MBNA
with the existing DESA routing approaches in the soft real-
time Quasi-BLUE. The simulation results show that MBNA
is more energy-eflicient while satisfying the soft timing
constraint in the Quasi-BLUE.
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