
Supergravities in Diverse Dimensions

Eduard Antonyan

June 10, 2003

1 Introduction

Supergravity was initially envisaged to be an elementary field theory which will be free of UV divergences
and thus unite all the forces with the gravity. Nowadays it’s viewed as an effective theory of a more fun-
damental theory, the only candidate for which is superstring theory, or rather M-theory, in the framework
of which all the supergravity and superstring theories are connected to each other.

In this paper we are going to discuss the general structure of the massless fields which are in the same
multiplet as the graviton, called supergravity multiplet. To do that we’ll introduce spinors in general
dimensions, how they work, what possibilities one has, which will give us some ground to continue to
supersymmetry algebras discussion in section two, which will include the discussion of the R-symmetry
groups in the various dimensions. Then we’ll discuss the supergravity multiplets from the group-theoretical
point of view and classify all possible supergravity theories. Doing that we’ll go to specific cases and discuss
in detail the structure of d = 11 theory, and also outline the main properties of the three d = 10 theories.
To help the reader to understand d < 10 theories in his/her future, we then introduce non-linear sigma
models, and discuss them in the case of IIB theory.

We conclude with a very brief discussion of non Lorentz scalar “central” charges (it’s an abuse of
notation to call them central, since that would seem to imply that they commute with Lorentz, which
obviously won’t be the case if they are not scalars), and a couple of references that the reader may find
useful for a more powerful immersion into the field of supergravity.

2 Spinors in diverse dimensions

Let us start our discussion of spinors with a brief introduction of Clifford algebras. In Appendix A we
define Clifford algebras more rigorously, which will hopefully make the reader more comfortable with them
(especially that we all know Clifford algebra C1 in pseudo-Euclidean space - it’s just the same as algebra
of complex numbers).

The way the Clifford algebra is usually introduced in physics is - think of it in terms of gamma matrices.
That will be almost good enough for our discussion. To bring the way of thinking of Clifford algebras
in terms of gamma matrices closer to what Clifford algebras are, let us introduce the following matrices.
Let’s for simplicity work in a d-dimensional Euclidean space Rd, d = 2n being even, and introduce main
ingredients of Clifford algebra Cd in Rd. Let us also consider 2n × 2n-dimensional matrices in M2n (note
that the dimension of M2n is (2n)2 = 2d!).

1. Let 1 be the identity in M2n .

2. Let γa, a = 1, . . . , d be our gamma matrices, which satisfy {γa, γb} = 2δab, and are hermitian.
Clearly this implies that (γa)2 = 1.

3. Let γa1a2···ak = 1
k!γ

[a1γa2 · · · γak].
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In fact these matrices can be thought of as a basis of Clifford algebra representation in terms of
matrices. I.e. any combination of gamma matrices (sum or product, since this is an algebra) can be
written in a form b1+ baγ

a + · · ·+ ba1a2···ad
γa1a2···ad , where b, ba, . . . , ba1a2···ad

are some real numbers.
Doing simple counting we see that the number of basis elements in Clifford algebra, hence the dimension

is
(
d
0

)
+

(
d
1

)
+ · · ·+

(
d
d

)
= (1 + 1)d = 2d(= dim(M2n)). For d odd, it turns out that the Clifford algebra Cd

is the direct product of two subalgebras, both isomorphic to Cd−1.
Another interesting fact is that matrix representation of Clifford algebra, forms also a representation

of the rotation group, which is actually a fundamental representation of the rotation group, and is called
spinor representation! But the map (homomorphism) from matrix representation of Clifford algebra to
spinor representation of the rotation group is not 1− 1 (an isomorphism), rather it’s 2− 1, i.e. for every
element in the rotation group there are two elements in the Clifford algebra which map to it. The elements
of the vector space on which the matrices of spinor representation of Clifford algebra act are called Dirac
spinors and naturally have dimension 2b

d
2 c (recall that for d odd, Cn = Cn−1⊕Cn−1, it reduces to the even

case).
Let’s now consider more specifically all of the above for spinor representations of SO(t, s), where t

and s denote the number of plus and minus signs correspondingly in the signature of the metric ηab, and
let d = t+ s denote the dimension of our space. So for instance a d-dimensional Minkowski space would
correspond to SO(1, d− 1). Condition 2 for gamma matrices then becomes:

{γa, γb} = 2ηab, (1)

where a = 1, . . . , d, and γa are hermitian for a = 1, . . . , t and antihermitian for a = t+ 1, . . . , d. As before
the dimension of the gamma matrices is 2b

d
2 c × 2b

d
2 c. An explicit representation of gamma matrices can

be constructed as tensor products of Pauli matrices and the 2× 2 unit matrix and is given in [1].
Consider now the matrix

γ5 = (−1)
1
4 (s−t)γ1γ2 · · · γd ∝ γa1a2···ad (2)

(the volume form). It’s should be clear that (γ5)2 = 1, {γ5, γ
a} = 0 and that it’s hermitian, by just using

(1). Using γ5 one can define Weyl spinors with positive (or negative) chirality by their γ5 eigenvalues:

γ5ψ+ = ψ+ (or γ5ψ− = −ψ−) (3)

In odd dimensions γ5 is proportional to the identity, so it doesn’t help us to reduce the spinors (this is
in perfect accordance with Dynkin diagram for SO(2n), which has two branching dots on one end which
correspond to two inequivalent spinor representations, as well as with Dynkin diagram for SO(2n+1),
which has a short root on one end, corresponding to one spinor representation).

But this is not all of the reducing power we have! It turns out that Clifford algebra has a fundamental
anti-automorphism under which γa → −γa for dimensions s− t ≡ 0, 1, 2 mod 8 (the number 8 comes out
here, and will later too, because it can be shown that representations of Clifford algebras are periodic with
period 8). In a sense this means that ∃B−, such that:

−(γa)∗ = B−γ
aB−1

− , with B∗
−B− = 1 (4)

The matrix B− naturally defines a charge conjugation of a spinor:

ψc = B−1
− ψ∗ (5)

It can then be used to impose Majorana condition, which is a reality constraint:

ψc = ψ, (6)

which identifies the charge conjugated spinor with itself.
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Another lucky fact for us is that Clifford algebra also has another fundamental anti-automorphism
under which γa → −γa for dimensions s − t ≡ 2, 3, 4 mod 8 (there are just these two, in case you’re
wondering about more). I.e. ∃B+, such that:

(γa)∗ = B+γ
aB−1

+ , with B∗
+B+ = 1, (7)

charge conjugation being defined by:
ψc = B−1

+ ψ∗ (8)

and the pseudo-Majorana condition being:
ψc = ψ (9)

Recall that the reason the above defined charged conjugation is called so, is because the charge conju-
gated spinor satisfied Dirac equations with opposite electric charge (in case of B+ conjugation the mass
term changes it’s sign too). Note also that charge conjugation can be defined in terms of Dirac conjugate:

ψ̄ = ψ†A, A = γ1γ2 · · · γt

ψc = C+ψ̄
T or ψc = C−ψ̄

T with C± = B−1
± (A−1)T , (10)

where C± are unitary matrices. For more details we refer the reader to [1].
Taking into account that in general, when a spinor ψ has a chirality + (-), the charge conjugated spinor

ψc has a chirality (−1)
1
2 (s−t) (−(−1)

1
2 (s−t)), we can see that (pseudo) Majorana-Weyl spinors are possible

only if ψ has the same chirality as ψc, i.e. when s − t ≡ 0 mod 8. In Minkowski space where t = 1 and
s = d− 1, (pseudo)Majorana-Weyl spinors exist if d ≡ 2 mod 8.

There is one more final type of spinors we’ll be dealing with. In cases when we cannot impose
(pseudo)Majorana condition because (ψc)c = −ψ and we have Dirac spinors (or Weyl spinors in even
dimensions). Then we could introduce a fermion doublet consisting of even number of fermions ψi,
i = 1, . . . , 2d, and impose symplectic condition:

ψi = Ωij(ψj)c, (11)

where Ωij is a constant antisymmetric matrix. Such spinors are called symplectic (pseudo) Majorana
spinors. They clearly don’t reduce the dimension of the spinors, since we double the number of fermions,
and then impose a condition that halves the number back, but they can be more convenient than Dirac
spinors, if the theory has a symplectic symmetry.

Let us summarize our results for a particular case of d-dimensional Minkowski space in a table.

3 Superalgebras

We restrict ourselves in this section to flat Minkowski spacetime of dimension d. The generators of
the super-Poincaré algebra consist of supercharges Qαi (we’ll often omit the spinor index α if it’ll be
unambiguous what we mean), transforming as spinors under the Lorentz group, generators of translations
Pa, generators of the Lorentz groupMab and possibly additional generators (central charges) that commute
with the supercharges, which we’ll ignore for now.

So we have supercharges that commute with translations and are spinors under Lorentz transforma-
tions:

[Pa, Q
i] = 0, [Mab, Q

i] =
1
2
γabQ

i (12)

and the form of these relations is independent on what type of spinor are the supercharges. But the anti-
commutation relation between the supercharges do depend on the type of the spinor, thus the dimension
of the space. Let’s recall though that for a single supercharge they are:

{Qα, Q̄β} = (γa)αβPa (13)
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Type d mod 8 n

W 2, 4, 6, 8 2b
d
2 c

M 2, 3, 4 2b
d
2 c

pM 2, 8, 9 2b
d
2 c

MW 2 2b
d
2 c−1

pMW 2 2b
d
2 c−1

sM 7 2b
d
2 c+1

spM 5 2b
d
2 c+1

sMW 6 2b
d
2 c

Table 1: Possible types of spinors in d-dimensional Minkowski space (t = 1, s = d − 1). W, M, pM,
MW, pMW, sM, spM, sMW denote Weyl, Majorana, pseudo Majorana, Majorana-Weyl, pseudo Majorana-
Weyl, symplectic Majorana, symplectic pseudo Majorana, symplectic Majorana-Weyl spinors respectively.
Second column entries list the possible spacetime dimension congruency classes for each type of spinors,
and the last column n is the number of independent real components of the spinor.

Let’s defer the discussion of anti-commutation relations for a moment and discuss an important concept
of the automorphism group HR. To do that we consider not 1 but N spinor charges which transform
reducibly under the Lorentz group and comprise N irreducible spinors. For Weyl we can consider N+

positive chirality and N− negative chirality spinors. In all these case there exist a group HR acting on the
supercharges, which commutes with the Lorentz group and leaves the super-Poincaré algebra invariant.
This group is also referred to as the R-symmetry group, and is formally defined as the largest automorphism
group of the supersymmetry algebra that commutes with the Lorentz group. As an example of HR consider
case of 1 supercharge, N = 1, then clearly (13) is invariant under U(1) transformations:

Qα → eiθQα =⇒ {Qα, Q̄β} → eiθe−iθ{Qα, Q̄β} = {Qα, Q̄β} (14)

We will encounter more complicated examples of HR when we start discussing possible superalgebras in
different dimensions.

Another important concept we have to introduce before we start enumerating dimensions and algebras
is one which we skipped in the beginning - the concept of central charges Zij . It turns out that one can
have such charges which commute with Lorentz group, and supercharges, but have R-charge, i.e. transform
under the automorphism group HR. They will also appear in general in the supercharge anticommutation
relations. Actually we are cheating here a little bit, since one can have a more general form of central
charges, which transform under Lorentz group, the discussion of which we’ll skip for now.

So combining all we said, the invariant (under change of dimension) part of the super-Poincaré algebra
is:

[Mab, Q
i] =

1
2
γabQ

i, [TA, Qi] = (tA)i
jQ

j ,

[TA, Zij ] = (tA)i
kZ

kj + (tA)j
kZ

ik, [TA, TB ] = fAB
CT

C , (15)

where tA are representation matrices and fAB
C are the structure constants of the Lie algebra of the

automorphism group HR.
The possible automorphism groups and forms of the anticommutator {Q,Q} are listed in the Appendix

B.

4 Supergravity multiplets

Particles that appear in supergravity theories belong to irreducible representations of super-Poincaré
algebras. We are interested here in massless states only.
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As far as it’s known today (June 10, 2003) there are no consistent interacting theories of particles
with helicity ≥ 2, and the only known consistent interacting theory of particle with helicity 2 is general
relativity, i.e. a theory where helicity 2 particle couples to the energy-momentum tensor (for details see
[2]). This puts a limitation on the possible spacetime dimension a supergravity theory can have.

Consider spacetime d = 12. And let’s suppose that we have just one supercharge, i.e. N = 1. The
supercharge is then Weyl or Majorana (but not both!), depending on the conditions one imposes. The
number of independent real components it has is 2b

12
2 c = 64 (using Table 1). First we note that central

charges vanish, Zij = 0, for massless states [3]. Then going to light-cone coordinates the supersymmetry
algebra becomes just creation and annihilation operators algebra with half of the operators represented
trivially (assuming the number of real components of the supercharges is even, which is the case for
D ≥ 4, for discussion of D = 2 and D = 3 cases see [4]). Then we’re left with 32 creation and annihilation
operators, thus 16 creation operators, each of which will increase the helicity of the state it acts on by
1/2. Thus we’ll clearly have to have helicity 4 states, acting on helicity -4 state with 16 creation operators
each of which carries helicity 1/2, will give helicity −4 + 16

2 = 4 state. It should be clear that increasing
the spacetime dimension d or the number of supercharges would worsen this, thus this puts a limit on
the spacetime dimension to be 11! Just as a check let’s see that N = 1 in 11 dimensions doesn’t have
helicity > 2 particles. The supercharges in d = 11 are Majorana, thus the number of real components is
2b

11
2 c = 32. Halving for massless states, we get 8 creation operators and 8 annihilation operators, which

will allow you going from helicity −2 states to helicity 2 states, thus we will stay in the consistent regime!
Having noticed the dimensional constraint there is limited number of possibilities we have to consider.

Let’s concentrate on the d = 11 case and introduce the concepts that are needed to classify possible
supergravity multiplets. The main concept we need is the concept of the little group, which is the subgroup
of Lorentz transformations that leaves the momentum invariant in the light-cone coordinates. It should
be clear that for SO(1, d − 1) the little group is SO(d − 2) (we are just chopping off time and one space
space coordinate, whose linear combinations, x0 + x1 and x0 − x1, are fixed in light-cone coordinates).
Recalling that in d = 11 there are 16 independent spinor components, which would thus transform in the
spinor representation of SO(16), we want to see how would that spinor representation decompose under
the embedding of the little group SO(9), to figure the helicity content of the bosonic and fermionic states.
This is similar to 4 dimensions, where we consider decomposition under the SU(2) subgroup to determine
what the helicities of the particles are.

It then turns out that out of two spinor representations of SO(16) (two Weil spinors), one branches
into:

128 → 44 + 84, (16)

while the second one transforms irreducibly:

128(SO(16)) → 128(SO(9)). (17)

This may look quite strange but it’s actually very similar to N = 1 supergravity in 4 dimensions. The
44 is the veilbein e a

µ (or the graviton), the 128 is the Rarita-Schwinger representing a spin 3
2 particle ψµ

(gravitino), but also there is an additional to 4 dimensional case particle - a bosonic 3-form Bµνρ which
has 84 components, which is an object similar to Aµ in electromagnetism.

Some remarks we would like to add here are the following. First it’s easy to see that bosonic and
fermionic degrees of freedom are the same. This is of course a general fact for supersymmetry. The second
remark is that the way we got the graviton and gravitino, i.e. by finding the irreducible representations
under the little group embedding, makes them automatically satisfy the so called γ-traceless condition,
which arises if one considers starting with vector and spinor representations and tensoring them together
to get spin 3

2 particle, but since tensor product is always reducible one also gets a residual spin 1
2 particle

to get rid of which γ-traceless condition is imposed:

γµψµ = 0, (18)
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and similarly for the veilbein (for more discussion see [2]).
One can do this procedure for all dimensions and all the possibilities including not only supergravity

multiplets (those containing graviton and thus gravitino), but also matter and Yang-Mills multiplets are
listed in [4]. We list here only the possible supergravity multiplets in Table 2.

The numbers of the physical degrees of freedom for each field are:

e a
µ :

1
2
(d− 2)(d− 1)− 1, symmetric traceless tensor

Bµνρσ :
(
d− 2

4

)
=

1
24

(d− 2)(d− 3)(d− 4)(d− 5), 4-form

Bµνρ :
(
d− 2

3

)
=

1
6
(d− 2)(d− 3)(d− 4), 3-form

Bµν :
(
d− 2

2

)
=

1
2
(d− 2)(d− 3), 2-form

Bµ :
(
d− 2

1

)
= d− 2, 1-form/vector

φ : 1, real scalar

ψµ :
1
2
(d− 2− 1)2b

d
2 c, Rarita-Schwinger spin 3

2 spinor

λ :
1
2
2b

d
2 c, spin 1

2 spinor, (19)

where the -1 for graviton and gravitino comes from the above mentioned γ-traceless condition.

5 Supergravities in higher dimensions

In this section we will discuss supergravities in d = 11 and d = 10 in some detail, and at the end briefly
discuss some lower dimensional theories. We assume from the reader some knowledge of the d = 4 minimal
supergravity theory, a short review of which is in [1], and a longer one in [3].

5.1 d = 11 supergravity

The field content of this theory as we discussed earlier contains the graviton e a
µ , a gravitino ψµ and a

3-form Bµνρ. The Lagrangian has the following form [5]:

L = −1
4
eR− 1

2
ieψ̄µγ

µνρDνψρ −
1
48
eFµνρσF

µνρσ +
1
96
e(ψ̄µγ

µναβγδψν + 12ψ̄αγβγψδ)Fαβγδ

+
2

1442
εα1···α4β1···β4µνρFα1···α4Fβ1···β4Bµνρ + (4-fermi terms), (20)

where Fµνρσ = 4∂[µBνρσ] is the field strength of the 3-form, covariant derivative of gravitino is a spin
connection covariant derivative, i.e. Dνψρ = (∂µ + 1

4ω
ab

µ γab)ψρ. This Lagrangian is invariant under the
local supertransformation

δe a
µ = −iε̄γaψµ, δBµνρ =

3
2
ε̄γ[µνψρ],

δψµ = Dµε+
i

144
(γαβγδ

µ − 8γβγδδα
µ )εFαβγδ + (3-fermi terms), (21)

in addition to general coordinate and local Lorentz transformations. It is also invariant up to surface
terms under the local gauge transformations of the 3-form B → B + dΛ, where Λ is a 2-form.

As usual supersymmetry algebra closes on shell [5]. We emphasize this, because since we don’t
include auxiliary fields the supersymmetry algebra doesn’t close off-shell. In the present status of theory
it is possible to actually include auxiliary fields and close the algebra off-shell only for d = 4, N = 1.
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d N or dimensional fields Qirr n
(N+, N−) reduction?

11 1 — e a
µ , ψµ, Bµνρ 32 128

10 (1,1) N = 1 e a
µ , ψ+µ, ψ−µ, Bµνρ, Bµν , Bµ, λ+, λ−, φ 32 128

(2,0) — e a
µ , 2ψ+µ, B(+)

µνρσ, 2Bµν , 2λ−, 2φ 32 128
(1,0) — e a

µ , ψ+µ, Bµν , λ−, φ 16 64
9 2 (1, 1) and (2, 0) e a

µ , 2ψµ, Bµνρ, 2Bµν , 3Bµ, 4λ, 3φ 32 128
1 (1, 0) e a

µ , ψµ, Bµν , Bµ, λ, φ 16 56
8 2 N = 2 e a

µ , 2ψµ, Bµνρ, 3Bµν , 6Bµ, 6λ, 7φ 32 128
1 N = 1 e a

µ , ψµ, Bµν , 2Bµ, λ, φ 16 48
7 4 N = 2 e a

µ , 4ψµ, 5Bµν , 10Bµ, 16λ, 14φ 32 128
2 N = 1 e a

µ , 2ψµ, Bµν , 3Bµ, 2λ, φ 16 40
6 (4,4) N = 4 e a

µ , 4ψ+µ, 4ψ−µ, 5Bµν , 16Bµ, 20λ+, 20λ−, 25φ 32 128
(4, 2) — e a

µ , 4ψ+µ, 2ψ−µ, 5B(+)
µν , B(−)

µν , 8Bµ, 10λ+, 4λ−, 5φ 24 64
(2, 2) N = 2 e a

µ , 2ψ+µ, 2ψ−µ, Bµν , 4Bµ, 2λ+, 2λ−, φ 16 32
(4, 0) — e a

µ , 4ψ+µ, 5B(+)
µν 16 24

(2, 0) — e a
µ , 2ψ+µ, B(+)

µν 8 12
5 8 (4, 4) e a

µ , 8ψµ, 27Bµ, 48λ, 42φ 32 128
6 (4, 2) e a

µ , 6ψµ, 15Bµ, 20λ, 14φ 24 64
4 (2, 2) and (4, 0) e a

µ , 4ψµ, 6Bµ, 4λ, φ 16 24
2 (2, 0) e a

µ , 2ψµ, Bµ 8 8
4 8 N = 8 e a

µ , 8ψµ, 28Bµ, 56λ, 70φ 32 128
6 N = 6 e a

µ , 6ψµ, 16Bµ, 26λ, 30φ 24 64
5 — e a

µ , 5ψµ, 10Bµ, 11λ, 10φ 20 32
4 N = 4 e a

µ , 4ψµ, 6Bµ, 4λ, 2φ 16 16
3 — e a

µ , 3ψµ, 3Bµ, λ 12 8
2 N = 2 e a

µ , 2ψµ, Bµ 8 4
1 — e a

µ , ψµ 4 2

Table 2: Supergravity multiplets. d is the spacetime dimension, N (or (N+, N−)) the number of su-
percharges (of positive/negative chirality), third column indicates whether the theory comes from the
dimensional reduction of a theory one dimension higher, fourth column is the field content of the theory,
Qirr is the total number of real irreducible components of the supercharges and n denotes the number of
real bosonic = fermionic physical degrees of freedom. The subscripts ± on spinor fields denote chiralities.
The superscripts (±) on k-forms mean that they are (anti-)self-dual.
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5.2 d = 10 supergravities

In 10 dimensions there are 3 supergravity theories - (1, 1) supergravity [11], which is a massless sector of
the type IIA superstring theory, (2, 0) supergravity [6, 7, 8], which is a chiral (left-right asymmetric) and
is a massless sector of the type IIB superstring theory, and finally (1, 0) supergravity [9, 10], which is also
chiral and is a massless sector of the type I superstring theory.

Let’s start from type IIA theory. As indicated in Table 2 it’s a dimensional reduction of the d = 11
theory. To see how it happens consider as an example the metric

ds2 = gµνdx
µdxν , (22)

where µ, ν = 0, . . . , 10. Now consider parameterizing the 10th dimension as follows

ds2 = gijdx
idxj + eφ(dx10 + Vidx

i)(dx10 + Vjdx
j), (23)

where i, j = 0, . . . , 9. If we now consider the x10-independent terms only, we’ll get a metric of 1 dimension
less, a vector field, and a scalar field. One can see more features of this, specifically that Vµ is gauge
invariant. By making coordinate transformations x10 → x10 − ξ(x) and xi → xi, where ξ(x) is an
arbitrary function of the first 10 spacetime coordinates, we get gauge invariance for the vector field:

Vµ(x) → Vµ(x) + ∂µξ(x). (24)

Similarly the other fields can be reduced under dimensional reduction, and the gravitino will decompose
into two gravitinos of the lower dimension (two because we have Weyl decomposition into chiral fields),
and the extra degrees of freedom from the last dimension will realize in terms of two chiral spin 1

2 particles
λ+ and λ−. Finally the 3-form will decompose into a 3-form of lower dimension and the 10th dimension
degrees of freedom will become a 2-form - Bij ≡ B10ij (these are all the extra degrees of freedom a 3-form
has since it’s totally antisymmetric).

We include the Lagrangian for this theory, without comments, to demonstrate how bad things can
look like in supergravity theories:

L = −1
4
e(10)R(e, ω)− 1

16
eφ9/4FµνF

µν +
9
32
e(∂µφ/φ)∂µφ/φ− 1

48
eφ3/4F ′

µνλρF
′µνλρ

+
1
12
eφ−3/2FµνλF

µνλ + [3/2(12)3]εµ1···µ10Fµ1···µ4Fµ5···µ8Bµ9µ10 −
1
2
ieψ̄µγ

µνλDν

[1
2
(ω + ω̂)

]
ψλ

+
1
2
ieλ̄γµDµ

[1
2
(ω + ω̂)

]
λ− 3

8
i
√

2eψ̄µ[(6∂φ+ 6D̂φ)/2φ]γµγ‖λ−
1
32
ieφ9/8(ψ̄µγ

µνλργ‖ψλ

−2ψ̄νγ‖ψ
ρ +

3
2

√
2ψ̄µγ

µνρλ− 3
√

2ψ̄νγρλ− 5
4
λ̄γνργ‖λ)(F + F̂ )νρ

+
1

192
eφ3/8(ψ̄σγ

µνλρσκψκ + 12ψ̄µγνλψρ +
3
4
λ̄γµνλρλ− 1

3

√
2ψ̄σγ

µνλρσγ‖λ

+2
√

2ψ̄µγνλργ‖λ)(F + F̂ )µνλρ +
1
48
eφ−3/4(ψ̄ργ

ρµνλσγ‖ψσ + 6ψ̄µγνγ‖ψ
λ

−
√

2ψ̄ργ
µνλγρλ)(F + F̂ )µνλ + L4, (25)

with the 4-fermi terms given by:

L4 = − 1
64
e
[ 1
108

√
2λ̄γµνλλ(ψ̄ργµνλργ‖λ− 37ψ̄µγνλγ‖λ) +

1
3

√
2ψ̄ργ

µνλργ‖λ(2ψ̄µγνψλ +
1
3

√
2ψ̄µγνλγ‖λ)

+
4
9
λ̄γµνγ‖λ(2ψ̄λγµνλργ‖ψ

ρ + 2λ̄γµνγ‖λ−
1
2

√
2ψ̄λγµνλλ+

44
3

√
2ψ̄µγνλ)

+
16
3

√
2ψ̄µγνλ(ψ̄λγµνλργ‖ψ

ρ − 1
3

√
2ψ̄λγµνλλ−

4
3

√
2ψ̄νγµλ)− 16

3

√
2ψ̄µγ‖ψ

νψ̄λγµνλλ

+
2
3
ψ̄µγ

µνγ‖λ(24ψ̄νγ‖λ− 4
√

2ψ̄λγλψν −
1
3
ψ̄λγλνγ‖λ) +

128
9

(ψ̄µγµλ)2
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+
1
3

√
2ψ̄µγνλγ‖λ(ψ̄ργρµνλσψ

σ + 4ψ̄νγµψλ +
1
3

√
2ψ̄νγµλγ‖λ)

]
! (26)

The next theory we want to discuss is the I theory. It’s not a dimensional reduction of d = 11 theory,
but it can be obtained from the d = 11 theory by an operation called truncation. Morally truncation get’s
rid of the say negative chirality fields. Doing it more consistently is achieved by putting

e a
µ =

(
e A
i 0
0 e 10

10

)
, Bijk = 0,

ψ−i ≡
1
2
(1− γ5)ψi = 0, ψ+10 ≡

1
2
(1 + γ5)ψ10 = 0, (27)

where the latin indices run over 10 dimensions, and greek ones - over 11. Under this truncation the leftover
fields would be the 10-dimensional graviton, a scalar from the graviton truncation the 2-form part of the
3-form B10ij , a gravitino from ψ+µ truncation and an additional negative chirality spin 1

2 field from the
ψ−µ truncation, thus the field content presented in Table 2. The action for this theory has a fairly simple
form compared to IIA theory action and is presented in [9].

Probably the most interesting case is the type IIB theory. It doesn’t arise neither from dimensional
reduction nor from truncation of fields. We can see that it has two scalars, which makes it quite different
from the previous two cases, since the scalars are the coordinates of our manifold and thus will contain
interesting features, which we’ll discuss later when we talk about non-linear sigma models. The other
thing to notice is that it has a self-dual 4-form. The self-duality should be clear by just counting the
number of indices, the field strength of a 4-form is a 5-form, thus since we’re in 10 dimensions the dual
form would again be a 5-form, and thus the dual field - a 4-form. One can show that there is no covariant
Lagrangian for such a theory [14, 12]. It is also notable that the IIA and IIB theories relate to each
other by so called T-duality [12], when one compactifies them on circles with radii RA and RB such that
RARB = 1.

5.3 d < 10 supergravities

Supergravities in lower dimensions are most easily obtained in a similar way to the way one obtains IIA
and I theories from d = 11 theory, i.e. by dimensional reduction or by truncation. Their field content is
give in Table 2. For small N (N ≤ 4) theories there are also superspace formulations.

Notice that we did not include the case d ≤ 3, the reason for that being that one has no dynamical
degrees of freedom in those dimensions for the graviton.

A general structure for d < 10 theories that we will be interested for the next section is the scalar field
structure. When they are present the theory has a rigid non-compact symmetry G, but also the scalars
transform locally under the maximal compact subgroup H ⊂ G, so to get the physical degrees of freedom
one has to mod out by H.

6 Non-linear sigma models

Scalar fields appearing in supergravities are described by G/H non-linear sigma models, where G is a
non-compact Lie group and H is a maximal compact subgroup of G. What this means is that one can
extend the symmetry of the scalar fields to get a linear G-symmetric model of scalars, but then to get
back our the original theory one has to quotient the additional local gauge transformations on the scalars
described by H.

Rather than presenting the mechanism for a general case, we will do it for a particular case of IIB
theory discussed previously, which will nevertheless include almost all of the tricks of non-linear sigma
models. For a more general treatment see [13].

9



Let us consider the case G = SL(2,R) ∼ SU(1, 1) and H = SO(2) ∼ U(1). This sigma model appears
in IIB theory and also in d = 4, N = 4 theory. The SU(1, 1)-valued scalar field V (x) is parameterized by
two complex scalar fields φ0(x), φ1(x) as

V (x) =
(
φ0(x) φ∗1(x)
φ1(x) φ∗0(x)

)
, , |φ0|2 − |φ1|2 = 1. (28)

The rigid SU(1, 1) transformations are given by:

V (x) → gV (x), g =
(
a b∗

b a∗

)
∈ SU(1, 1), (29)

where |a|2 − |b|2 = 1. The local H = U(1) transformations act from the right:

V (x) → V (x)h−1(x), h(x) =
(
eiθ(x) 0

0 e−iθ(x)

)
∈ U(1). (30)

To construct an invariant Lagrangian that will satisfy the demanded properties of global G and local H
invariances one has to look at the decomposition of the Lie algebra g of G:

g = h + n, (31)

where h is the Lie algebra of H and n is its orthogonal complement in g. The orthogonality is defined
with respect to a trace in a certain representation: tr(hn) = 0. Orthogonality then implies

[h, h] ⊂ h, [h, n] ⊂ n. (32)

The g-valued field V −1∂µV is decomposed as

V −1∂µV = Qµ + Pµ, Qµ ∈ h, Pµ ∈ n. (33)

For our case of SU(1, 1)/U(1) we have

Qµ = (φ∗0∂µφ0 − φ∗1∂µφ1)
(

1 0
0 −1

)
,

Pµ =
(

0 (φ0∂µφ1 − φ1∂µφ0)∗

φ0∂µφ1 − φ1∂µφ0 0

)
. (34)

Since we know how V transforms under localH transformations (30) and have the orthogonality conditions
(32) we can figure out the transformation laws for Qµ and Pµ under H:

Qµ → hQµh
−1 + h∂µh

−1,
Pµ → hPµh

−1. (35)

We see that Qµ transforms as an H gauge field, and thus can be used as a connection to define a covariant
derivative. In fact using (33) we have:

Pµ = V −1(∂µV − V Qµ) ≡ V −1DµV, (36)

where Dµ is the H-covariant derivative on V .
Finally noting that Qµ and Pµ are invariant under the rigid G transformations, we can now finally

construct an action that would be invariant under the global G and local H. In particular the kinetic
term of the scalar field is:

L =
1
2
tr(PµP

µ) = |φ0∂µφ1 − φ1∂µφ0|2 =
∂µz∂

µz∗

(1− |z|2)2
(
z ≡ φ∗1(φ

∗
0)

−1
)

(37)
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This is the final result we wanted to achieve! We have an action which has only two real scalars, as in
IIB theory, the variable z is U(1) invariant and the action has a non-linearly realized SU(1, 1) symmetry
as

z → az + b∗

bz + a∗
(38)

Similar sigma models can be constructed for other supergravities which have scalars. The full list of
G and H groups is given in [1].

7 Remarks and Conclusion

There are many issues in supergravities that we left out in this paper like massive supermultiplets, coupling
of supergravity multiplets with other multiplets (if there are any depending on the dimension [4]), duality
symmetries and the constraints they impose on the possible (or impossible as we saw for IIB) Lagrangians.

We would like to address here something else that we left out in the beginning - the non Lorentz scalar
central charges. If one introduces to our supergravities external p-dimensionally extended objects, called
p-branes (0-branes are point-particles, 1-branes - strings, etc.) which could couple to supermultiplet fields,
one can write down a general Lagrangian in spacetime dimension d, describing interaction of a graviton, a
k-form and a scalar with a p-brane, and general electrically charged p-brane solutions were found [16], as
well as “solitonic” solutions which exhibit topological magnetic charge satisfying Dirac quantization rule.
In the cases where the solutions are supersymmetric, those charges actually are the central charges! And
the supersymmetry algebra takes the approximate form:

{Qα, Qβ} ∝
∑

p

(γµ1···µpC)αβZµ1···µp
, (39)

where the sum is over the possible p-branes or alternatively central charges. Of course the possible types
of branes have been classified and are given as a nice graph in [1].

As a conclusion we would like to say that in this paper we barely scratched the surface of the su-
pergravity area, which is already quite old (in modern time-scales), but which still has new aspects to
be discovered and open problems to be solved. For those who want to study it more deeply we would
recommend reviews [13, 1, 15].
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Appendix

A Clifford algebras

We wish to define Clifford algebras in this section and list some useful facts about them. The way we do
it here is probably a little outdated, but is nevertheless quite illuminating. We follow [17].

Consider real Euclidean space of n dimensions, Rn. Consider also scalars a, vectors ai, antisymmetric
tensors of rank 2 (or 2-forms) aij , 3-forms aijk, etc. Obviously we can’t have more indices than the
dimension of the space n, otherwise we’ll get trivially zero.

Consider now new objects, which we’ll call aggregates. A collection consisting of a scalar, vector,
2-form, 3-form,. . . , n-form, will be called an aggregate A:

A = (a, ai, aij , . . . , ai1i2···in) (40)

The numbers appearing in (40) are called the coordinates of A in the given basis.
We wish to demonstrate that with certain operations of summation and multiplication aggregates may

be regarded as elements of a certain algebra over the field of real numbers (which will of course be Clifford
algebra).

First of all the operation of addition is defined trivially:

A(a, ai, . . . , ai1···in) + B(b, bi, . . . , bi1···in) = C(a+ b, (a+ b)i, . . . , (a+ b)i1···in). (41)

Note that since by summing k-forms we get back k-forms this is an invariant definition. Multiplication by
a number is also defined trivially:

bA = Ab = A(ba, bai, . . . , bai1···in). (42)

With the risk of introducing confusion we introduce the following convention:

a ≡ A(a, 0, . . . , 0),
a ≡ A(0, 0, . . . , ai1...ik , . . . , 0) (43)

Choosing then an orthonormal basis ei and denoting ei1···ik
≡ 1

k!e[i1 · · · eik], we have:

A = a+
∑
i1

ai1ei1 +
∑

i1<i2

ai1i2ei1i2 + · · ·+ a12...ne12...n (44)

We now define multiplication of aggregates, and demand it to have the following properties.
(a) It should be distributive:

(A + B)C = AC + BC, C(A + B) = CA + CB, (45)

(b) associative
(AB)C = A(BC), (46)

(c) if A = (a, 0, . . . , 0) ≡ a, then
AB = BA = aB, (47)

(d) if a ≡ (0, ai, 0, . . . , 0) then
aa = |a|2, (48)

where |a|2 should be regarded as (|a|2, 0, . . . , 0).
(e) And finally for arbitrary vectors p1, . . . ,pk regarded as aggregates the following should hold:

p[1 · · ·pk] = p1 ∧ · · · ∧ pk, (49)
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where on the left hand-side is aggregate multiplication, while on the right hand-side wedging of vectors,
the result of which is treated as an aggregate.

The algebra of aggregates obeying the above written laws of summation and multiplication is called a
Clifford algebra Cn.

After this probably confusing definition we want to show that this implies the rules we know. Using
property (d) of the product it’s not hard to show that orthogonal vectors anticommute, in particular:

eiej + ejei = 2δij , (50)

which is the defining property of the gamma matrices as we know! In fact by fundamental theorem
of Clifford algebras, the forms ei1···ik

can be put into 1-1 correspondence with γi1···ik , which are the
antisymmetrizations of Gamma matrices as defined in Section 2.

We already discussed some of the aspects of Clifford algebras in Section 2, so let us just give an example
of the simplest Clifford algebra. Consider instead of real Euclidean space, 1-dimensional pseudo-Euclidean
space, this just means that the basis vector squares to -1 instead of 1 - e2

1 = 1. Then the aggregates have
the form:

A = a+ a1e1, (51)

where a, a1 are arbitrary real numbers. This is just the algebra of complex numbers!
Similarly one can consider Clifford algebra on 2-dimensional pseudo-Euclidean space (where both

vectors square to -1), and get the algebra of quaternions.
For a more modern definition of Clifford algebras and there geometrical interpretation we refer the

reader to the extensive literature available at [18].

B Superalgebras in different dimensions

We list possible automorphism (R-symmetry) groups HR and the form of the anticommutators {Q,Q},
depending on the spinor type of Qi, thus the spacetime dimension.
(a) d = 4, 8 mod 8
The supercharges are Weyl spinors with positive chirality Qi

+ (i = 1, . . . , N). Their charge conjugations
have negative chirality (Qi

+)c = Q−i, where the charge conjugation matrix C = C− (C = C+) is used for
d = 4 (d = 8) mod 8. The automorphism group HR = U(N). Anticommutators of the supercharges are:

{Qi
+, Q

T
−j} =

1
2
(1 + γ5)γaCPaδ

i
j ,

{Qi
+, Q

jT
+ } =

1
2
(1 + γ5)CZij , (52)

where Zij is antisymmetric for d = 4 mod 8 and symmetric for d = 8 mod 8. (b) d = 10 mod 8
The supercharges are Majorana-Weyl spinors with positive chirality Qi

+ (i = 1, . . . , N+) and Majorana-
Weyl spinors with negative chirality Qi

− (i = 1, . . . , N−). The automorphism group HR = SO(N+) ×
SO(N−) (note that it’s SO group instead of U as in previous case, because we have Majorana spinors,
and thus have a reality condition). Anticommutators of the supercharges are:

{Qi
+, Q

jT
+ } =

1
2
(1 + γ5)γaC−Paδ

ij ,

{Qi
−, Q

jT
− } =

1
2
(1− γ5)γaC−Paδ

ij ,

{Qi
+, Q

jT
− } =

1
2
(1 + γ5)C−Z

ij . (53)

(c) d = 6 mod 8
The supercharges are symplectic Majorana-Weyl spinors with positive chirality Qi

+ (i = 1, . . . , N+) and
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symplectic Majorana-Weyl spinors with negative chirality Qi
− (i = 1, . . . , N−). They satisfy Ωij

±(Qj
±)c =

Qi
±, where Ωij

± are antisymmetric matrices. The numbers N+ and N− must be even (simply by the
definition of symplectic spinors - they are doublets). The automorphism group is HR = USp(N+) ×
USp(N−), where USp(N) is the group of unitary symplectic N × N matrices. Anticommutators of the
supercharges are:

{Qi
+, Q

jT
+ } =

1
2
(1 + γ5)γaC−PaΩij

+ ,

{Qi
−, Q

jT
− } =

1
2
(1− γ5)γaC−PaΩij

−,

{Qi
+, Q

jT
− } =

1
2
(1 + γ5)C−Z

ij . (54)

(d) d = 9, 11 mod 8
The supercharges are pseudo Majorana spinors for d = 9 mod 8 and Majorana spinors for d = 11 mod 8 -
Qi (i = 1, . . . , N). The automorphism group is HR = SO(N). Anticommutators of the supercharges are:

{Qi, QjT } = γaCPaδ
ij + CZij , (55)

where C = C+, Zij is symmetric for d = 9 mod 8 and C = C−, Zij is antisymmetric for d = 11 mod 8.
(e) d = 5, 7 mod 8
The supercharges are symplectic pseudo Majorana spinors for d = 5 mod 8 and symplectic Majorana
spinors for d = 7 mod 8 - Qi (i = 1, . . . , N). They satisfy Ωij(Qj)c = Qi, where Ωij is an antisymmetric
matrix. The number N is even. The automorphism group is HR = USp(N). Anticommutators of the
supercharges are:

{Qi, QjT } = γaCPaΩij + CZij , (56)

where C = C+, Zij is antisymmetric for d = 5 mod 8 and C = C−, Zij is symmetric for d = 7 mod 8.
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